
Text Classification

He He

New York University

September 15, 2021

1 / 32

Text classification

I Input: text (sentence, paragraph, document)

I Predict the category or property of the input text

I Sentiment classification: Is the review positive or negative?
I Spam detection: Is the email/message spam or not?
I Hate speech detection: Is the tweet/post toxic or not?
I Stance classification: Is the opinion liberal or conservative?

I Predict the relation of two pieces of text

I Textual entailment (HW1): does the premise entail the hypothesis?
Premise: The dogs are running in the park.
Hypothesis: There are dogs in the park.

I Paraphrase detection: are the two sentences paraphrases?
Sentence 1: The dogs are in the park.
Sentence 2: There are dogs in the park.

2 / 32

 Paraphrase detection itself may not always be a well-defined problem. Consider the given example, are they paraphrase? Well, it depends on the context. If the task is image caption, then yes. If the task is dialogue response generation, where the context is ``Where are the dogs?'', then S1 and S2 convey very different answers to the question.

Text classification

I Input: text (sentence, paragraph, document)

I Predict the category or property of the input text

I Sentiment classification: Is the review positive or negative?
I Spam detection: Is the email/message spam or not?
I Hate speech detection: Is the tweet/post toxic or not?
I Stance classification: Is the opinion liberal or conservative?

I Predict the relation of two pieces of text

I Textual entailment (HW1): does the premise entail the hypothesis?
Premise: The dogs are running in the park.
Hypothesis: There are dogs in the park.

I Paraphrase detection: are the two sentences paraphrases?
Sentence 1: The dogs are in the park.
Sentence 2: There are dogs in the park.

2 / 32

 Paraphrase detection itself may not always be a well-defined problem. Consider the given example, are they paraphrase? Well, it depends on the context. If the task is image caption, then yes. If the task is dialogue response generation, where the context is ``Where are the dogs?'', then S1 and S2 convey very different answers to the question.

Table of Contents

Generative models: naive Bayes

Discriminative models: logistic regression

Regularization, model selection, evaluation

3 / 32

Intuition

Example: sentiment classification for movie reviews
Action. Comedy. Suspense. This movie has it all. The Plot goes that 4 would be
professional thieves are invited to take part in a heist in a small town in Montana.
every type of crime movie archetype character is here. Frank, the master mind.
Carlos, the weapons expert. Max, the explosives expert. Nick, the safe cracker and
Ray, the car man. Our 4 characters meet up at the train station and from the
beginning none of them like or trust one another. Added to the mix is the fact that
Frank is gone and they are not sure why they have called together. Now Frank is
being taken back to New Jersey by the 2 detectives but soon escapes on foot and
tries to make his way back to the guys who are having all sorts of problems of their
own. Truly a great film loaded with laughs and great acting. Just an overall good
movie for anyone looking for a laugh or something a little different

Idea: count the number of positive/negative words

I What is a “word”?
I How do we know which are positive/negative?

4 / 32

 How would you quickly tell the sentiment of this review? Understand everything said in it is hard (genre, plot, actor performance etc.). But sometimes a couple of keywords or a concluding sentence is sufficient.

 Now there are two questions left. We know what's a word intuitively, but to the computer the input is just a string of unicodes, how can we separate that into a list of words. The second question is how can we tell which words are positive or negative. The rule based approach is to construct a dictionary of such words, which can be quite effective. But here we'll see how to learn this from labeled data.

Intuition

Example: sentiment classification for movie reviews
Action. Comedy. Suspense. This movie has it all. The Plot goes that 4 would be
professional thieves are invited to take part in a heist in a small town in Montana.
every type of crime movie archetype character is here. Frank, the master mind.
Carlos, the weapons expert. Max, the explosives expert. Nick, the safe cracker and
Ray, the car man. Our 4 characters meet up at the train station and from the
beginning none of them like or trust one another. Added to the mix is the fact that
Frank is gone and they are not sure why they have called together. Now Frank is
being taken back to New Jersey by the 2 detectives but soon escapes on foot and
tries to make his way back to the guys who are having all sorts of problems of their
own. Truly a great film loaded with laughs and great acting. Just an overall good
movie for anyone looking for a laugh or something a little different

Idea: count the number of positive/negative words

I What is a “word”?
I How do we know which are positive/negative?

