Representation Learning

He He

New York University

November 17, 2021

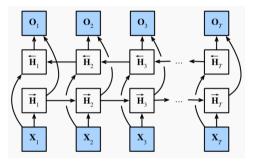
Table of Contents

Transformers

Pre-trained models

Scaling up pre-trained models

Recap: BiLSTM



- Classification: $p(y | x) = \text{softmax}(\text{linear}(\text{pooling}(o_1, \dots, o_T)))$
- Sequence labeling: $p(y_t | x) = \text{softmax}(\text{linear}(o_t))$
- ► Sequence generation: decoder + attention

Tasks with two inputs

Natural language inference

Premise: 8 million in relief in the form of emergency housing.

Hypothesis: The 8 million dollars for emergency housing was still not enough to solve the problem.

Label: neutral

Reading comprehension

Super Bowl 50 was an American football game to determine the champion of the National Football League (NFL) for the 2015 season. The American Football Conference (AFC) champion *Denver Broncos* defeated the National Football Conference (NFC) champion Carolina Panthers 24–10 to earn their third Super Bowl title. The game was played on February 7, 2016, at Levi's Stadium in the San Francisco Bay Area at Santa Clara, California.

Question: Which team won Super Bowl 50?

Answer: Denver Broncos

Encode two inputs

 $\mathsf{Goal}:\ \mathcal{X}\times\mathcal{X}\to\mathcal{Y}$

Simple combination:

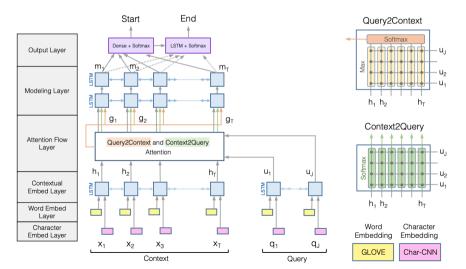
- Encode x_1 and x_2 in \mathbb{R}^d separately
- Aggregate the two embeddings, e.g. $MLP(pooling(enc(x_1), enc(x_2)))$
- > Pooling: concatenation, elementwise max, elementwise product etc.
- Modular, but less expressive

Finer-grained interaction between the two inputs:

Can we use something similar to the attention mechanism in seq2seq?

BiDAF

Bi-Directional Attention Flow for Machine Comprehension [Seo+ 2017] Key idea: representation of x_1 depends on x_2 and vice versa



Improve the efficiency of RNNs

Word embedding: represents the meaning of a word

Recurrent neural networks: captures dependence among words in a sentence

Attention mechanism: better modeling of long-range dependence

Multi-layer biLSTM with various attentions was the go-to architecture for most NLP tasks.

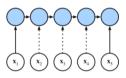
But, RNNs are sequential and difficult to scale up We want deeper models trained with larger data.

Can we handle dependencies in a more efficient way?

Attention is all you need?

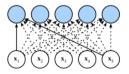
Key idea: get rid of recurrence and only rely on attention

RNN



- Sequential O(n)
- Uni-directional and may forget past context
- Handle long sequence trivially

Self-attention



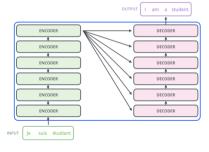
- Parallelizable O(n²)
- Direct interaction between any word pair
- Maximum sequence length is fixed

Transformer overview

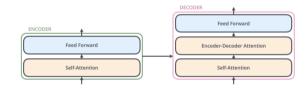
Attention is all you need. [Vaswani+ 2017]

Replaces recurrence with self-attention:

- Multi-layer sequence-to-sequence model



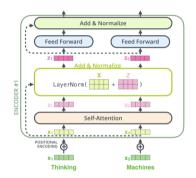
- Self-attention based sequence representation



[https://jalammar.github.io/illustrated-transformer/]

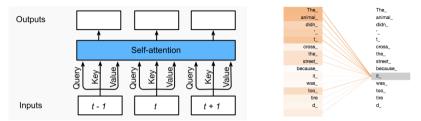
Transformer block

- Multi-head self-attention
 - Capture dependence among inputs
- Positional encoding
 - Capture order information
- Residual connection and layer normalization
 - Efficient optimization



[https://jalammar.github.io/illustrated-transformer/]

