Language Models

He He

New York University

September 29, 2022

1/51

Table of Contents

Introduction

2/51

Logistics

» HW1 due tonight 11:55pm
» HWS2 released today

3/51

Last week

Goal: Learning useful representions of words

Distributional hypothesis: Words that occur in similar contexts tend to have similar
meanings.

Methods

P> Vector space models: infer clusters from co-occurrence statistics

» Self-supervised learning: predict parts of the text (e.g., words) from its context
(e.g., neighbors)

» Brown clustering: find word classes in a hierarchical way

Basics of neural networks
» Learning intermediate subproblems and representations
» Activation functions allow for nonlinearity

» Optimize by backpropogation (today)

451

Predict sequences

First part:
> Text representation ¢: text — RY

» BoW representation
» Distributed representation (word embeddings)

» Probabilistic models for classification

» Multinomial Naive Bayes
P Logistic regression

Second part:
» Predict sequences
P> Predict trees

Today: probabilistic modeling of sequences

5/51

Language modeling

Motivation: pick the most probable sentence from multiple hypothesis

» Speech recognition
the tail of a dog
the tale of a dog

It's not easy to wreck a nice beach.

It's not easy to recognize speech.

It's not easy to wreck an ice beach.
» Machine translation

He sat on the table.

He sat on the figure.

Such a Europe would the rejection of any ethnic nationalism.
Such a Europe would mark the refusal of all ethnic nationalism.

6/51

Language modeling

Application: predict/suggest the next word

Google

san f

san francisco weather

san francisco

san francisco giants

san fernando valley

san francisco state university
san francisco hotels

san francisco 49ers

san fernando

san fernando mission

san francisco zip code

Google Search

I'm Feeling Lucky

the capital of our nat_

(=

nature natures

¥

7/51

Problem formulation

Assign probabilities to a sequence of tokens:
p(the red fox jumped) > p(the green fox jumped)

p(colorless green ideas sleep furiously) > p(furiously sleep ideas green colorless)

» Vocabulary: a finite set of symbols V, e.g.
{fox, green, red, dreamed, jumped, a, the}

> Sentence: a finite sequence over the vocabulary xixo ... x, € V" where n >0
(empty sequence when n = 0)

» The set of all sentences (of different lengths): V*
» Goal: Assign a probability p(x) to all sentences x € V*.

8/51

Table of Contents

N-gram language models

9/51

Learning a LM

. . Ny N
» Given a corpus consisting of a set of sentences: D = {x(’)}i:1

: instance id)
> . ylinstar
Notation: Xcoken id

» Consider a multinomial distribution of sentences

count(x)

ps(X) = N

(Exercise: Check that)). ps(x) = 1.)

» Is ps a good LM?
» Does not generalize to unseen data.
» Need to restrict the model.

10/51

Simplification 1: sentence to tokens

Solve a smaller problem: model probability of each token

Decompose the joint probability using the probability chain rule:

p(x) = p(x1,...,xn)
= p(x1)p(x2 | x1)p(x3 | x1,x2) ... p(xn | X1, .., Xn—1)

(Doesn't have to go from left to right)
= p(Xn)p(anl | Xn) s P(Xl | X2y .. >Xn)

» Problem reduced to modeling conditional token probabilities
» This is a classification problem we have seen

» But there is still a large number of contexts!

11/51

Simplification 2: limited context

Reduce dependence on context by the Markov assumption:
» First-order Markov model

p(xi | x1,...,xi—1) = p(xi | xi—1)

p(x) =] p(xi | xi-1)
i=1

» Number of contexts: |V|

» Number of parameters: [V|?

Beginning of a sequence:

p(xi | xi-1) =7
Assume each sequence starts with a special start symbol: xp = x*.

12/51

Model sequences of variable lengths
Sample a sequence from the first-order Markov model p(x; | xi—1):
1. Initial condition: prev = x
2. lterate:

2.1 curr ~ p(curr | prev)
2.2 prev < curr

When to stop?

Assume that all sequences end with a stop symbol STOP, e.g.

p(the, fox, jumped, STOP)
= p(the | x)p(fox | the)p(jumped | fox)p(STOP | jumped)

LM with the STOP symbol:
» Vocabulary: STOP € V
» Sentence: xyx2...x, € V" for n > 1 and x,, = STOP.

