
Neural Sequence Models

He He

New York University

November 10, 2021

1 / 40

Logistics

I Tutorial on HW4 (constituent parsing) by Udit Arora (TBA)

I Next three weeks: deep learning methods and applications

I Guest lecture on 12/1:
How far have we come in giving our NLU systems common sense?

I Project presentation on 12/8: 3 minutes + 1 minute Q&A (10%)

2 / 40

Modular approaches to NLP

Example: phrase-based machine translation

When I look at an article in Russian, I say: This is really written in English, but it has
been coded in some strange symbols. I will now proceed to decode. —Warren Weaver

Noisy-channel model:

p(y | x) = p(y)p(x | y)P
y
p(y)p(x | y)

Word alignment: p(x | y) =
P

a
p(x , a | y)

Le Programme a ate mis en application

The Program has been implemented

3 / 40

tgtEn film → translation model
7

En

FI → y l
PCIe 1 the)

Src Frcnoised En)
→ PCFr word / aligned En words)

P (11 , 1 , 7)

Example: phrase-based MT pipeline

1. Preprocessing: tokenization, truecasing, cleaning

2. Train a (n-gram) language model on the target data

3. Train the translation model

3.1 Estimate word alignment using EM
3.2 Extract and score phrase pairs from aligned examples
3.3 Learn the reordering model

4. Learn a linear model to score hypothesis: features include translation score, LM
score, reordering score etc.

Where do we use domain-specific knowledge?
4 / 40

End-to-end approaches to NLP

Sequence-to-sequence models (aka encoder-decoder models):

I Directly model p(y | x) with minimal assumption on the sequence structure

I Encoder: �enc : X ! Rd

I Decoder: �dec : Rd ! Y

Extremely flexible framework:

I Summarization: document to summary

I Open-domain dialogue: context to response

I Parsing: sentence to linearized trees

I In general: text to text

5 / 40

A simple implementation of seq2seq

Figure: Sequence to Sequence Learning with Neural Networks [Sutskever+ 2014]

I Encoder/decoder: uni-directional multi-layer LSTM

I Large improvement when the input sequence is reversed

I Outperforms phrase-based MT systems: 34.8 vs 33.3 (on WMT’14 En-Fr)

6 / 40

Seq2seq for constituent parsing

Figure: Grammar as a Foreign Language [Vinyals+ 2015]

I Text to linearized parse trees (no binarization)

I Seq2seq enhanced with attention mechanism (later)

I Matches result from BerkelyParser
7 / 40

Table of Contents

Encoder-decoder models

Training and inference

Application and evaluation

8 / 40

Variants of RNN-based seq2seq architectures

I Basic recurrent unit: vanilla RNN, LSTM, GRU

I Number of layers

I Uni-directional / bi-directional

I Decoder input/output embedding sharing

I Attention mechanism

9 / 40

f-

Multiple layers
Multi-layer RNN (aka stacked RNN):

I Previous layer’s outputs are inputs to the next layer

I Use the last layer’s output as the input embedding

Pros: “deep” models work better in practice
Cons: longer runtime

10 / 40

i⇒

Decoder embedding sharing

Input layer: embed previous word yi�1

yi�1 7! Win�one-hot(yi�1)

Output layer: distribution over the next word yi

hi 7! softmax(Wouthi + b)

Decoder input/output embedding sharing (aka weight tying)

I Win = Wout (what is the implicit constraint?)

I Intuition: the inner product of hi and the word embedding of yi indicates how
likely yi is.

I Worth considering if you don’t have lots of data or want to reduce model size

11 / 40

14 ✗ d

O
lvlxd wi;hi+b

embcyi)

Attention mechanism

Motivation: di↵erent target words may depend on di↵erent parts of the source input

Attention is a pooling/aggregation mechanism:

I Encoder states: a memory of key-value pairs (k1, v1), . . . , (kn, vn).

I Decoder states: a query to retrieve from the memory by matching the keys.

I Output from the memory: a weighted combination of the values.

12 / 40

Attention mechanism

I How likely is q matched to ki : score ai = ↵(q, ki)

I Normalize scores to get attention weights: bi = softmax(a)[i]

I Output weight combination of values in the memory: oi =
P

n

i=1 bivi
I In matrix form: attention(Q,K ,V) (rows are corresponding vectors)

13 / 40

Common attentions

Design the similarity function between queries and keys: ai = ↵(q, ki)

Dot-product attention
↵(q, k) = q · k

MLP attention
↵(q, k) = uT tanh(W [q; k])

Multi-head attention

headi = attention(QWQ

i
,KW K

i ,VW V

i)

output = [head1; . . . ; headh]W
O

Compute attention with h linear projections of (Q,K ,V).

14 / 40

h sets of
Q

.
Kill

matrices -

Attention in encoder-decoder models

Without attention: p(yi | y<i , x) / f (yi�1, hi�1)
With attention: p(yi | y<i , x) / f (yi�1, hi�1, ci�1)

15 / 40

decoder

attention ④ hi

attention

weighty
④

dot %②
prodiet

encoder

Applications of attention

In general, adding attention often improves results in encoder-decoder models.