Self-attention



- Seq2seq attention: keys and values are the input words, and queries are the output (prefix).
- Self-attention: keys, values, and queries are all from the input words.
 - Input: a sequence of words
 - Output: (contextualized) embeddings for each word
- Each word (as a query) interacts with all words (keys/values) in the input
- Computation of the attention output for each word can be parallelized

Matrix representation

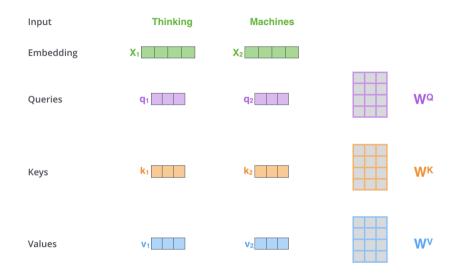


Figure: From "The Illustrated Transformer"

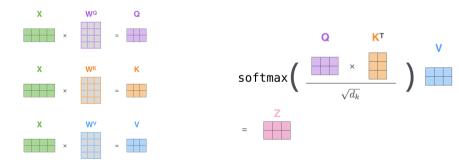
Scaled dot-product attention

Scaled dot-product attention

$$\alpha(q,k) = q \cdot k / \sqrt{d}$$

- \blacktriangleright \sqrt{d} : dimension of the key vector
- Avoids large attention weights that push the softmax function into regions of small gradients

 $\sqrt{d_k}$



Multi-head attention: motivation

Time flies like an arrow

- Each word attends to all other words in the sentence
- Which words should "like" attend to?
 - Syntax: "flies", "arrow" (a preposition)
 - Semantics: "time", "arrow" (a metaphor)
- We want to represent different roles of a word in the sentence: need more than a single embedding
- Instantiation: multiple self-attention modules

Multi-head attention

1) This is our 2) We embed 3) Split into 8 heads. 4) Calculate attention 5) Concatenate the resulting Z matrices, input sentence* each word* We multiply X or using the resulting then multiply with weight matrix W⁰ to R with weight matrices O/K/V matrices produce the output of the laver W₀Q X W_oK Ŵ٥٧ V₀ wo W₁Q ,ĸ * In all encoders other than #0, w₁v we don't need embedding. We start directly with the output of the encoder right below this one W₇Q W₇V

Time complexity

Concatenate and project:

$$Z = W[Z_0, Z_1, \dots, Z_m]$$

- Problem size
 - Sequence length: n
 - Number of heads: m
 - Embedding size: d

Expensive for long sequences!

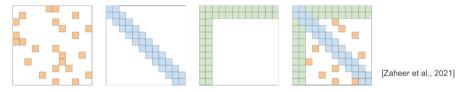
$$Z_i = \operatorname{softmax}(\frac{Q_i K_i^T}{\sqrt{d}}) V_i$$

- Time complexity
 - Attention score for a pair of word (dot product): O(d)
 - Self-attention (pairwise interaction): O(n²)
 - Multi-head attention: O(m)
 - Overall: O(mdn²)

Efficient self-attention

Goal: reduce the $O(n^2)$ time/space complexity for long sequence problems

- Sparse attention



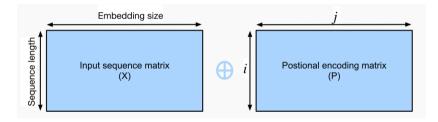
- Locality sensitive hashing
- Low-rank decomposition

O(n²) → O(nk) where k is small

Position embedding

Motivation: model word order in the input sequence

Solution: add a position embedding to each word



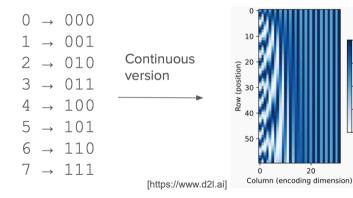
Position embedding:

- Encode absolute and relative positions of a word
- (Same dimension as word embeddings)
- Learned or deterministic

Sinusoidal position embedding

Intuition: binary encoding

The frequency of bit flips increases from left to right _



Col 1:
$$sin(w_1t)$$

Col 2: $cos(w_1t)$
Col 3: $sin(w_2t)$
Col 4: $cos(w_2t)$
...
w₁: frequency
t: position

1.0

05

0 0

-0.5

-10

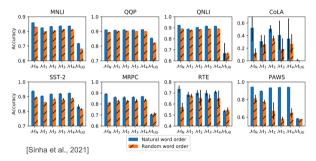
20

How important is word ordering?