4 / 32

 How would you quickly tell the sentiment of this review? Understand everything said in it is hard (genre, plot, actor performance etc.). But sometimes a couple of keywords or a concluding sentence is sufficient.

 Now there are two questions left. We know what's a word intuitively, but to the computer the input is just a string of unicodes, how can we separate that into a list of words. The second question is how can we tell which words are positive or negative. The rule based approach is to construct a dictionary of such words, which can be quite effective. But here we'll see how to learn this from labeled data.

Preprocessing: tokenization

Goal: Splitting a string of text s to a sequence of tokens [x1, . . . , xn].

Language-specific solutions

I Regular expression: “I didn’t watch the movie”. → [“I”, “did”, “n’t”, “watch”,
“the”, “movie”, “.”]

I Special cases: U.S., Ph.D. etc.

I Dictionary / sequence labeler: “我没有去看电影。” → [“我”, “没有”, “去”,
“看”, “电影”, “。”]

General solutions: don’t split by words

I Characters: [“u”, “n”, “a”, “f”, “f”, “a”, “b”, “l”, “e”] (pros and cons?)

I Subword (e.g., byte pair encoding): [“un”, “aff”, “able#”] [board]

5 / 32

 Note that for contractions like didn't. We can tokenize it into either did n't or didn 't. Both are okay as long as it's consistent. English tokenization gets more complex when there is punctuations or special symbols.

Tokenization can have important impact on the performance of downstream learning algorithms.

 Using character sequences (or even byte sequences) we impose mininal prior knowledge on what is a word. Given enough data, the model can probably figure out a reasonable unit of the characters based on their frequencies. But one downside in this approach is that the sequence is now much longer, and the computation time of many algorithms grows with sequence length, which will be expensive for large-scale training.

 A middle ground is to use subword, a unit larger than characters but smaller than words. This is commonly used in large-scale models nowadays. The BPE algorithms is a simple technique from data compression. The basic idea is to replace commonly occured sequences with another symbol.

Preprocessing: tokenization

Goal: Splitting a string of text s to a sequence of tokens [x1, . . . , xn].

Language-specific solutions

I Regular expression: “I didn’t watch the movie”. → [“I”, “did”, “n’t”, “watch”,
“the”, “movie”, “.”]

I Special cases: U.S., Ph.D. etc.

I Dictionary / sequence labeler: “我没有去看电影。” → [“我”, “没有”, “去”,
“看”, “电影”, “。”]

General solutions: don’t split by words

I Characters: [“u”, “n”, “a”, “f”, “f”, “a”, “b”, “l”, “e”] (pros and cons?)

I Subword (e.g., byte pair encoding): [“un”, “aff”, “able#”] [board]

5 / 32

 Note that for contractions like didn't. We can tokenize it into either did n't or didn 't. Both are okay as long as it's consistent. English tokenization gets more complex when there is punctuations or special symbols.

Tokenization can have important impact on the performance of downstream learning algorithms.

 Using character sequences (or even byte sequences) we impose mininal prior knowledge on what is a word. Given enough data, the model can probably figure out a reasonable unit of the characters based on their frequencies. But one downside in this approach is that the sequence is now much longer, and the computation time of many algorithms grows with sequence length, which will be expensive for large-scale training.

 A middle ground is to use subword, a unit larger than characters but smaller than words. This is commonly used in large-scale models nowadays. The BPE algorithms is a simple technique from data compression. The basic idea is to replace commonly occured sequences with another symbol.

Preprocessing: tokenization

Goal: Splitting a string of text s to a sequence of tokens [x1, . . . , xn].

Language-specific solutions

I Regular expression: “I didn’t watch the movie”. → [“I”, “did”, “n’t”, “watch”,
“the”, “movie”, “.”]

I Special cases: U.S., Ph.D. etc.

I Dictionary / sequence labeler: “我没有去看电影。” → [“我”, “没有”, “去”,
“看”, “电影”, “。”]

General solutions: don’t split by words

I Characters: [“u”, “n”, “a”, “f”, “f”, “a”, “b”, “l”, “e”] (pros and cons?)

I Subword (e.g., byte pair encoding): [“un”, “aff”, “able#”] [board]

5 / 32

 Note that for contractions like didn't. We can tokenize it into either did n't or didn 't. Both are okay as long as it's consistent. English tokenization gets more complex when there is punctuations or special symbols.

