Semantics

He He

New York University
November 3, 2021

Table of Contents

Introduction to semantics

Logical languages

Semantic parsing

Syntax vs semantics

Syntax: does the string belong to the language?
Semantics: what is the meaning of the string?
Examples in programming languages:
Different syntax, same semantics

Same syntax, different semantics

(Slide adapted from Stanford CS221 Lecture 16)

Model-theoretic semantics

An expression is a string of mere symbols.
A model defines meanings of symbols.
The output of an expression with respect to a model is its denotation.

expression	model	denotation
$3+2 * 4$	calculator	11
the red ball	an image	the red ball in the image
SELECT Name FROM Student	database	John
WHERE Id $=0 ;$		
Book me a ticket from NYC to Seattle	database	[action]

We understand the expression if we know how to act (in a world).

Natural language as expressions

Motivating applications:
Question answering
What is the profit of Mulan?
Who is the 46th president of the US?
Personal assistant
Alexa, play my favorite song.
Siri, show me how to get home.

- But natural language is full of ambiguities
- Cannot be directly handled by a computer (unlike programming/formal languages)

Semantic analysis

Goal: convert natural language to meaning representation
John likes fruits. (informal)
$\forall x \operatorname{Fruit}(x) \Longrightarrow \operatorname{Likes}(x$, John $)($ formal)
Main tool: first-order logic
Why logic?

- Unambiguity: one meaning per statement
- Knowledge: link symbols to knowledge (entities, relations, facts etc.) (Take in complex information)
- Inference: derive additional knowledge given statements (Reason with the information)

Logic and semantics: example

Natural language: "John likes Mary's friends"
Logical form: $\forall x$ Friends (x, Mary) $\Longrightarrow \operatorname{Likes(x,~John)~}$
World model: state of affairs in the world
People $=\{$ John, Mary, Joe, Ted $\}$
John is a friend of Mary.
Joe is a friend of Mary.
Given the world model,

- Is Likes(Joe, John) true?
- What else can we infer from the statement?

The value of the expression may change given a different world model.

Table of Contents

Introduction to semantics

Logical languages

Semantic parsing

Propositional logic

A proposition is a statement that is either true or false.
Propositional logic deals with propositions and their relations.
Syntax of propositional language:

- Propositional symbols: a primitive set of propositions
p_{1} : John likes Mary
p_{2} : John is a student
- Logical connectives: rules to build up formulas

symbol	read	meaning	formula
\neg	not	negation	$\neg p$
\vee	or	disjunction	$p \wedge q$
\wedge	and	conjunction	$p \vee q$
\Longrightarrow	implies / if then	implication	$p \Longrightarrow q$
\Longleftrightarrow	equivalent to / iff	equivalence	$p \Longleftrightarrow q$

- Parentheses: (,)

Parsing a formula

How would you check if a formula is valid (i.e. grammatical)?
A propositional formula is contructed by connecting propositions using the connectives.

- Formulas can be nested.
- Parentheses are used to disambiguate formulas.

Example:

$$
\begin{aligned}
& ((p \wedge q) \wedge \neg p) \\
& ((p \vee q) \wedge r) \Longrightarrow p)
\end{aligned}
$$

Try to draw the parse trees of the formulas.

World model for propositional logic

Propositional symbols:

$$
p_{1}=\text { hot }
$$

$p_{2}=$ John likes ice cream
$p_{3}=$ John ate an ice cream
Formula: $p_{1} \wedge p_{2} \Longrightarrow p_{3}$ (Is this true?)

World model for propositional logic

Propositional symbols:

$$
p_{1}=\text { hot }
$$

$p_{2}=$ John likes ice cream
$p_{3}=$ John ate an ice cream
Formula: $\underbrace{}_{1} \wedge p_{2} \Longrightarrow p_{3}$, (Is this true?)
The world model in propositional logic is an assigment of truth values to propositional symbols.

	m_{1}	m_{2}	m_{3}	m_{4}	m_{5}	m_{6}	m_{7}	m_{8}
p_{1}	T	T	T	T	F	F	F	F
p_{2}	T	T	F	F	T	T	F	F
p_{3}	T	F	T	F	T	F	T	F

In which world(s) is the above formula false?

