DS-GA-1011: Natural Language Processing with
Representation Learning, Fall 2023
HW-4: Scaling Language Model and Prompt Engineering

Name

NYU ID

Please write down any collaborators, Al tools (ChatGPT, Copliot, codex, etc.), and external resources
you used for this assignment here.

Collaborators:

AT tools:

Resources:

By turning in this assignment, I agree by the honor code of the College of Arts and Science at New York
University and declare that all of this is my own work.

Acknowledgement: Xiang Pan set up the leaderboard and Lavender Jiang developed the programming
question. We drew inspiration from the scratchpad paper by Nye et al. and |prompt engineering guide.

Before you get started, please read the Submission section thoroughly.

Submission

Submission is done on Gradescope.

Written: You can either directly type your solution in the released .tex file, or write your solution using
pen or stylus. A .pdf file must be submitted.

Programming: Questions marked with “coding” at the start of the question require a coding part. You
should submit submission.py.

Due Date: This homework is due on November 22, 2023, at 12 pm Eastern Time.

1 Language Models and Compression

In this problem, we will try to connect language models to lossless compression. The goal of lossless com-
pression is to encode a sequence of symbols © = (z1,...,z,) (z; € X) following a distribution p to a sequence
of bits, i.e. ¢ : X* — {0,1}*, such that the original sequence can be recovered from the bit sequence. To
increase compression efficiency, we want to minimize the expected number of bits per sequence.

Shannon’s source coding theorem states that the minimum number of bits (using any compression algorithm)
cannot go below the Shannon entropy of the sequence H(X) = E,~,[—log, p(z)] (note that here we use X
to denote the random variable and x to denote the value).

1. [2 points] Now, given a language model ¢ trained on a finite sample of sequences from p. Show that

https://arxiv.org/abs/2112.00114
https://www.promptingguide.ai/

NYU ID Fine-tuning Language Models November 13, 2023

the perplexity of the language model is lower bounded by 27 (®):

2]Ea:~p[* log, q(=)] 2 2H(p)

[HINT: You can use the fact that the KL divergence is non-negative: Dkr,(p|lg) > 0.]

DS-GA-1011: Natural Language Processing with Representation Learning — Fall 2023 2

NYU ID Fine-tuning Language Models November 13, 2023

2. Recall that in Huffman coding, we construct the Huffman tree based on frequencies of each symbol,
and assigning binary codes to each symbol by travesing the tree from the root. For example, given
a set of symbols {a,b,c} and their corresponding counts {5, 10,2}, the codeword for a, b, ¢ are 01,
1, 00, respectively. You may want to review Huffman coding at https://en.wikipedia.org/wiki/
Huffman_codingl

Note that instead of using counts/frequencies to construct the tree, we can use any weight proportional
to the probability of the symbol, e.g., 5/17, 10/17, 2/17 in the above example. Now we will use a toy
corpus to estimate the probabilities of each symbol, derive the Huffman code from the probabilities,
and encode a sequence.

(a) [2 points] Given the following corpus (you can assume each token is separated by a whitespace):

the cat was on the mat
the cat on the mat has a hat .
the mat was flat .

Estimate the unigram probability of each token in the vocabulary.

DS-GA-1011: Natural Language Processing with Representation Learning — Fall 2023 3

https://en.wikipedia.org/wiki/Huffman_coding
https://en.wikipedia.org/wiki/Huffman_coding

NYU ID Fine-tuning Language Models November 13, 2023

3. [3 points] Use the above probabilities to construct a Huffman tree for the symbols, and encode the
sequence the mat has a hat and the hat has a mat.

DS-GA-1011: Natural Language Processing with Representation Learning — Fall 2023 4

NYU ID Fine-tuning Language Models November 13, 2023

4. [4 points] Note that in the above question, the two sequences have the same code length because we
are encoding each word independently. In principle, we should be able to shorten the code length by
considering dependencies between a word and its prefix. Specifically, given a language model g, for the
first word in a sequence, we encode it by constructing a Huffman tree using weights ¢(-); for the i-th
word, we encode it using weights ¢(- | z<;). Now, encode the sequence the mat has a hat using a
bigram language model estimated on the above toy corpus. [NOTE: Because we are not using any
smoothing, ¢(- | x<;) assigns zero probability to certain tokens, which means that we won’t be able to
encode all possible sequences. But you can ignore this problem in the context of this question.]

DS-GA-1011: Natural Language Processing with Representation Learning — Fall 2023 5

NYU ID Fine-tuning Language Models November 13, 2023

2 Prompt Engineering for Addition

The goal of this coding problem is the following:
1. Give you hands-on experience with prompt engineering.
2. Understand the challenges involved in prompt engineering.

Specifically, we will use API from together.ai to teach the LLaMa-2| 7B model to add two positive 7-digit
integers.
First go through the file README.md to set up the environment required for the class.

1. Zero-shot Addition

We provided you a notebook addition_prompting.ipynb. In the first section, there are two examples of
zero-shot addition: ten 1-digit addition and ten 7-digit additions.

a. (2 points, written) Run the two examples. In your opinion, what are some factors that cause language
model performance to deteriorate from 1 digit to 7 digits?

DS-GA-1011: Natural Language Processing with Representation Learning — Fall 2023 6

https://api.together.xyz/playground/chat/togethercomputer/llama-2-70b-chat
https://arxiv.org/abs/2307.09288

NYU ID Fine-tuning Language Models November 13, 2023

b. (5 points, written) Play around with the config parameters in together.ai’s web UI.

e What does each parameter represent?

e How does increasing each parameter change the generation?