13/51

N-gram LM

» Unigram language model (no context):
n
P(Xl, s 7Xn) = HP(XI) :
i=1
» Bigram language model (xp = *):

n
p(X1> cee 7Xn) = Hp(xi | Xi—l) .
i=1

» Trigram language model (x_1 = *,xg = *):

n
p(x1, ..., xn) = HP(Xi | Xi—2,Xi-1) -
i=1

» n-gram language model:
m
p(x1,. .., Xm) = HP(Xi | Xicng1oo,Xic1)
. —_————
i=1

previous n — 1 words 1451

Practical issues

> Use n — 1 start symbols for n-gram models
> Trigram features are often used in classification
» Higher-order models (4/5-grams) are used for MT when large corpus is available

» All computation is done in the log space to avoid underflow

15 /51

Parameter estimation

» Data: a corpus {x(i)};\lzl where x € V" denote a sequence.
» Model: bigram LM p(w | w’) for w,w' € V.
p(w | w') =60y, multinomial distribution
where 3, p(w|w)=1 Vw eV.

MLE: (HW2 P1)
[board]

16 /51

MLE solution

» Unigram LM
count(w)

PMLE(X) = D

wey count(w)

» Bigram LM
count(w, w')

"y —
pMLE(W | w) - ZWGV COUht(W, W')

» In general, for n-gram LM,

count(w, ¢)

pmLe(w | ¢) = > wey count(w, c)

where c € Y"1,

17/51

Example

» Training corpus (after tokenization)

{The fox is red, The red fox jumped, | saw a red fox}
» Collect counts

count(fox) = 3

count(red) = 3

count(red, fox) = 2

» Parameter estimates

p(red | fox) =2/3

P(saw | i) =1/1
> What is the probability of “l saw a brown fox jumped”? Zero!
» What is the probability of “The fox saw | jumped”? Zero!

18/51

Summary so far

Language models: assign probabilities to sentences

N-gram language models:
P> Assume each word only conditions on the previous n — 1 words

» MLE estimate: counting n-grams in the training corpus

Problems with vanilla n-gram models:
» Estimate of probabilities involving rare n-grams is inaccurate

> Sentences containing unseen n-grams have zero probability

19/51

Out-of-vocabulary (OOV) words

Dealing with OOV words:

1. Choose a fixed vocabulary (e.g., all words in the training corpus that occur for
more than 5 times)

2. Replace all OOV words (during training and test) by <UNK>
3. Treat <UNK> as a normal word

20/51

Smoothing

How to estimate frequencies of unseen words/n-grams?

More generally, estimate unseen elements in the support of a distribution.

» Given frequencies of observed species, what's the probability of encountering a
new species?

» Given observed genetic variations from a certain population, what's the probability
of observing new mutations?

21/51

Smoothing

Key idea: reserve some probability mass for unseen words (discounting!)

P(w | denied the)

3 allegations
2 reports g
1 claims ®
S| L @ 0
1 request 2 elells % é h“::’
- — 3 O
7 total S8 5§ g 8

P(w | denied the)

2.5 allegations

1.5 reports ”

0.5 claims 5 » P

0.5 request T £ S § &

2 other sllgllglls & 8 5
Slls||g| © E 2o

7 total ° s I s I s

(Figures from Dan Klein and John DeNero)

22/51

Add-a smoothing

Original estimate:
count(x)
N
Smoothed estiamte (add pseudo count to each word):
count(x) + «

N+ «a|V|

Discounted counts:

count*(x) count(x) + «

N N+alV
count™(x) N (count(x) + «)
unt*(x) = ————(count(x) + «
N+ |V

Add-one smoothing

How does smoothing change the estimate?

Example:
count(x) = 10, N = 100, |[V| = 1000
Original: 10/100 = 0.1
Smoothed: (104 1)/(100 + 1000) ~ 0.01

Assigns too much probability mass to unseen words!

Tuning « on validation set helps but still not good enough for LM in practice.

24 /51

Good-Turing smoothing

Key idea: use a held-out (validation) set to estimate the “correct” counts and adjust
the raw count accordingly

Leave-one-out cross validation

[board]

25/51

Good-Turing smoothing

» Let M be the total number of tokens

> Let N, be the number of word types that occur r times in the corpus

» How many held-out tokens are unseen during training? N;

» How many held-out tokens are seen k times during training? Nyi1(k + 1)
>

What's the “correct” count of a word that occur k times in the corpus?

Nycount™(x) = Ngy1(k + 1)

> What's the probability of a word that occur k times in training?

