
Language Models

He He

New York University

September 29, 2022

1 / 51

Table of Contents

Introduction

N-gram language models

Neural language models

Recurrent Neural Networks

Evaluation

2 / 51

Logistics

I HW1 due tonight 11:55pm

I HW2 released today

3 / 51

Last week
Goal: Learning useful representions of words

Distributional hypothesis: Words that occur in similar contexts tend to have similar
meanings.

Methods
I Vector space models: infer clusters from co-occurrence statistics

I Self-supervised learning: predict parts of the text (e.g., words) from its context
(e.g., neighbors)

I Brown clustering: find word classes in a hierarchical way

Basics of neural networks
I Learning intermediate subproblems and representations

I Activation functions allow for nonlinearity

I Optimize by backpropogation (today)

4 / 51

Predict sequences

First part:

I Text representation φ : text→ Rd

I BoW representation
I Distributed representation (word embeddings)

I Probabilistic models for classification

I Multinomial Naive Bayes
I Logistic regression

Second part:

I Predict sequences

I Predict trees

Today: probabilistic modeling of sequences

5 / 51

Language modeling

Motivation: pick the most probable sentence from multiple hypothesis

I Speech recognition

the tail of a dog
the tale of a dog

It’s not easy to wreck a nice beach.
It’s not easy to recognize speech.
It’s not easy to wreck an ice beach.

I Machine translation

He sat on the table.
He sat on the figure.

Such a Europe would the rejection of any ethnic nationalism.
Such a Europe would mark the refusal of all ethnic nationalism.

6 / 51

Language modeling

Application: predict/suggest the next word

7 / 51

Problem formulation

Assign probabilities to a sequence of tokens:

p(the red fox jumped)� p(the green fox jumped)

p(colorless green ideas sleep furiously)� p(furiously sleep ideas green colorless)

I Vocabulary: a finite set of symbols V, e.g.
{fox, green, red, dreamed, jumped, a, the}

I Sentence: a finite sequence over the vocabulary x1x2 . . . xn ∈ Vn where n ≥ 0
(empty sequence when n = 0)

I The set of all sentences (of different lengths): V∗
I Goal: Assign a probability p(x) to all sentences x ∈ V∗.

8 / 51

Table of Contents

Introduction

N-gram language models

Neural language models

Recurrent Neural Networks

Evaluation

9 / 51

Learning a LM

I Given a corpus consisting of a set of sentences: D =
{
x (i)
}N
i=1

I Notation: x
(instance id)
token id

I Consider a multinomial distribution of sentences

ps(x) =
count(x)

N
.

(Exercise: Check that
∑

x∈V∗ ps(x) = 1.)

I Is ps a good LM?

I Does not generalize to unseen data.
I Need to restrict the model.

10 / 51

Simplification 1: sentence to tokens

Solve a smaller problem: model probability of each token

Decompose the joint probability using the probability chain rule:

p(x) = p(x1, . . . , xn)

= p(x1)p(x2 | x1)p(x3 | x1, x2) . . . p(xn | x1, . . . , xn−1)

(Doesn’t have to go from left to right)

= p(xn)p(xn−1 | xn) . . . p(x1 | x2, . . . , xn)

I Problem reduced to modeling conditional token probabilities

I This is a classification problem we have seen

I But there is still a large number of contexts!

11 / 51

Simplification 2: limited context

Reduce dependence on context by the Markov assumption:

I First-order Markov model

p(xi | x1, . . . , xi−1) = p(xi | xi−1)

p(x) =
n∏

i=1

p(xi | xi−1)

I Number of contexts: |V|
I Number of parameters: |V|2

Beginning of a sequence:

p(x1 | x1−1) =?

Assume each sequence starts with a special start symbol: x0 = ∗.
12 / 51

Model sequences of variable lengths
Sample a sequence from the first-order Markov model p(xi | xi−1):

1. Initial condition: prev = ∗
2. Iterate:

2.1 curr ∼ p(curr | prev)
2.2 prev← curr

When to stop?

Assume that all sequences end with a stop symbol STOP, e.g.

p(the, fox, jumped, STOP)

= p(the | ∗)p(fox | the)p(jumped | fox)p(STOP | jumped)

LM with the STOP symbol:
I Vocabulary: STOP ∈ V
I Sentence: x1x2 . . . xn ∈ Vn for n ≥ 1 and xn = STOP.

13 / 51

N-gram LM
I Unigram language model (no context):

p(x1, . . . , xn) =
n∏

i=1

p(xi) .

I Bigram language model (x0 = ∗):

p(x1, . . . , xn) =
n∏

i=1

p(xi | xi−1) .