DS-GA-1011: Natural Language Processing with Representation Learning — Fall 2023 7

https://api.together.xyz/playground/language/togethercomputer/llama-2-7b

NYU ID Fine-tuning Language Models November 13, 2023

c. (2 points, written) Do 7-digit addition with 70B parameter llama model.

e How does the performance change?

e What are some factors that cause this change?

DS-GA-1011: Natural Language Processing with Representation Learning — Fall 2023 8

NYU ID Fine-tuning Language Models November 13, 2023

d. (2 points, written) Previously we gave our language model the prior that the sum of two 7-digit numbers
must have a maximum of 8 digits (by setting max_token=8). What if we remove this prior by increasing
the max_token to 207

e Does the model still perform well?

e What are some reasons why?

DS-GA-1011: Natural Language Processing with Representation Learning — Fall 2023 9

NYU ID Fine-tuning Language Models November 13, 2023

2. In Context Learning
In this part We will try to improve the performance of 7-digit addition via in-context learning. For cost-

control purposes (you only have $25 free credits), we will use llama-2-7b.

a. (2 points, written) Using the baseline prompt (" Question: What is 3+77 Answer: 10 Question: What
is a+b? Answer:”), check 7-digit addition for 10 pairs again.

e Compared to zero-shot 7-digit additions with maximum 7 tokens, how does the performance
change when we use the baseline in-context learning prompt?

e What are some factors that cause this change?

DS-GA-1011: Natural Language Processing with Representation Learning — Fall 2023 10

https://api.together.xyz/playground/language/togethercomputer/llama-2-7b

NYU ID Fine-tuning Language Models November 13, 2023

b. (3 points, written) Now we will remove the prior on output length and re-evaluate the performance of
our baseline one-shot learning prompt. We need to modify our post processing function to extract the
answer from the output sequence.

e Describe an approach to modify the post processing function.
e Compared to 2a, How does the performance change when we relax the output length constraint?

e What are some factors that cause this change?

DS-GA-1011: Natural Language Processing with Representation Learning — Fall 2023 11

NYU ID Fine-tuning Language Models November 13, 2023

c. (4 points, written) Let’s change our one-shot learning example to something more ”in-distribution”.
Previously we were using 1-digit addition as an example.
Let’s change it to 7-digit addition (1234567+1234567=2469134).
e Evaluate the performance with max_tokens = 8. Report the res, acc, mae, prompt_length.
e Evaluate the performance with max_tokens = 50. Report the res, acc, mae, prompt_length.
e How does the performance change from 1-digit example to 7-digit example?

e Take a closer look at test_range. How was res calculated? What is its range? Does it make
sense to you? Why or why not?

DS-GA-1011: Natural Language Processing with Representation Learning — Fall 2023 12

NYU ID Fine-tuning Language Models November 13, 2023

d. (written, 4 points) Let’s look at a specific example with large absolute error.

e Run the cell at least 5 times. Does the error change with each time? Why?
e Can you think of a prompt to reduce the error?
e Why do you think it would work?

e Does it work in practice? Why or why not?

DS-GA-1011: Natural Language Processing with Representation Learning — Fall 2023 13

NYU ID Fine-tuning Language Models November 13, 2023

3. Prompt-a-thon!

In this part, you will compete with your classmates to see who is best at teach llama to add 7-digit numbers
reliably! Submﬂﬂ your submission.py to enter the leader board!

The autograder will test your prompt on 30 pairs of 7-digit integer addition. Some pairs are manually designed
and some pairs are randomly generated using a random seed that is different from addition_prompting.ipynb.
This will generate 30 API calls, with 1 second wait time between each API call. Since prompting has ran-
domness, we will run the same trial 3 times and report the average performance. In total, each submission
will incur 90 APT calls.

Please keep max_tokens to at least 50, so that you’re not giving the model a prior on the output length.
Please also do not try to hack the pre-processing and post-processing functions by including arithmetic
operations. The autograder is able to detect the use of arithmetic operations in these functions.

Here’s a list of functions you can modify:

e your_api_key
e your_prompt
e your_config
e your pre processing (but no arithmetic operation. e.g., £"a+b={a+b}" is not allowed.)

e your_post_processing (but no arithmetic operation. e.g., f"a+b={a+b}" is not allowed.)

a. (coding, 5 points) Use prompt to improve test performance. For full credit, either

e get average accuracy greater than 0.1, or
e get average mean absolute error less than 5e6.

To prevent recovery of test pairs, your autograder submission is limited to 10 tries. For testing, we
recommend using test_prompts.py.

b. (optional, 1-3 points) Top 3 students on the leaderboard will be given the following awards:

(a) First place: 3 points

(b) Second place: 2 points

(¢) Third place: 1 point
We will add the points to your homework 4 score (capping at the maximum). For example, suppose the
student in first place originally has 23 out of 25, with the reward they will get 25 out of 25. Suppose

the student in first place originally has 20 out of 25, with the reward they will get 23 out of 25. In case
of a tie, we recognize the earlier submission.

INote: while you can use prompt.txt for debugging and local testing, for the final autograder submission, please use string
(not file). The reason why is that autograder cannot find prompt . txt in the testing environment. Sorry about the inconvenience!

DS-GA-1011: Natural Language Processing with Representation Learning — Fall 2023 14

	Language Models and Compression
	Prompt Engineering for Addition

