
Representation Learning

He He

New York University

November 17, 2021

1 / 46



Table of Contents

Transformers

Pre-trained models

Scaling up pre-trained models

2 / 46



Recap: BiLSTM

I Classification: p(y | x) = softmax(linear(pooling(o1, . . . , oT )))

I Sequence labeling: p(yt | x) = softmax(linear(ot))

I Sequence generation: decoder + attention

3 / 46



Tasks with two inputs
Natural language inference

Premise: 8 million in relief in the form of emergency housing.

Hypothesis: The 8 million dollars for emergency housing was still not enough to
solve the problem.

Label: neutral

Reading comprehension

Super Bowl 50 was an American football game to determine the champion of the

National Football League (NFL) for the 2015 season. The American Football Conference

(AFC) champion Denver Broncos defeated the National Football Conference (NFC)

champion Carolina Panthers 24–10 to earn their third Super Bowl title. The game was

played on February 7, 2016, at Levi’s Stadium in the San Francisco Bay Area at Santa

Clara, California.

Question: Which team won Super Bowl 50?

Answer: Denver Broncos
4 / 46



Encode two inputs
Goal: X × X → Y

Simple combination:

I Encode x1 and x2 in Rd separately

I Aggregate the two embeddings, e.g. MLP(pooling(enc(x1), enc(x2)))

I Pooling: concatenation, elementwise max, elementwise product etc.

I Modular, but less expressive

Finer-grained interaction between the two inputs:

I Can we use something similar to the attention mechanism in seq2seq?

5 / 46



BiDAF
Bi-Directional Attention Flow for Machine Comprehension [Seo+ 2017]
Key idea: representation of x1 depends on x2 and vice versa

6 / 46



Improve the efficiency of RNNs

Word embedding: represents the meaning of a word

Recurrent neural networks: captures dependence among words in a sentence

Attention mechanism: better modeling of long-range dependence

Multi-layer biLSTM with various attentions was the go-to architecture for most NLP
tasks.

But, RNNs are sequential and difficult to scale up

We want deeper models trained with larger data.

Can we handle dependencies in a more efficient way?

7 / 46



Attention is all you need?

Key idea: get rid of recurrence and only rely on attention

8 / 46



Transformer overview

Attention is all you need. [Vaswani+ 2017]

Replaces recurrence with self-attention:

9 / 46



Transformer block

10 / 46



Self-attention

I Seq2seq attention: keys and values are the input words, and queries are the
output (prefix).

I Self-attention: keys, values, and queries are all from the input words.

I Input: a sequence of words
I Output: (contextualized) embeddings for each word

I Each word (as a query) interacts with all words (keys/values) in the input

I Computation of the attention output for each word can be parallelized
11 / 46



Matrix representation

Figure: From “The Illustrated Transformer”
12 / 46



Scaled dot-product attention
Scaled dot-product attention

α(q, k) = q · k/
√
d

I
√
d : dimension of the key vector

I Avoids large attention weights that push the softmax function into regions of
small gradients

13 / 46



Multi-head attention: motivation

Time flies like an arrow

I Each word attends to all other words in the sentence

I Which words should “like” attend to?

I Syntax: “flies”, “arrow” (a preposition)
I Semantics: “time”, “arrow” (a metaphor)

I We want to represent different roles of a word in the sentence: need more than a
single embedding

I Instantiation: multiple self-attention modules

14 / 46



Multi-head attention

15 / 46



Time complexity

16 / 46



Efficient self-attention

17 / 46



Position embedding
Motivation: model word order in the input sequence

Solution: add a position embedding to each word

Position embedding:

I Encode absolute and relative positions of a word

I (Same dimension as word embeddings)

I Learned or deterministic
18 / 46



Sinusoidal position embedding

19 / 46



How important is word ordering?

20 / 46



Residual connection and layer normalization

I Residual connection: add input to the output of each layer

I Layer normalization: normalize (zero mean, unit variance) over all features for
each sample in the batch

I Position-wise feed-forward networks: same mapping for all positions

21 / 46



Connect the decoder

I Autoregressive generation
I Self-attention over prefix, encoder-decoder attention over inputs
I Output at each position:

p(yt | x , y1:t−1)

I MLE training
22 / 46



Impact on NLP

I Initially designed for sequential data and obtained SOTA results on MT

I Replaced recurrent models (e.g. LSTM) on many tasks

I Enabled large-scale training which led to pre-trained models such as BERT and
GPT-2

Limitation: fixed length input (see Longformer, Performer etc.)

23 / 46



Table of Contents

Transformers

Pre-trained models

Scaling up pre-trained models

24 / 46



Representation learning
What are good representations?

Contains good features for downstream tasks

Example:

negative the food is good but doesn’t worth an hour wait

Simple features (e.g. BoW) require complex models.
Good features only need simple (e.g. linear) models.

Figure: Sentiment neuron [Radford+ 2017] 25 / 46



Representation learning

Applications of good representations:

I Learning with small data: fine-tuning on learned representations

I Multi-task and transfer learning: one representation used for many tasks

I Metric learning: get a similarity metric for free

How do we learn the representations?