I Trigram language model (x−1 = ∗, x0 = ∗):

p(x1, . . . , xn) =
n∏

i=1

p(xi | xi−2, xi−1) .

I n-gram language model:

p(x1, . . . , xm) =
m∏
i=1

p(xi | xi−n+1, . . . , xi−1︸ ︷︷ ︸
previous n − 1 words

) .

14 / 51

Practical issues

I Use n − 1 start symbols for n-gram models

I Trigram features are often used in classification

I Higher-order models (4/5-grams) are used for MT when large corpus is available

I All computation is done in the log space to avoid underflow

15 / 51

Parameter estimation

I Data: a corpus
{
x (i)
}N
i=1

where x ∈ Vn denote a sequence.

I Model: bigram LM p(w | w ′) for w ,w ′ ∈ V.

p(w | w ′) = θw |w ′ multinomial distribution

where
∑

w∈V p(w | w ′) = 1 ∀w ′ ∈ V.

MLE: (HW2 P1)
[board]

16 / 51

MLE solution

I Unigram LM

pMLE(x) =
count(w)∑

w∈V count(w)

I Bigram LM

pMLE(w | w ′) =
count(w ,w ′)∑

w∈V count(w ,w ′)

I In general, for n-gram LM,

pMLE(w | c) =
count(w , c)∑

w∈V count(w , c)

where c ∈ Vn−1.

17 / 51

Example

I Training corpus (after tokenization)

{The fox is red,The red fox jumped, I saw a red fox}
I Collect counts

count(fox) = 3
count(red) = 3
count(red, fox) = 2
. . .

I Parameter estimates

p̂(red | fox) = 2/3
p̂(saw | i) = 1/1

I What is the probability of “I saw a brown fox jumped”? Zero!

I What is the probability of “The fox saw I jumped”? Zero!

18 / 51

Summary so far

Language models: assign probabilities to sentences

N-gram language models:

I Assume each word only conditions on the previous n − 1 words

I MLE estimate: counting n-grams in the training corpus

Problems with vanilla n-gram models:

I Estimate of probabilities involving rare n-grams is inaccurate

I Sentences containing unseen n-grams have zero probability

19 / 51

Out-of-vocabulary (OOV) words

Dealing with OOV words:

1. Choose a fixed vocabulary (e.g., all words in the training corpus that occur for
more than 5 times)

2. Replace all OOV words (during training and test) by <UNK>

3. Treat <UNK> as a normal word

20 / 51

Smoothing

How to estimate frequencies of unseen words/n-grams?

More generally, estimate unseen elements in the support of a distribution.

I Given frequencies of observed species, what’s the probability of encountering a
new species?

I Given observed genetic variations from a certain population, what’s the probability
of observing new mutations?

21 / 51

Smoothing

Key idea: reserve some probability mass for unseen words (discounting!)

(Figures from Dan Klein and John DeNero)

22 / 51

Add-α smoothing
Original estimate:

count(x)

N

Smoothed estiamte (add pseudo count to each word):

count(x) + α

N + α|V|

Discounted counts:

count∗(x)

N
=

count(x) + α

N + α|V| (1)

count∗(x) =
N

N + α|V|(count(x) + α) (2)
23 / 51

Add-one smoothing

How does smoothing change the estimate?

Example:

count(x) = 10,N = 100, |V| = 1000

Original: 10/100 = 0.1

Smoothed: (10 + 1)/(100 + 1000) ≈ 0.01

Assigns too much probability mass to unseen words!

Tuning α on validation set helps but still not good enough for LM in practice.

24 / 51

Good-Turing smoothing

Key idea: use a held-out (validation) set to estimate the “correct” counts and adjust
the raw count accordingly
Leave-one-out cross validation
[board]

25 / 51

Good-Turing smoothing

I Let M be the total number of tokens

I Let Nr be the number of word types that occur r times in the corpus

I How many held-out tokens are unseen during training? N1

I How many held-out tokens are seen k times during training? Nk+1(k + 1)

I What’s the “correct” count of a word that occur k times in the corpus?

Nkcount∗(x) = Nk+1(k + 1)

I What’s the probability of a word that occur k times in training?

p̂k(x) =
count∗(x)

M
=

(k + 1)Nk+1

MNk

p̂0 =
N1

M
26 / 51

Backoff
Problem: Cannot estiamte probability of rare n-grams accurately

Idea: Use higher-order models when we have enough evidence.

