Semantics

He He

New York University

November 3, 2021

Table of Contents

Introduction to semantics

Logical languages

Semantic parsing

Syntax vs semantics

Syntax: does the string belong to the language?

Semantics: what is the meaning of the string?

Examples in programming languages:

Different syntax, same semantics

Same syntax, different semantics

(Slide adapted from Stanford CS221 Lecture 16)

Model-theoretic semantics

_

An **expression** is a string of mere symbols.

A model defines meanings of symbols.

The output of an expression with respect to a model is its denotation.

expression	model	denotation
3 + 2 * 4	calculator	11
the red ball	an image	the red ball in the image
SELECT Name FROM Student	database	John
WHERE Id = $0;$		
Book me a ticket from	database	[action]
NYC to Seattle		

We understand the expression if we know how to act (in a world).

Natural language as expressions

Motivating applications:

Question answering

What is the profit of Mulan? Who is the 46th president of the US?

Personal assistant

Alexa, play my favorite song. Siri, show me how to get home.

- But natural language is full of ambiguities
- Cannot be directly handled by a computer (unlike programming/formal languages)

Semantic analysis

```
Goal: convert natural language to meaning representation
John likes fruits. (informal)
\forall x \operatorname{FRUIT}(x) \implies \operatorname{LiKES}(x, \operatorname{JOHN}) (formal)
```

Main tool: first-order logic

Why logic?

- Unambiguity: one meaning per statement
- Knowledge: link symbols to knowledge (entities, relations, facts etc.) (*Take in complex information*)
- Inference: derive additional knowledge given statements (*Reason with the information*)

Logic and semantics: example

Natural language: "John likes Mary's friends"

Logical form: $\forall x \text{ FRIENDS}(x, \text{MARY}) \implies \text{Likes}(x, \text{JOHN})$

World model: state of affairs in the world

People = {John, Mary, Joe, Ted} John is a friend of Mary. Joe is a friend of Mary.

Given the world model,

- ▶ Is LIKES(JOE, JOHN) true?
- What else can we infer from the statement?

The value of the expression may change given a different world model.

Table of Contents

Introduction to semantics

Logical languages

Semantic parsing

Propositional logic

A **proposition** is a statement that is either true or false. **Propositional logic** deals with propositions and their relations.

Syntax of propositional language:

> Propositional symbols: a primitive set of propositions

p1: John likes Mary

 p_2 : John is a student

Logical connectives: rules to build up formulas

symbol	read	meaning	formula
-	not	negation	eg p
\vee	or	disjunction	$oldsymbol{p}\wedgeoldsymbol{q}$
\wedge	and	conjunction	$p \lor q$
\implies	implies / if then	implication	$p\implies q$
\iff	equivalent to / iff	equivalence	$p\iff q$

Parsing a formula

How would you check if a formula is valid (i.e. grammatical)?

A propositional formula is contructed by connecting propositions using the connectives.

Formulas can be nested.

Parentheses are used to disambiguate formulas.

Example:

 $((p \land q) \land \neg p)$ $((p \lor q) \land r) \implies p)$

Try to draw the parse trees of the formulas.

World model for propositional logic

Propositional symbols:

 $p_1 = hot$ $p_2 = John$ likes ice cream $p_3 = John$ ate an ice cream

Formula: $p_1 \wedge p_2 \implies p_3$ (Is this true?)

World model for propositional logic

Propositional symbols:

$$p_1 = hot$$

 $p_2 = John$ likes ice cream
 $p_3 = John$ ate an ice cream

Formula: $p_1 \wedge p_3 \implies p_3$ (Is this true?) The **world model** in propositional logic is an *assigment* of truth values to propositional symbols.

In which world(s) is the above formula false?

Semantics is given by *interpreting* the formula against a world model.

A formula specifies a set of world models where it is true.

A set of formulas is a knowledge base (constraints on the world model).

Making inference given formulas and the world model: take a course in AI.

Limitations of propositional logic

How do we represent knowledge of a collection of objects?

"Everyone who likes ice cream ate an ice cream."

 $p_{
m JOHN}$ (John likes ice cream) $\implies q_{
m JOHN}$ (John ate an ice cream) $p_{
m JOE}$ (Joe likes ice cream) $\implies q_{
m JOE}$ (Joe ate an ice cream) $p_{
m ALICE}$ (Alice likes ice cream) $\implies q_{
m ALICE}$ (Alice ate an ice cream) $p_{
m CAROL}$ (Carol likes ice cream) $\implies q_{
m CAROL}$ (Carol ate an ice cream) ...