Meaning of a formula

Propositional symbols:

$$
\begin{aligned}
& p_{1}=\text { hot } \\
& p_{2}=\text { John likes ice cream } \\
& p_{3}=\text { John ate an ice cream }
\end{aligned}
$$

Formula: $p_{1} \wedge p_{2} \Longrightarrow p_{3} \quad$ Just symbols!
Semantics is given by interpreting the formula against a world model.
A formula specifies a set of world models where it is true.
A set of formulas is a knowledge base (constraints on the world model).
Making inference given formulas and the world model: take a course in AI.

Limitations of propositional logic

How do we represent knowledge of a collection of objects?
"Everyone who likes ice cream ate an ice cream."
$p_{\text {JoнN }}$ (John likes ice cream) $\Longrightarrow q_{\text {John }}$ (John ate an ice cream)
$p_{\text {Joe }}$ (Joe likes ice cream) $\Longrightarrow q_{\text {Joe }}$ (Joe ate an ice cream)
$p_{\text {Alice }}$ (Alice likes ice cream) $\Longrightarrow q_{\text {ALICE }}$ (Alice ate an ice cream)
$p_{\text {Carol }}$ (Carol likes ice cream) $\Longrightarrow q_{\text {Carol }}$ (Carol ate an ice cream)
[] likes ice cream $\Longrightarrow[\quad]$ ate an ice cream
Need a compact way to represent a collection of objects!

First-order logic

First-order logic generalizes propositional logic with several new symbols:
Represent objects:
Constants Primitive objects, e.g. John
Variables Placeholder for some object, e.g. x
Functions A map from object(s) to an object, e.g. John \rightarrow John's farther
Group objects:
Predicate Properties of a set of objects, e.g. students, couples
Quantify a (infinite) set of objects:
Quantifiers Specify the number of objects with a certain property, e.g. all people are mortal.

Constants, variables, functions

Constants refer to primitive objects such as named entities:
John, IceCream, Hot
A variable refers to an unspecified object:
x, y, z
Student (x)
Friends (x, John)
A n-ary function maps n objects to an object:
$\operatorname{Mother}(x)$
Friends(Mother $(x), \operatorname{Mother}(y))$

Predicates

A predicate is an indicator function $P: X \rightarrow\{$ true, false $\}$.

- Describes properties of object(s)
- $P(x)$ is an atomic formula

Student(Mary)
Smaller(Desk, Computer)
Friends(John, Mary) \Longrightarrow Friends(Mary, John)

Quantifiers

Universal quantifier \forall :

- The statement is true for every object
- $\forall x P(x)$ is equivalent to $P(A) \wedge P(B) \wedge \ldots$
- All people are mortal: $\forall x \operatorname{Person}(x) \Longrightarrow \operatorname{Mortal}(x)$

Existential quantifier \exists :

- The statement is true for some object
- $\exists x P(x)$ is equivalent to $P(A) \vee P(B) \vee \ldots$
- Some people are mortal: $\exists x \operatorname{Person}(x) \wedge \operatorname{Mortal}(x)$

Order matters, e.g., "everyone speaks a language":

$$
\begin{aligned}
& \forall x \exists y \operatorname{SPEAKS}(x, y) \\
& \exists y \forall x \operatorname{SPEAKS}(x, y)
\end{aligned}
$$

Syntax of first-order logic

Terms refer to objects:

- Constant symbol, e.g. John
- Variable symbol, e.g. x
- Function of terms, e.g. Mother(x), Capital(NY)

Formula evaluates to true or false:

- Predicate over terms is an atomic formula, e.g. Student(Mother(John))
- Connectives applied to formulas (similar to propositional logic)

$$
\operatorname{StudEnt}(x) \wedge \operatorname{HAPpy}(x)
$$

- Quantifiers applied to formulas

$$
\begin{aligned}
& \forall x \operatorname{Student}(x) \Longrightarrow \operatorname{Happy}(x) \\
& \exists x \operatorname{Student}(x) \wedge \operatorname{Happy}(x)
\end{aligned}
$$

World model of first-order logic

How do we know if Friends(John, Mary) is true?
World model of propositional logic: propositions

proposition	truthful value
John is a friend of Mary	True
John is a friend of Joe	False

World model of first-order logic: objects and their relations

constant symbol	
Jobject	
John	a
MARY	b
predicate symbol	set of n-tuples
FRIENDS	$\{(a, b),(b, a)\}$

Graph representation of the world model

Cons symbols

$$
\begin{aligned}
& \text { friend }=\{(a, b),(b, a)\} \\
& \text { mother }=\{(c, b)\} \\
& \text { student }=\{a, b\} \\
& \text { families }=\{(a, b, c), \ldots\}
\end{aligned}
$$

Summary

Syntax produces symbols and well-formed formulas.
Semantics grounds symbols to a world and allows for evaluation of formulas.
We have seen how it works for formal languages such as propositional logic and first-order logic.

Next, formal language to natural language.

Table of Contents

Introduction to semantics

Logical languages

Semantic parsing

System overview

Utterance Linguistic expression.
$\int_{\text {"Call John, please." }}$ parsing

Logical form Formal meaning representation of the utterance
CALL(JOHN) program
executor
Denotation Output of the meaning representation with respect to the model Calling $\mathrm{XXX}-\mathrm{XXX}-\mathrm{XXXX}$... execution result

Translate NL to logical language

Key idea: compositionality

- Sentence: Reads(John) (What's the denotation?)
- We would like to construct it recursively
- John: John (a unique entity)
- reads: a predicate (function) that takes an entity (one argument)

A brief introduction to lambda calculus

Lambda calculus / λ-calculus

- A notation for applying a function to an argument

$$
\begin{aligned}
& \lambda x \cdot x^{2}+x \\
& f: x \mapsto x^{2}+x
\end{aligned}
$$

- A function that is waiting for the value of a variable to be filled
- Function application by β-reduction

$$
\left(\lambda x \cdot x^{2}+x\right)(2)=2^{2}+2=6
$$

- Takes multiple arguments by "currying"

$$
\begin{aligned}
(\lambda x \cdot \lambda y \cdot x y)(2) & =\lambda y \cdot 2 y \\
(\lambda x \cdot \lambda y \cdot x y)(3)(2) & =(\lambda y \cdot 2 y)(3)=6
\end{aligned}
$$

Translate NL to logical language

Verbs are predicates

- reads: $\lambda x \cdot \operatorname{READS}(x)$ (waiting for an NP)
- likes: $\lambda x \cdot \lambda y \cdot \operatorname{LiKES}(x, y)$ (waiting for two RPs)

Translate NL to logical language

Verbs are predicates

- reads: $\lambda x \cdot \operatorname{READS}(x)$ (waiting for an NP)
- likes: $\lambda x \cdot \lambda y \cdot \operatorname{Likes}(x, y)$ (waiting for two NPs)

S:Likes(John, Mary)

Compositional semantics

Bottom up parsing:

- Start with the semantics of each word
- Combine semantics of spans according to certain rules
- Associate a combination rule with each grammar rule

$$
\begin{array}{lll}
\mathrm{V}: \lambda y \cdot \lambda x \cdot \operatorname{LikES}(x, y) & \rightarrow \text { likes } \\
\mathrm{NP}: \mathrm{JoHN} & \rightarrow & \text { John } \\
\mathrm{VP}: \alpha(\beta) & \rightarrow \mathrm{V}: \alpha \mathrm{NP}: \beta \\
\mathrm{S}: \beta(\alpha) & \rightarrow \mathrm{NP}: \alpha \mathrm{VP}: \beta
\end{array}
$$

- Get semantics by function applcation
- Lexical rules can be complex!