First try:

pbackoff(xi | xi−n+1:i−1) =

{
pMLE(xi | xi−n+1:i−1) if count(xi−n+1:i) > 0

αpbackoff(xi | xi−n+2:i−1) otherwise

I If the n-gram has occured in the corpus, use the MLE estimate

I Otherwise, backoff to the n − 1 gram estimate recursively with a constant backoff
factor

I Not a proper probability distribution because of additional probability mass on
unseen n-grams

I But works well in practice (Stupid Backoff [Brants et al., 2007])
27 / 51

Backoff

Problem: Cannot estiamte probability of rare n-grams accurately

Idea: Use higher-order models when we have enough evidence.

Second try (Katz Backoff):

pbackoff(xi | xi−n+1:i−1) =

{
pdiscount(xi | xi−n+1:i−1) if count(xi−n+1:i) > 0

α(xi−n+1:i−1)pbackoff(xi | xi−n+2:i−1) otherwise

I Discounted probability: reserve some probability mass for unseen events

I Backoff factor: probability mass distributed to unseen events given a specific
context

28 / 51

Interpolation

Instead of backing off to lower-order models, we can use a mixture of n-gram models

p(xi | xi−2, xi−1) = λ1p(xi | xi−2, xi−1) + λ2p(xi | xi−1) + λ3p(xi)

where λ1 + λ2 + λ3 = 1 (why?).

I λ can depend on context: λ(xi−2, xi−1).

I Tune λ’s on the validation set.

I Model λ as a latent variable and solve by EM algorithm (later)

29 / 51

Kneser-Ney smoothing

Widely used for n-gram LMs.

Idea 1: absolute discounting.

Figure: Good-Turing counts from Dan Klein’s slides

Just subtract 0.75 or some constant.

30 / 51

Kneser-Ney smoothing
Idea 2: consider word versatility rather than word counts.

Motivation:

count(Francisco) = 100, count(Minneapolis) = 10

I recently visited .

Some words can only follow specific contexts, i.e. less versatile.

Continuation probability: how likely is w allowed in a context c

pcontinuation(w) ∝ |
{
w ′ : count(w ′,w) > 0

}
| # of context w can follow

=
| {w ′ : count(w ′,w) > 0} |∑
w | {w ′ : count(w ′,w) > 0} |

=
bigram types ends with w

bigram types

31 / 51

Kneser-Ney smoothing

Combine the two ideas: absolute discount and continuation probability

For bigrams:

pKN(w | w ′) =
max(count(w ,w ′)−d , 0)

count(w’)
+ λ(w ′)pcontinuation(w)

I λ: discounted probability mass

I Works well for ASR and MT.

I Dominating n-gram model before neural LMs.

32 / 51

Real n-gram counts

Google Books n-gram counts

Efficient implementation

I Memory, inference speed

I Context encodings, tries, caching, ...

I kenlm (https://github.com/kpu/kenlm)

33 / 51

https://github.com/kpu/kenlm

Summary
Key ideas in n-gram language models to handle sparsity:

Markov assumption:

I Trigram models are reasonable.

I ASR, MT often use 4- or 5-gram models.

Discounting / Smoothing:

I “Borrow” probability mass for unseen words

I Good-Turing smoothing, absolute discount

Dynamic context:

I Use more context if there is evidence

I Katz backoff, Kneser-Ney

See Chen and Goodman (1999) for more results.
34 / 51

Table of Contents

Introduction

N-gram language models

Neural language models

Recurrent Neural Networks

Evaluation

35 / 51

N-gram models by classification

Log-linear language model:

p(w | c) =
exp [θ · φ(w , c)]∑

w ′∈V exp [θ · φ(w ′, c)]

I Predict the output word given the context, e.g., c = the brown fox and
w = jumped

I Use compatibility scores: θw · φ(c)→ θ · φ(w , c)

36 / 51

N-gram models by classification

How to design the feature map φ(w , c)?

Corpus: “the brown fox jumped”

1. Define feature templates:

T1(w , c) = (w , c[−1]) (bigram feature)
T2(w , c) = (w ,POS(c[−1]))
T3(w , c) = (w , suffix(c[−1]))

2. Read off features from the data

φ1(w , c) = I(w = the, c[−1] = ∗)
φ2(w , c) = I(w = brown, c[−1] = the)

I Each template can produce many features

I Each class (word) has different features

37 / 51

Feed-forward neural networks

Key idea in neural nets: feature/representation learning

Building blocks:

I Input layer: raw features (no learnable parameters)

I Hidden layer: perceptron + nonlinear activation function

I Output layer: linear (+ transformation, e.g. softmax)

38 / 51

Feed-forward neural language models

Encode the fixed-length context using feed-forward NN:

xk−1

φone-hot(x)

W11x

xk−2

φone-hot(x)

W12x

xk−3

φone-hot(x)

W13x

[x1;x2;x3]

σ(W2x + b)

softmax(Wox + b)

input words

one-hot embedding

dense embedding

concatenation

“merge”

classification

What kind of features may be learned?