 $[\qquad]$ likes ice cream $\implies [\qquad]$ ate an ice cream

Need a compact way to represent a collection of objects!

First-order logic

First-order logic generalizes propositional logic with several new symbols:

Represent objects:

Constants Primitive objects, e.g. John Variables Placeholder for some object, e.g. xFunctions A map from object(s) to an object, e.g. John \rightarrow John's farther

Group objects:

Predicate Properties of a set of objects, e.g. students, couples

Quantify a (infinite) set of objects:

Quantifiers Specify the number of objects with a certain property, e.g. *all* people are mortal.

Constants, variables, functions

Constants refer to primitive objects such as named entities: JOHN, ICECREAM, HOT

A variable refers to an unspecified object:

x, y, zStudent(x) Friends(x, John)

A *n*-ary **function** maps *n* objects to an object: MOTHER(*x*) FRIENDS(MOTHER(*x*), MOTHER(*y*))

Predicates

A **predicate** is an indicator function $P: X \rightarrow {\text{true}, \text{false}}$.

- Describes properties of object(s)
- P(x) is an atomic formula STUDENT(MARY)
 SMALLER(DESK, COMPUTER)
 FRIENDS(JOHN, MARY) => FRIENDS(MARY, JOHN)

Quantifiers

Universal quantifier \forall :

- The statement is true for every object
- $\forall x \ P(x)$ is equivalent to $P(A) \land P(B) \land \ldots$
- ▶ All people are mortal: $\forall x \operatorname{Person}(x) \implies \operatorname{MORTAL}(x)$

Existential quantifier \exists :

- The statement is true for some object
- ▶ $\exists x \ P(x)$ is equivalent to $P(A) \lor P(B) \lor \ldots$
- Some people are mortal: $\exists x \operatorname{Person}(x) \land \operatorname{MORTAL}(x)$

Order matters, e.g., "everyone speaks a language":

 $\forall x \exists y \text{ SPEAKS}(x, y)$ $\exists y \forall x \text{ SPEAKS}(x, y)$

Syntax of first-order logic

Terms refer to objects:

- Constant symbol, e.g. JOHN
- Variable symbol, e.g. x
- ▶ Function of terms, e.g. MOTHER(x), CAPITAL(NY)

Formula evaluates to true or false:

- ▶ Predicate over terms is an atomic formula, e.g. STUDENT(MOTHER(JOHN))

Quantifiers applied to formulas

 $\forall x \text{ STUDENT}(x) \implies \text{Happy}(x)$ $\exists x \text{ STUDENT}(x) \land \text{Happy}(x)$

World model of first-order logic

How do we know if FRIENDS(JOHN, MARY) is true?

World model of propositional logic: propositions

proposition	truthful value	
John is a friend of Mary	True	
John is a friend of Joe	False	

World model of first-order logic: objects and their relations

constant sym	nbol object
John	а
MARY	b
predicate symbol	set of <i>n</i> -tuples
Friends	$\{(a,b),(b,a)\}$

Graph representation of the world model

Const symbols

Syntax produces symbols and well-formed formulas.

Semantics grounds symbols to a world and allows for evaluation of formulas.

We have seen how it works for formal languages such as propositional logic and first-order logic.

Next, formal language to natural language.

Table of Contents

Introduction to semantics

Logical languages

Semantic parsing

System overview

Translate NL to logical language

Key idea: *compositionality*

- Sentence: READS(JOHN) (What's the denotation?)
- We would like to construct it recursively
 - ▶ John: JOHN (a unique entity)
 - reads: a predicate (function) that takes an entity (one argument)

A brief introduction to lambda calculus

Lambda calculus / λ -calculus

A notation for applying a function to an argument

 $\begin{array}{c} \lambda x.x^2 + x \\ f: x \rightarrow x^2 + x \\ f:$

• Function application by β -reduction

$$(\lambda x.x^2 + x)(2) = 2^2 + 2 = 6$$

Takes multiple arguments by "currying"

$$(\lambda x.\lambda y.xy)(2) = \lambda y.2y$$
$$(\lambda x.\lambda y.xy)(3)(2) = (\lambda y.2y)(3) = 6$$