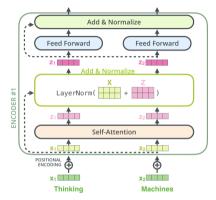
Are word ordering unimportant?

- May need better evaluation of "understanding"
- Results are only on English

Reasonable performance when trained on permuted n-grams!



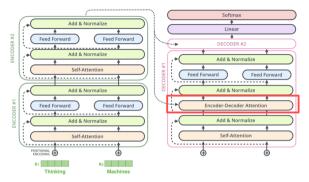
Residual connection and layer normalization



Residual connection: add input to the output of each layer

- Layer normalization: normalize (zero mean, unit variance) over all features for each sample in the batch
- Position-wise feed-forward networks: same mapping for all positions

Connect the decoder



- Same as the encoder with an additional attention module
- Encoder-decoder attention
 - Query: decoder state
 - Value/key: encoder embeddings

- Autoregressive generation
- Self-attention over prefix, encoder-decoder attention over inputs
- Output at each position:

$$p(y_t \mid x, y_{1:t-1})$$

MLE training

Impact on NLP

- Initially designed for sequential data and obtained SOTA results on MT
- Replaced recurrent models (e.g. LSTM) on many tasks
- Enabled large-scale training which led to pre-trained models such as BERT and GPT-2

Limitation: fixed length input (see Longformer, Performer etc.)

Table of Contents

Transformers

Pre-trained models

Scaling up pre-trained models

Representation learning

What are good representations?

Contains good features for downstream tasks

Example:

negative the food is good but doesn't worth an hour wait

Simple features (e.g. BoW) require complex models. Good features only need simple (e.g. linear) models.

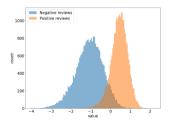


Figure: Sentiment neuron [Radford+ 2017]

Applications of good representations:

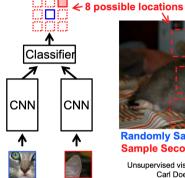
- Learning with small data: fine-tuning on learned representations
- Multi-task and transfer learning: one representation used for many tasks
- Metric learning: get a similarity metric for free

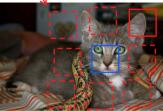
How do we learn the representations?

Self-supervised learning: obtain representations through generative modeling

Self-supervised learning

Key idea: predict parts of the input from the other parts





Randomly Sample Patch Sample Second Patch

Unsupervised visual representation learning by context prediction, Carl Doersch, Abhinav Gupta, Alexei A, Efros, ICCV 2015

Figure: Slide from Andrew Zisserman

Other supervision signals: color, rotation etc.

Video: predict future frames from past frames

Representation learning in NLP

Word embeddings

- CBOW, Skip-gram, GloVe, fastText etc.
- Used as the input layer and aggregated to form sequence representations

Sentence embeddings

- Skip-thought, InferSent, universal sentence encoder etc.
- Challenge: sentence-level supervision

Can we learn something in between?

Word embedding with contextual information

Transfering knowledge from neural LM

Key idea: use representation from a generative model (i.e. an LM)

- ▶ Representation (e.g. hidden state at each word) is context-sensitive
- Contains relevant contextual information for predicting the next word

Early work:

- Fine-tune a recurrent LM for downstream tasks [Dai+ 2015, Howard+ 2018]
- Use word embedding from a pre-trained LM in addition to standard word embedding [Peters+ 2017]
- Promising results on a smaller scale

Embeddings from language models (ELMo) [Peters+ 2018]

- Use word embeddings from a bi-directional LM
- Success on multiple NLP tasks

ELMo pretraining

Forward/backward language models:

$$p_{\mathsf{fwd}}(x) = \prod_{t=1}^{T} p(x_t \mid \underbrace{x_{1:t-1}}_{\mathsf{past}}; \theta_{\mathsf{fwd}})$$

$$p_{\mathsf{fwd}}(x) = \prod_{t=1}^{1} p(x_t \mid \underbrace{x_{1:t-1}}_{\mathsf{past}}; \theta_{\mathsf{fwd}})$$

$$p_{\mathsf{bwd}}(x) = \prod_{t=T}^{1} p(x_t \mid \underbrace{x_{t+1:T}}_{\mathsf{future}}; \theta_{\mathsf{bwd}})$$

Each LM is a two layer LSTM, with shared input embedding layer and softmax layer

Subword representation:

First layer word embedding is from character convolutions

Data: one-billion word benchmark (monolingual data from WMT)

ELMo embeddings

Contextual embeddings capture word senses.