Visual attention:

Use caution with interpretation

Attention is not Explanation [Jain+ 2019]

Attention is not not Explanation [Wiegre↵e+ 2019]

Learning to Deceive with Attention-Based Explanations [Pruthi+ 2020]

16 / 40

Copy mechanism
Motivation: reuse words in the source

Unknown words in MT:

Dialogue, summarization:

17 / 40

Copy mechanism

Interpolate two distributions:

p(yi | x , y<i) = �genpgen(yi | x , y<i) + (1� �gen)pcopy(yi | x , y<i)

I pgen: distribution over words in the vocabulary

I pcopy: distribution over words in the source

Design decisions:

I Learned (function of the input) vs fixed �gen

I pcopy: use attention weights or compute from a separate model

18 / 40

over Nl over words in input

= f-Chi)

Application of the copy mechanism
Most successful in abstractive summarization

Figure: Slides from Abigail See

19 / 40

Application of the copy mechanism
Most successful in abstractive summarization

Figure: Pointer-Generator network [See+ 2016]
20 / 40

copy
distribution

>

attention

Table of Contents

Encoder-decoder models

Training and inference

Application and evaluation

21 / 40

Training

MLE:

max
✓

NX

i=1

log p(y (i) | x (i); ✓)

= max
✓

NX

i=1

TX

t=1

log p(y (i)t | x (i), y (i)1:t�1; ✓)| {z }
decoder output

auto-regressive model

22 / 40

→
softmax (LSTM Cht , Ct))

Argmax decoding

Argmax decoding (aka MAP decoding):

ŷ = argmax
y2Yn

p(y | x ; ✓)

I Return the most likely sequence

I Y is the vocabulary size for text generation

I Exact search is intractable when scores aren’t locally decomposable

Approximate search:

I Greedy decoding: return the most likely symbol at each step

yt = argmax
y2Y

p(y | x , y1:t�1; ✓)

23 / 40

Approximate MAP decoding: beam search
Beam search: maintain k highest-scored partial solutions at any time

24 / 40

IVI
--5

Ébegpottlxifct)
beam size -2 +⇒

A A

¥
A
A

e
C

C

C

C

Is MAP the right decoding objective?
High likelihood can be correlated with low quality outputs.

Figure: Samples from an LM [Zhang+ 2020]

In practice, argmax decoding has been observed to lead to

I Repetitive generations, e.g.
“..., was conducted by researchers from the Universidad Nacional Autonoma de Mexico (UNAM)

and the Universidad Nacional Autonoma de Mexico (UNAM/Universidad Nacional Autonoma de

Mexico/Universidad Nacional Autonoma de Mexico/Universidad Nacional Autonoma...”

I Degraded generations with large beam size in MT
25 / 40

-

- 3-5

Sampling-based decoding

Directly sampling from p(y | x ; ✓) often produces non-sensical sentences:

They were cattle called Bolivian Cavalleros; they live in a remote desert uninterrupted by town,

and they speak huge, beautiful, paradisiacal Bolivian linguistic thing.

Tempered sampling: change the concentration of the distribution

p(yt | x , y1:t�1; ✓) / exp (s✓(yt , x , y1:t�1))| {z }
score of yt

q(yt | x , y1:t�1) / exp (s✓(yt , x , y1:t�1)/T) where T 2 (0,+1)

I What happends when T ! 0 and T ! +1?

I Does it change the rank of y according to likelihood?

I Typically we chooose T 2 (0, 1).

26 / 40

•

¥

Sampling-based decoding

Truncated sampling: truncate the tail of the distribution

Top-k sampling:

q(yt | x , y1:t�1) / p(yt | x , y1:t�1; ✓)I(r(yt)  k)

where r(y) for y 2 Y returns the rank of y by p(yt | x , y1:t�1; ✓) in descending order.

Top-p sampling (aka nucleus sampling):

q(yt | x , y1:t�1) / p(yt | x , y1:t�1; ✓)I(
r(yt)X

i=1

f (i)  p)

where f (i) for i 2 |Y| returns i-th highest p(yt | x , y1:t�1; ✓).

27 / 40

pc.ly/it
"

¥÷
É

Decoding in practice

Rule of thumb:

I Use beam search with small beam size for tasks where there exists a correct
answer, e.g. machine translation, summarization

I Use top-k or top-p for open-ended generation, e.g. story generation, chit-chat
dialogue, continuation from a prompt

28 / 40

Table of Contents

Encoder-decoder models

Training and inference

Application and evaluation

29 / 40

Applications

Text generation: MT, summarization, chit-chat dialogue, image caption, story
generation etc.

Structured prediction:

I Parsing

I Text-to-SQL

30 / 40

Evaluation

Evaluate translations:

Reference 1 It is a guide to action that ensures that the military will forever heed
Party commands.