Tokenization can have important impact on the performance of downstream learning algorithms.

 Using character sequences (or even byte sequences) we impose mininal prior knowledge on what is a word. Given enough data, the model can probably figure out a reasonable unit of the characters based on their frequencies. But one downside in this approach is that the sequence is now much longer, and the computation time of many algorithms grows with sequence length, which will be expensive for large-scale training.

 A middle ground is to use subword, a unit larger than characters but smaller than words. This is commonly used in large-scale models nowadays. The BPE algorithms is a simple technique from data compression. The basic idea is to replace commonly occured sequences with another symbol.

Classification: problem formulation

I Input: a sequence of tokens x = (x1, . . . xn) where xi ∈ V.

I Output: binary label y ∈ {0, 1}.

I Probabilistic model:

f (x) =

{
1 if pθ(y = 1 | x) > 0.5

0 otherwise
,

where pθ is a distribution parametrized by θ ∈ Θ.

I Question: how to choose pθ?

6 / 32

 Choosing p is the modeling part where our task-specific knowledge comes in: how should the label depend on the text.

Model p(y | x)
How to write a review:

1. Decide the sentiment by flipping a coin: p(y)

2. Generate word sequentially conditioned on the sentiment p(x | y)

p(y) =

Bernoulli(α)

(1)

p(x | y) =

n∏
i=1

p(xi | y) (independent assumption)

(2)

=

n∏
i=1

Categorical(θ1,y , . . . , θ|V|,y︸ ︷︷ ︸
sum to 1

)

(3)

Bayes rule

p(y | x) =
p(x | y)p(y)

p(x)
=

p(x | y)p(y)∑
y∈Y p(x | y)p(y)

7 / 32

Model p(y | x)
How to write a review:

1. Decide the sentiment by flipping a coin: p(y)

2. Generate word sequentially conditioned on the sentiment p(x | y)

p(y) =

Bernoulli(α)

(1)

p(x | y) =

n∏
i=1

p(xi | y) (independent assumption)

(2)

=

n∏
i=1

Categorical(θ1,y , . . . , θ|V|,y︸ ︷︷ ︸
sum to 1

)

(3)

Bayes rule

p(y | x) =
p(x | y)p(y)

p(x)
=

p(x | y)p(y)∑
y∈Y p(x | y)p(y)

7 / 32

Model p(y | x)
How to write a review:

1. Decide the sentiment by flipping a coin: p(y)

2. Generate word sequentially conditioned on the sentiment p(x | y)

p(y) = Bernoulli(α) (1)

p(x | y) =

n∏
i=1

p(xi | y) (independent assumption)

(2)

=

n∏
i=1

Categorical(θ1,y , . . . , θ|V|,y︸ ︷︷ ︸
sum to 1

)

(3)

Bayes rule

p(y | x) =
p(x | y)p(y)

p(x)
=

p(x | y)p(y)∑
y∈Y p(x | y)p(y)

7 / 32

Model p(y | x)
How to write a review:

1. Decide the sentiment by flipping a coin: p(y)

2. Generate word sequentially conditioned on the sentiment p(x | y)

p(y) = Bernoulli(α) (1)

p(x | y) =
n∏

i=1

p(xi | y) (independent assumption) (2)

=

n∏
i=1

Categorical(θ1,y , . . . , θ|V|,y︸ ︷︷ ︸
sum to 1

)

(3)

Bayes rule

p(y | x) =
p(x | y)p(y)

p(x)
=

p(x | y)p(y)∑
y∈Y p(x | y)p(y)

7 / 32

Model p(y | x)
How to write a review:

1. Decide the sentiment by flipping a coin: p(y)

2. Generate word sequentially conditioned on the sentiment p(x | y)

p(y) = Bernoulli(α) (1)

p(x | y) =
n∏

i=1

p(xi | y) (independent assumption) (2)

=
n∏

i=1

Categorical(θ1,y , . . . , θ|V|,y︸ ︷︷ ︸
sum to 1

) (3)

Bayes rule

p(y | x) =
p(x | y)p(y)

p(x)
=

p(x | y)p(y)∑
y∈Y p(x | y)p(y)

7 / 32

Model p(y | x)
How to write a review:

1. Decide the sentiment by flipping a coin: p(y)

2. Generate word sequentially conditioned on the sentiment p(x | y)

p(y) = Bernoulli(α) (1)

p(x | y) =
n∏

i=1

p(xi | y) (independent assumption) (2)

=
n∏

i=1

Categorical(θ1,y , . . . , θ|V|,y︸ ︷︷ ︸
sum to 1

) (3)

Bayes rule

p(y | x) =
p(x | y)p(y)

p(x)
=

p(x | y)p(y)∑
y∈Y p(x | y)p(y)

7 / 32

Naive Bayes models

Naive Bayes assumption

The input features are conditionally independent given the label:

p(x | y) =
n∏

i=1

p(xi | y) .