Quantification

John bought a book

Bought(John, Book)?
"book" is not a unique entity! Bought(MARy, Book)
Correct logical form: $\exists x \operatorname{BoOk}(x) \wedge \operatorname{Bought}(J o H n, x)$
But what should be the semantics of "a"? $\lambda P \cdot \lambda Q \cdot \exists x P(x) \wedge Q(x)$
"a book": $\lambda Q . \exists x \operatorname{Book}(x) \wedge Q(x)$. (Need to change other NP rules)
What about "the", "every", "most"?
We also want to represent tense: "bought" vs "will buy". (event variables)

Learning from derivations

Text: John bought a book (utterance)

Annotation:
Use approaches from (discriminative) constituent parsing

Learning from derivations

Text: John bought a book (utterance)

Annotation:
Use approaches from (discriminative) constituent parsing
Obstacles:

- Derivations are rarely annotated.
- Unlike syntactic parsing, cannot obtain derivations from logical forms.
- Spurious derivation: wrong derivations that reach the correct logical form.

Learning from logical forms

Text: John bought a book (utterance)
Annotation: $\exists x \operatorname{Book}(x) \wedge \operatorname{Bought}(J o h n, x)$ (logical form)
Key idea: model derivation as a latent variable z [Zettlemoyer and Collins, 2005]
Learning: maximum marginal likelihood

$$
\begin{aligned}
\log p(y \mid x) & =\log \sum_{z} p(y, z \mid x) \\
& =\log \sum_{z} \frac{\exp (\theta \cdot \Phi(x, y, z))}{\sum_{z^{\prime}, y^{\prime}} \exp \left(\theta \cdot \Phi\left(x, y^{\prime}, z^{\prime}\right)\right)}
\end{aligned}
$$

- Need to learn both the lexicon and the model parameters (for CCG)
- Use EM algorithm (with approximation)

Learning from denotations

Text: What states border Georgia?
Annotation: Alabama, Florida, North Carolina, South Carolina, Tennessee Key idea: model the logical form as a latent variable z [Liang, 2013]

Datasets

- 880 questions and database queries about US geography
- "what is the highest point in the largest state?"
- Compositional utterances in a clean, narrow domain

ATIS

- 5418 utterances of airline queries and paired logical forms
- "show me information on american airlines from fort worth texas to philadelphia"
- More flexible word order but simpler logic

Free917, WebQuestions

- Questions and paired logical forms on Freebase
- Logically less complex but scales to many more predicates

Text to SQL

Spider (Yu et al. 2018)
Expert-annotated, cross-domain, complex text-to-SQL dataset

Assumption:

- For each

	Hidden		
	Train	Dev	Test
\# DBs	146	20	40
\# Examples	8,659	1,034	2,147

Database

Instructor
Primary key

| ID | Nameign key |
| :---: | :---: | :---: | :---: | :---: |

Primary key
Department

ID	Name	Building	Budget	\ldots

Question What are the name and budget of the departments with average instructor salary above the overall average?

```
SQL
SELECT T2.name, T2.budget
FROM Instructor AS T1 JOIN Department AS T2 ON
T1.Department_ID = T2.ID
GROUP BY T1.Department_ID
HAVING AVG(T1.salary) >
    (SELECT AVG(Salary) FROM Instructor)
```

(Slide from Victoria Lin)

Challenges

Design the logical representation and grammar

- Expressivity vs computation efficiency
- Domain-specific vs domain-general
- Interacts with annotation and learning

Learning from different supervision signals

- End-to-end (utterance to action)
- Reinforcement learning (robotics, visual grounding)
- Interactive learning (obtain user feedback)