R count*(x) (k+ 1)Nyy1
pk(X) = M - MNk -

26 /51

Backoff

Problem: Cannot estiamte probability of rare n-grams accurately
Idea: Use higher-order models when we have enough evidence.
First try:

pmLe(Xi | Xi—pt1i-1) if count(xj_py1:;) >0

Poackoff(Xi | Xi—nt1:i-1) = .
QPbackoff(Xi | Xi—ni2:i-1) otherwise

v

If the n-gram has occured in the corpus, use the MLE estimate

» Otherwise, backoff to the n — 1 gram estimate recursively with a constant backoff
factor

> Not a proper probability distribution because of additional probability mass on
unseen n-grams

» But works well in practice (Stupid Backoff [Brants et al., 2007])

27/51

Backoff

Problem: Cannot estiamte probability of rare n-grams accurately
Idea: Use higher-order models when we have enough evidence.

Second try (Katz Backoff):

Pdiscount (Xi | Xi—n+1:i—1) if count(xj_p41:/) >0

Pbackoff(Xi | Xi—nt+1:i-1) = .
(Xi—pt1:i—1)Ppackoff(Xi | Xi—nt+2:i—1) otherwise

» Discounted probability: reserve some probability mass for unseen events

» Backoff factor: probability mass distributed to unseen events given a specific
context

28 /51

Interpolation

Instead of backing off to lower-order models, we can use a mixture of n-gram models
p(xi | Xi—2,xi-1) = A1p(Xi | Xi—2,Xi—1) + Aap(Xi | Xi—1) + Azp(xi)
where A1 + Ao + A3 =1 (Why?).

»)\ can depend on context: A(xj_2,xj—1).
» Tune \'s on the validation set.

» Model A as a latent variable and solve by EM algorithm (later)

29/51

Kneser-Ney smoothing
Widely used for n-gram LMs.

Idea 1: absolute discounting.

Countin 22M Words

Avg in Next 22M

Good-Turing c*

1

0.448

0.446

2 1.26 1.26
3 2.24 2.24
4 3.23 3.24

Figure: Good-Turing counts from Dan Klein's slides

Just subtract 0.75 or some constant.

30/51

Kneser-Ney smoothing
Idea 2: consider word versatility rather than word counts.

Motivation:
count(Francisco) = 100, count(Minneapolis) = 10
| recently visited ___.

Some words can only follow specific contexts, i.e. less versatile.

Continuation probability: how likely is w allowed in a context ¢

Peontinuation (W) | {W/Z count(w’, w) > O} | # of context w can follow
| {w’: count(w’, w) > 0} |
> [{w': count(w’, w) > 0} |
_ # bigram types ends with w
N # bigram types

31/51

Kneser-Ney smoothing

Combine the two ideas: absolute discount and continuation probability

For bigrams:
max(count(w, w')—d, 0
(()) +)\(W,)Pcontinuation(w)

pKN(W ‘ W/) = count(w')

> \: discounted probability mass
» Works well for ASR and MT.

» Dominating n-gram model before neural LMs.

32/51

Real n-gram counts

Google Books n-gram counts

Efficient implementation
» Memory, inference speed
> Context encodings, tries, caching, ...

» kenlm (https://github.com/kpu/kenlm)

33/51

https://github.com/kpu/kenlm

Summary

Key ideas in n-gram language models to handle sparsity:

Markov assumption:
» Trigram models are reasonable.
» ASR, MT often use 4- or 5-gram models.

Discounting / Smoothing:
> “Borrow” probability mass for unseen words

» Good-Turing smoothing, absolute discount

Dynamic context:
» Use more context if there is evidence
» Katz backoff, Kneser-Ney

See Chen and Goodman (1999) for more results.
34/51

Table of Contents

Neural language models

35/51

N-gram models by classification

Log-linear language model:

exp [0 - p(w,)]
2wy expll - o(w', c)]

p(w|c) =

» Predict the output word given the context, e.g., ¢ = the brown fox and
w = jumped

» Use compatibility scores: 6, - ¢(c) — 0 - p(w, c)

36/51

N-gram models by classification

How to design the feature map ¢(w, c)?