	Source	Nearest Neighbors		
GloVe	play	playing, game, games, played, players, plays, player, Play, football, multiplayer		
biLM	Chico Ruiz made a spec-	Kieffer , the only junior in the group , was commended		
	tacular <u>play</u> on Alusik 's	for his ability to hit in the clutch , as well as his all-round		
	grounder $\{\dots\}$	excellent play.		
DILIVI	Olivia De Havilland	$\{\ldots\}$ they were actors who had been handed fat roles in		
	signed to do a Broadway	a successful play, and had talent enough to fill the roles		
	play for Garson {}	competently, with nice understatement.		

Figure: From [Peters+ 2018].

ELMo Fine-tuning

Obtain contextual word embeddings from each layer $j \in 0, ..., L$ of biLM:

$$\mathsf{Embed}(x_t, j) = \begin{cases} [\overrightarrow{h}_{t,j}; \overleftarrow{h}_{t,j}] & \text{for } j > 0\\ \mathsf{CharEmbed}(x_t) & \text{for } j = 0 \end{cases}$$

Task-specific combination of embeddings:

$$\mathsf{Embed}(x_t) = \gamma \sum_{j=0}^{L} w_j \mathsf{Embed}(x_t, j)$$

Fix biLM and use the contextual word embeddings as input to task-specific models. (Can also add to the output layer.)

Regularization is important: L_2 or dropout.

ELMo results

Improvement on a wide range on NLP tasks:

- reading comprehension (SQuAD)
- entailment/natural language inference (SNLI)
- semantic role labeling (SRL)
- coreference resolution (Coref)
- named entity recognition (NER)
- sentiment analysis (SST-5)

TASK	PREVIOUS SOTA		OUR BASELINE	ELMO + E baseline	INCREASE (ABSOLUTE/ RELATIVE)
SQuAD	Liu et al. (2017)	84.4	81.1	85.8	4.7 / 24.9%
SNLI	Chen et al. (2017)	88.6	88.0	88.7 ± 0.17	0.7 / 5.8%
SRL	He et al. (2017)	81.7	81.4	84.6	3.2 / 17.2%
Coref	Lee et al. (2017)	67.2	67.2	70.4	3.2 / 9.8%
NER	Peters et al. (2017)	91.93 ± 0.19	90.15	92.22 ± 0.10	2.06 / 21%
SST-5	McCann et al. (2017)	53.7	51.4	54.7 ± 0.5	3.3 / 6.8%

11

Treeserve

- Main idea: use biLM for representation learning
- Outputs from all layers are useful
 - ► Lower layer is better for syntactic tasks, e.g. POS tagging, parsing
 - ▶ Hight layer is better for semantic tasks, e.g. question answering, NLI
 - Some fine-tuning of the pre-trained model is needed.
- Large-scale training is important

Next, pre-trained transformer models.

Transformer models

All of these models are Transformer models

ELMo Oct 2017 Training: 800M words 42 GPU days

AZ

	GPT	BERT	GPT-2	XL-Net,
	June 2018	Oct 2018	Feb 2019	ERNIE,
	Training	Training	Training	Grover
5	800M words	3.3B words	40B words	RoBERTa, T5
s	240 GPU days	256 TPU days	~2048 TPU v3 days according to	July 2019—
		~320–560 GPU days	<u>a reddit thread</u>	
	Ś		ß	Google AI
	OpenAI	Google AI	OpenAI	Bai 岱百度 Carnegie Mellon University

Figure: Slide from Chris Manning

Bidirectional Encoder Representations from Transformers (BERT)

Pre-training:

1. Masked LM:

$$\mathbb{E}_{x \sim \mathcal{D}, i \sim p_{\mathsf{mask}}} \log p(x_i \mid x_{-i}; \theta)$$