I Self-supervised learning: obtain representations through generative modeling

26 / 46



Self-supervised learning

Key idea: predict parts of the input from the other parts

Figure: Slide from Andrew Zisserman

I Other supervision signals: color, rotation etc.

I Video: predict future frames from past frames

27 / 46



Representation learning in NLP

Word embeddings

I CBOW, Skip-gram, GloVe, fastText etc.

I Used as the input layer and aggregated to form sequence representations

Sentence embeddings

I Skip-thought, InferSent, universal sentence encoder etc.

I Challenge: sentence-level supervision

Can we learn something in between?

Word embedding with contextual information

28 / 46



Transfering knowledge from neural LM

Key idea: use representation from a generative model (i.e. an LM)

I Representation (e.g. hidden state at each word) is context-sensitive

I Contains relevant contextual information for predicting the next word

Early work:

I Fine-tune a recurrent LM for downstream tasks [Dai+ 2015, Howard+ 2018]

I Use word embedding from a pre-trained LM in addition to standard word
embedding [Peters+ 2017]

I Promising results on a smaller scale

Embeddings from language models (ELMo) [Peters+ 2018]

I Use word embeddings from a bi-directional LM

I Success on multiple NLP tasks

29 / 46



ELMo pretraining

Forward/backward language models:

I pfwd(x) =
∏T

t=1 p(xt | x1:t−1︸ ︷︷ ︸
past

; θfwd)

I pbwd(x) =
∏1

t=T p(xt | xt+1:T︸ ︷︷ ︸
future

; θbwd)

I Each LM is a two layer LSTM, with shared input embedding layer and softmax
layer

Subword representation:

I First layer word embedding is from character convolutions

Data: one-billion word benchmark (monolingual data from WMT)

30 / 46



ELMo embeddings

Contextual embeddings capture word senses.

Figure: From [Peters+ 2018].

31 / 46



ELMo Fine-tuning

Obtain contextual word embeddings from each layer j ∈ 0, . . . , L of biLM:

Embed(xt , j) =

{
[
−→
h t,j ;

←−
h t,j ] for j > 0

CharEmbed(xt) for j = 0

Task-specific combination of embeddings:

Embed(xt) = γ

L∑
j=0

wjEmbed(xt , j)

Fix biLM and use the contextual word embeddings as input to task-specific models.
(Can also add to the output layer.)

Regularization is important: L2 or dropout.

32 / 46



ELMo results
Improvement on a wide range on NLP tasks:

I reading comprehension (SQuAD)
I entailment/natural language inference (SNLI)
I semantic role labeling (SRL)
I coreference resolution (Coref)
I named entity recognition (NER)
I sentiment analysis (SST-5)

33 / 46



Takeaways

I Main idea: use biLM for representaiton learning

I Outputs from all layers are useful

I Lower layer is better for syntactic tasks, e.g. POS tagging, parsing
I Hight layer is better for semantic tasks, e.g. question answering, NLI
I Some fine-tuning of the pre-trained model is needed.

I Large-scale training is important

Next, pre-trained transformer models.

34 / 46



Transformer models

Figure: Slide from Chris Manning

35 / 46



Bidirectional Encoder Representations from Transformers (BERT)

Pre-training:

1. Masked LM:
Ex∼D,i∼pmask

log p(xi | x−i ; θ)

(not a LM)

I x−i : noised version of x where xi is replaced by [MASK], a random token, or
the original token

I p(xi | x−i ; θ) = Transformer(x−i , i)

2. Next sentence prediction:

Ex1∼D,x2∼pnext log p(y | x1, x2)

I y : whether x2 follows x1

I Not as useful as masked LM

36 / 46



BERT sentence pair encoding

I [CLS]: first token of all sequences; used for next sentence prediction

I Distinguish two sentences in a pair: [SEP] and segment embedding

I Learned position embedding

I Subword unit: wordpiece (basically byte pair encoding)

37 / 46



BERT fine-tuning
All weights are fine-tuned (with a small learning rate)

38 / 46



Recent progress
GLUE: benchmark of natural language understanding tasks

Figure: Slide from Chris Manning

39 / 46



The new pre-train then fine-tune paradigm

Figure: [Bommasani et al., 2021]

I One model to absorb large amounts of raw data from various domains and
modalities

I Then adapted to different downstream tasks

40 / 46



Summary

Off-the-shelf solution for NLP tasks: fine-tune BERT (and friends)

What’s next?

I Processing long text

I Efficient training/inference

I Learning with a small amount of data

I Generalize to new test distributions (solve tasks, not datasets)

41 / 46



Table of Contents

Transformers

Pre-trained models

Scaling up pre-trained models

42 / 46



In-context learning
GPT-3 by OpenAI: Transformer-based LM with 175B parameters

Zero-shot learning given task instruction / prompt:

43 / 46



In-context learning
Few-shot learning with in-context examples (with no gradient update):

44 / 46



In-context learning
Larger models make increasingly efficient use of in-context information

45 / 46



In-context learning
Pre-trained LMs can be adapted for multimodal learning too:

Figure: Multimodal Few-Shot Learning with Frozen Language Models

Text embedder and self-attention use frozen weights from pre-trained LM.
46 / 46


	Transformers
	Pre-trained models
	Scaling up pre-trained models