Corpus: “the brown fox jumped”

1. Define feature templates:
T1(w, c) = (w, c[-1]) (bigram feature)
Ta(w, ¢) = (w, POS(c[-1]))
T3(w, ¢) = (w,suffix(c[—1]))

2. Read off features from the data
d1(w, c) = I(w = the, c[-1] = %)
¢2(w, c) = I(w = brown, c[—1] = the)

» Each template can produce many features
» Each class (word) has different features

37/51

Feed-forward neural networks

Key idea in neural nets: feature/representation learning

Building blocks:

» Input layer: raw features (no learnable parameters)

» Hidden layer: perceptron + nonlinear activation function

» Output layer: linear (+ transformation, e.g. softmax)

38/51

Feed-forward neural language models
Encode the fixed-length context using feed-forward NN:

softmax(W,x + b) classification

merge”
[@1; T9; 23] concatenation

(Wuz | (Wz] [] dense embedding

[Gorc101(@)] (Ponenoi(@)] [Bonenanl®)) one-hot embedding

[T] [Tps] [T3] input words

What kind of features may be learned?

39/51

Computation graphs

Function as a node that takes in

» Typical computation graph:

D

/2’/(

A
fZP

inputs and produces outputs.

» Broken out into components:

a, b

Qa

X %
a b
Lt .y
ae LekR

40/51

Compose multiple functions
Compose two functions g : RP — R" and f : R” — R™.

b,
a A -

' .
% L L
B " P

ae K(’ belk <

> c=f(g(a))
» Derivative: How does change in a; affect ¢;?
» Visualize the chain rule:
» Sum changes induced on all paths from a; to c;.

» Changes on one path is the product of changes on each edge.

n

8C,‘ i aC,' 8bk
83] - Z()bk aaj '
k=1

Computation graph example

W /Q or
N

L)50 o

X oy

Y ot

ob
ov

Ow;

Example from David Rosenberg.

2r

ot or

o0y

ot oy o
87)“/871/]_(2r) xj = —2rx

42/51

Backpropogation

Backpropogation = chain rule + dynamic programming on a computation graph

Forward pass

» Topological order: every node appears before its children

» For each node, compute the output given the input (from its parents).

43/51

Backpropogation

Backward pass

> Reverse topological order: every node appear after its children

» For each node, compute the partial derivative of its output w.r.t. its input,
multiplied by the partial derivative from its children (chain rule).

4 i
— —
— .. 0b _ 9J _ 9J
8 =& pa~ ba & = ob

44 /51

Summary

Neural networks
» Automatically learn the features
» Optimize by SGD (implemented by back-propogation)

» Non-convex, may not reach a global minimum

Feed-forward neural language models
» Use fixed-size context (similar to n-gram models)

» Represent context by feed-forward neural networks

45/51

Table of Contents

Recurrent Neural Networks

46 /51

Recurrent neural networks

How much context is needed?
... | went

Idea: combine new context with old context recurrently to handle varying context sizes

he =0(Whnhe—1 + Winxe +bp) .
—_—— ——

previous state new input
(o] (=] [=]
VVhahl M//wh‘l W}whS
/ V)
h()) Wh,th (hl) ‘thhfl (h2] VthhQ (h;;] 14 hhhS .
J L J L J L
Wina: Winzs Winas

N

L]

Lo]

47/51

Backpropogation through time

hy = o(Whphe—1 + Winxe +bp) .
—— ~——

previous state new input

[board]

Problem:
» Gradient involves repeated multiplication of Wy,

» Gradient will vanish / explode

Quick fixes:
» Truncate after k steps (i.e. detach in the backward pass)
» Gradient clipping

48 /51

Long-short term memory (LSTM)

> Memory cell: decide when to “memorize” or “forget” a state

Ct = It © Ct + ft ©cro1
~—— ———
update with new memory reset old memory
Et = tanh(WXCXt + thhtf]_ + bC) .
» Input gate and forget gate

i = sigmoid(Wiix¢ + Whiht—1 + b;) ,
fr = sigmoid(Wirxt + Whehe—1 + br) .

» Hidden state

hy = o ©® ¢t , where
o = sigmoid(Wioxt + Whohi—1 + bo) .

Gating allows the network to learn to control how much gradient should vanish.

49/51

Table of Contents

Evaluation

50 /51

Perplexity

What is the loss function for learning language models?

Held-out likelihood on test data D:
|D|

(D) =" "log pa(xi | x1:i-1) »

i=1

Perplexity:
¢(D)

PPL(D) =2 10

» Base of log and exponentiation should match

> Exponent is cross entropy: H(pdata, Po) = —Ex~p log po(x).
> Interpretation: a model of perplexity k predicts the next word by throwing a fair

k-sided die.

51/51

	Introduction
	N-gram language models
	Neural language models
	Recurrent Neural Networks
	Evaluation