39 / 51

Computation graphs

Function as a node that takes in inputs and produces outputs.

I Typical computation graph: I Broken out into components:

40 / 51

Compose multiple functions
Compose two functions g : Rp → Rn and f : Rn → Rm.

I c = f (g(a))
I Derivative: How does change in aj affect ci?
I Visualize the chain rule:

I Sum changes induced on all paths from aj to ci .
I Changes on one path is the product of changes on each edge.

∂ci
∂aj

=
n∑

k=1

∂ci
∂bk

∂bk
∂aj

.

41 / 51

Computation graph example

∂`

∂r
= 2r

∂`

∂ŷ
=

∂`

∂r

∂r

∂ŷ
= (2r) (−1) = −2r

∂`

∂b
=

∂`

∂ŷ

∂ŷ

∂b
= (−2r) (1) = −2r

∂`

∂wj
=

∂`

∂ŷ

∂ŷ

∂wj
= (−2r) xj = −2rxj

Example from David Rosenberg.

42 / 51

Backpropogation

Backpropogation = chain rule + dynamic programming on a computation graph

Forward pass

I Topological order: every node appears before its children

I For each node, compute the output given the input (from its parents).

. . . fi fj . . .

a b = fi (a) c = fj(b)

43 / 51

Backpropogation

Backward pass

I Reverse topological order: every node appear after its children

I For each node, compute the partial derivative of its output w.r.t. its input,
multiplied by the partial derivative from its children (chain rule).

. . . fi fj . . .

a b = fi (a) c = fj(b)

gi = gj · ∂b∂a = ∂J
∂a gj = ∂J

∂b

44 / 51

Summary

Neural networks

I Automatically learn the features

I Optimize by SGD (implemented by back-propogation)

I Non-convex, may not reach a global minimum

Feed-forward neural language models

I Use fixed-size context (similar to n-gram models)

I Represent context by feed-forward neural networks

45 / 51

Table of Contents

Introduction

N-gram language models

Neural language models

Recurrent Neural Networks

Evaluation

46 / 51

Recurrent neural networks
How much context is needed?
... I went

Idea: combine new context with old context recurrently to handle varying context sizes

ht = σ(Whhht−1︸ ︷︷ ︸
previous state

+ Wihxt︸ ︷︷ ︸
new input

+bh) .

h0 h1

x1

o1

Wihx1

Whoh1

h2

x2

o2

Wihx2

Whoh2

h3

x3

o3

Wihx3

Whoh3

. . .Whhh0 Whhh1 Whhh2 Whhh3

47 / 51

Backpropogation through time

ht = σ(Whhht−1︸ ︷︷ ︸
previous state

+ Wihxt︸ ︷︷ ︸
new input

+bh) .

[board]

Problem:

I Gradient involves repeated multiplication of Whh

I Gradient will vanish / explode

Quick fixes:

I Truncate after k steps (i.e. detach in the backward pass)

I Gradient clipping

48 / 51

Long-short term memory (LSTM)
I Memory cell: decide when to “memorize” or “forget” a state

ct = it � c̃t︸ ︷︷ ︸
update with new memory

+ ft � ct−1︸ ︷︷ ︸
reset old memory

c̃t = tanh(Wxcxt + Whcht−1 + bc) .

I Input gate and forget gate

it = sigmoid(Wxixt + Whiht−1 + bi) ,

ft = sigmoid(Wxf xt + Whf ht−1 + bf) .

I Hidden state

ht = ot � ct , where

ot = sigmoid(Wxoxt + Whoht−1 + bo) .

Gating allows the network to learn to control how much gradient should vanish.
49 / 51

Table of Contents

Introduction

N-gram language models

Neural language models

Recurrent Neural Networks

Evaluation

50 / 51

Perplexity
What is the loss function for learning language models?

Held-out likelihood on test data D:

`(D) =

|D|∑
i=1

log pθ(xi | x1:i−1) ,

Perplexity:

PPL(D) = 2
− `(D)
|D| .

I Base of log and exponentiation should match
I Exponent is cross entropy: H(pdata, pθ) = −Ex∼p log pθ(x).
I Interpretation: a model of perplexity k predicts the next word by throwing a fair

k-sided die.
51 / 51

	Introduction
	N-gram language models
	Neural language models
	Recurrent Neural Networks
	Evaluation