Translate NL to logical language

Verbs are predicates

- ▶ reads: λx .READS(x) (waiting for an NP)
- likes: $\lambda x. \lambda y. \text{Likes}(x, y)$ (waiting for two NPs)

Translate NL to logical language

Verbs are predicates

- ▶ reads: λx .READS(x) (waiting for an NP)
- ▶ likes: $\lambda x . \lambda y . Likes(x, y)$ (waiting for two NPs)

Compositional semantics

Bottom up parsing:

- Start with the semantics of each word
- Combine semantics of spans according to certain rules
 - Associate a combination rule with each grammar rule

$V:\lambda y.\lambda x.Likes(x, y)$	\rightarrow	likes
NP:JOHN	\rightarrow	John
$VP:\alpha(\beta)$	\rightarrow	V: α NP: β
$S:\beta(\alpha)$	\rightarrow	NP: α VP: β

- Get semantics by function applcation
- Lexical rules can be complex!

Quantification

John bought a book

BOUGHT (JOHN, BOOK)?

"book" is not a unique entity! BOUGHT(MARY, BOOK)

Correct logical form: $\exists x \operatorname{BOOK}(x) \land \operatorname{BOUGHT}(\operatorname{JOHN}, x)$

But what should be the semantics of "a"? $\lambda P \cdot \lambda Q \cdot \exists x P(x) \land Q(x)$

"a book": $\lambda Q.\exists x \operatorname{BOOK}(x) \land Q(x)$. (Need to change other NP rules)

What about "the", "every", "most"?

We also want to represent tense: "bought" vs "will buy". (event variables)

Learning from derivations

Text: John bought a book (utterance)

Use approaches from (discriminative) constituent parsing

Learning from derivations

Annotation:

Use approaches from (discriminative) constituent parsing

Obstacles:

- Derivations are rarely annotated.
- Unlike syntactic parsing, cannot obtain derivations from logical forms.
- Spurious derivation: wrong derivations that reach the correct logical form.

Learning from logical forms

Text: John bought a book (utterance) Annotation: $\exists x \operatorname{BOOK}(x) \land \operatorname{BOUGHT}(\operatorname{JOHN}, x)$ (logical form)

Key idea: model derivation as a latent variable z [Zettlemoyer and Collins, 2005]

Learning: maximum marginal likelihood

$$egin{aligned} \log p(y \mid x) &= \log \sum_{z} p(y, z \mid x) \ &= \log \sum_{z} rac{\exp{(heta \cdot \Phi(x, y, z))}}{\sum_{z', y'} \exp{(heta \cdot \Phi(x, y', z'))}} \end{aligned}$$

Need to learn both the lexicon and the model parameters (for CCG)
 Use EM algorithm (with approximation)

Learning from denotations

Text: What states border Georgia? Annotation: Alabama, Florida, North Carolina, South Carolina, Tennessee

Key idea: model the logical form as a latent variable z [Liang, 2013]

Datasets

Geo880

- ▶ 880 questions and database queries about US geography
- "what is the highest point in the largest state?"
- Compositional utterances in a clean, narrow domain

ATIS

- ▶ 5418 utterances of airline queries and paired logical forms
- "show me information on american airlines from fort worth texas to philadelphia"
- More flexible word order but simpler logic

Free917, WebQuestions

- Questions and paired logical forms on Freebase
- Logically less complex but scales to many more predicates

Text to SQL

Spider (Yu et al. 2018)

Expert-annotated, cross-domain, complex text-to-SQL dataset

Assumption:

For each

			Hidden
	Train	Dev	Test
# DBs	146	20	40
# Examples	8,659	1,034	2,147

Database Primary key Foreign key Instructor ID Name Department_ID Salary ... Primary key ID Name Building Budget ...

Question What are the name and budget of the departments with average instructor salary above the overall average?

SQL

```
SELECT T2.name, T2.budget
FROM Instructor AS T1 JOIN Department AS T2 ON
T1.Department_ID = T2.ID
GROUP BY T1.Department_ID
HAVING AVG(T1.salary) >
    (SELECT AVG(Salary) FROM Instructor)
```

(Slide from Victoria Lin)

Challenges

Design the logical representation and grammar

- Expressivity vs computation efficiency
- Domain-specific vs domain-general
- Interacts with annotation and learning

Learning from different supervision signals

- End-to-end (utterance to action)
- Reinforcement learning (robotics, visual grounding)
- Interactive learning (obtain user feedback)