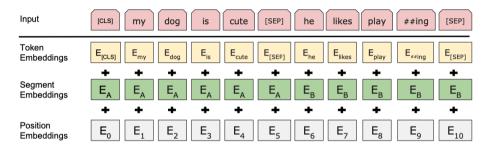
(not a LM)

- x_{-i}: noised version of x where x_i is replaced by [MASK], a random token, or the original token
- $p(x_i \mid x_{-i}; \theta) = \text{Transformer}(x_{-i}, i)$
- 2. Next sentence prediction:

$$\mathbb{E}_{x^1 \sim \mathcal{D}, x^2 \sim p_{\mathsf{next}}} \log p(y \mid x^1, x^2)$$

- > y: whether x^2 follows x^1
- Not as useful as masked LM

BERT sentence pair encoding

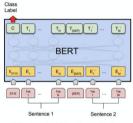


[CLS]: first token of all sequences; used for next sentence prediction

- Distinguish two sentences in a pair: [SEP] and segment embedding
- Learned position embedding
- Subword unit: wordpiece (basically byte pair encoding)

BERT fine-tuning

All weights are fine-tuned (with a small learning rate)



(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG

BERT

E.

Tok.

(c) Question Answering Tasks:

T_N T_{HEP1} T₁' ...

E. ...

Tok

Paragraph

ISEPT

C T,

Tok

Question

SQuAD v1.1

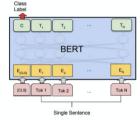
(CLS)

Start/End Span

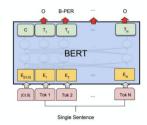
T_M

E_u'

Tok



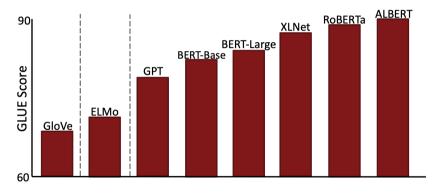
(b) Single Sentence Classification Tasks: SST-2, CoLA



(d) Single Sentence Tagging Tasks: CoNLL-2003 NER

Recent progress

GLUE: benchmark of natural language understanding tasks



Over 3x reduction in error in 2 years, "superhuman" performance

Figure: Slide from Chris Manning

The new pre-train then fine-tune paradigm

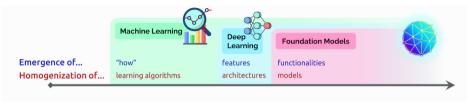


Figure: [Bommasani et al., 2021]

- One model to absorb large amounts of raw data from various domains and modalities
- Then adapted to different downstream tasks

Off-the-shelf solution for NLP tasks: fine-tune BERT (and friends)

What's next?

- Processing long text
- Efficient training/inference
- Learning with a small amount of data
- Generalize to new test distributions (solve tasks, not datasets)

Table of Contents

Transformers

Pre-trained models

Scaling up pre-trained models

GPT-3 by OpenAI: Transformer-based LM with 175B parameters

Zero-shot learning given task instruction / prompt:

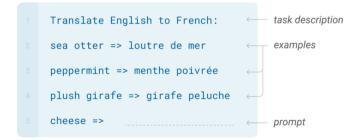
Zero-shot

The model predicts the answer given only a natural language description of the task. No gradient updates are performed.

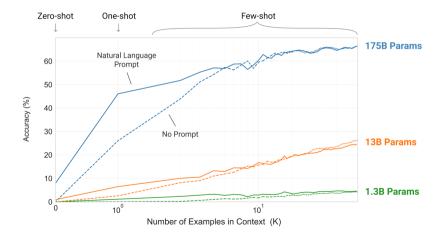
Few-shot learning with in-context examples (with no gradient update):

Few-shot

In addition to the task description, the model sees a few examples of the task. No gradient updates are performed.



Larger models make increasingly efficient use of in-context information



Pre-trained LMs can be adapted for multimodal learning too:

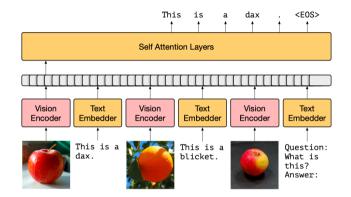


Figure: Multimodal Few-Shot Learning with Frozen Language Models

Text embedder and self-attention use frozen weights from pre-trained LM.