Reference 2 It is the guiding principle which guarantees the military forces always
being under the command of the Party.

Candidate 1 It is a guide to action which ensures that the military always obeys the
commands of the party.

Candidate 2 It is to insure the troops forever hearing the activity guidebook that party
direct.

Task: given the reference(s) of each source sentence, evaluate the quality of the
generated sequences.

Main idea: good generations should have high overlap with the reference.

31 / 40

BLEU: n-gram precision

First try: n-gram precision (x : input, c : candidate, r : reference)

pn =

P
(x ,c,r)

P
s2n-gram(c) I [s in r]

P
(x ,c,r)

P
s2n-gram(c) I [s in c]

Problem: matching only a few words in the reference(s)

Candidate the the the the the the the

Reference 1 The cat is on the mat

Reference 2 There is a cat on the mat

unigram precision = ?

Solution: clip counts to maximum count in the reference(s)

32 / 40

BLEU: n-gram precision

First try: n-gram precision (x : input, c : candidate, r : reference)

pn =

P
(x ,c,r)

P
s2n-gram(c) I [s in r]

P
(x ,c,r)

P
s2n-gram(c) I [s in c]

Problem: matching only a few words in the reference(s)

Candidate the the the the the the the

Reference 1 The cat is on the mat

Reference 2 There is a cat on the mat

unigram precision = ?

Solution: clip counts to maximum count in the reference(s)

32 / 40

BLEU: n-gram precision
Given pn’s, we need to combine n-gram precisions.
Weighted average? Problem: precision decreases roughly exponentially with n.

Solution: geometric mean (when wn = 1/n)

exp

nX

i=1

wn log pn

!

Problem with precision:

Candidate of the

Reference 1 It is the guiding principle which guarantees the military forces always
being under the command of the Party.

Reference 2 It is the practical guide for the army always to heed the directions of the
party.

What are problems with recall with multiple references?
33 / 40

BLEU: brevity penalty

A good translation must match the reference in:

word choice captured by precision

word order capture by n-gram

length ?

candidate length C =
P

(x ,c,r) len(c)

reference length R =
P

(x ,c,r) argmina2{len(r1),...,len(rk)} |a� len(c)|
I Use the reference whose length is closest to the candidate

Brevity penalty BP =

(
1 if c > r

e1�R/C if c  r

I No penalty if r  c

34 / 40

BLEU

Putting everything together:

BLEU = BP · exp

NX

n=1

wn log pn

!

log BLEU = min(1� R

C
, 0) +

NX

n=1

wn log pn

I Both precision and the brevity penalty are computed at the corpus level.

I Need smoothing for sentence-level BLEU.

I Good correlation with human evaluation for MT (typically n = 4).

35 / 40

ROUGE

Task: given a candidate summary and a set of reference summaries, evaluate the
quality of the candidate.

ROUGE-n: n-gram recall

I Encourage content coverage

ROUGE-L: measures longest common subsequence between a candidate and a
reference

I Precision = LCS(c , r)/len(c)

I Recall = LCS(c , r)/len(r)

I F-measure = (1+�2)RR
R+�2P

I Doesn’t require consecutive match.

Often used for summarization, but human evaluation is still needed.

36 / 40

Automatic evaluation metrics for sequence generation

n-gram matching metrics (e.g. BLEU, ROUGE)

I Measures exact match with reference; interpretable.

I Do not consider semantics.

Embedding-based metrics (e.g. BERTScore)

I Measures similarity to the reference in an embedding space.

I Captures synonyms and simple paraphrases.

However, we also want to measure

I Is the generation correct? e.g. faithfulness (summarization), adequacy (MT).

I Open-ended generation: is the story/dialogue interesting, informative, engaging?

37 / 40

Automatic evaluation metrics for sequence generation

Figure: [Novikova+ 2017]

I Correlation between automatic metrics and human ratings on generation quality

I Left: word-overlap metrics; right: grammar-based metrics

I Overall, low correlation with human ratings

38 / 40

Human Evaluation

I Human or machine generated?

I Human evaluation can be tricky as the models gets better!

I Pros: more reliable, multifaceted evaluation

I Cons: high variance, misalignment

39 / 40

Human Evaluation

I Human or machine generated?

I Human evaluation can be tricky as the models gets better!

I Pros: more reliable, multifaceted evaluation

I Cons: high variance, misalignment

39 / 40

Evaluation in practice

Evaluation is a key blocker to progress in text generation.

In practice, multiple evaluation methods are needed for reliable results:

I Held-out NLL/perplexity: how close are p✓(y | x) and p(y | x)?
I Automatic evaluation: how close are the candidate generation and the

reference(s)?

I Human evaluation: task-specific criteria, e.g. grammaticality, coherence,
correctness etc.
I Annotator may need to be trained
I Need to report annotator agreement

I Show the outputs!

40 / 40