I A strong assumption, but works surprisingly well in practice.

I p(xi | y) doesn’t have to be a categorical distribution (e.g., Gaussian distribution)

Inference: y = arg maxy∈Y pθ(y | x) [board]

8 / 32

 Now that we have figured out the modeling and inference problem, the next problem is learning the parameters.

Maximum likelihood estimation

Task: estimate parameters θ of a distribution p(y ; θ) given i.i.d. samples
D = (y1, . . . , yN) from the distribution.

Goal: find the parameters that make the observed data most probable.

Likelihood function of θ given D:

L(θ;D)
def
= p(D; θ) =

N∏
i=1

p(yi ; θ) .

Maximum likelihood estimator:

θ̂ = arg max
θ∈Θ

L(θ;D) = arg max
θ∈Θ

N∑
i=1

log p(yi ; θ) (4)

9 / 32

To make ``most probable'' more precise, we define the likelihood function of the parameters to be the probability of the data given by the model.

Why can we write the joint distribution as the product? Independent assumption from iid.

Now it's reduced to an optimization problem.

Maximum likelihood estimation

Task: estimate parameters θ of a distribution p(y ; θ) given i.i.d. samples
D = (y1, . . . , yN) from the distribution.

Goal: find the parameters that make the observed data most probable.

Likelihood function of θ given D:

L(θ;D)
def
= p(D; θ) =

N∏
i=1

p(yi ; θ) .

Maximum likelihood estimator:

θ̂ = arg max
θ∈Θ

L(θ;D) = arg max
θ∈Θ

N∑
i=1

log p(yi ; θ) (4)

9 / 32

To make ``most probable'' more precise, we define the likelihood function of the parameters to be the probability of the data given by the model.

Why can we write the joint distribution as the product? Independent assumption from iid.

Now it's reduced to an optimization problem.

MLE and ERM

ERM:

min
N∑
i=1

`(x (i), y (i), θ)

MLE:

max
N∑
i=1

log p(y (i) | x (i); θ)

What’s the connection between MLE and ERM?

MLE is equivalent to ERM with the negative log-likelihood (NLL) loss function:

`NLL(x (i), y (i), θ)
def
= − log p(y (i) | x (i); θ)

10 / 32

MLE and ERM

ERM:

min
N∑
i=1

`(x (i), y (i), θ)

MLE:

max
N∑
i=1

log p(y (i) | x (i); θ)

What’s the connection between MLE and ERM?

MLE is equivalent to ERM with the negative log-likelihood (NLL) loss function:

`NLL(x (i), y (i), θ)
def
= − log p(y (i) | x (i); θ)

10 / 32

MLE and ERM

ERM:

min
N∑
i=1

`(x (i), y (i), θ)

MLE:

max
N∑
i=1

log p(y (i) | x (i); θ)

What’s the connection between MLE and ERM?

MLE is equivalent to ERM with the negative log-likelihood (NLL) loss function:

`NLL(x (i), y (i), θ)
def
= − log p(y (i) | x (i); θ)

10 / 32

MLE for our Naive Bayes model

[board]

11 / 32

MLE solution for our Naive Bayes model

count(w , y)
def
= frequency of w in documents with label y

pMLE(w | y) =
count(w , y)∑

w∈V count(w , y)

= how often the word occur in positive/negative documents

pMLE(y = k) =

∑N
i=1 I

(
y (i) = k

)
N

= fraction of positive/negative documents

Smoothing: reserve probability mass for unseen words

p(w | y) =
α + count(w , y)∑

w∈V count(w , y) + α|V|

Laplace smoothing: α = 1

12 / 32

 How well would this model generalize to unseen documents? What if we have a word that's not seen during training?

MLE solution for our Naive Bayes model

count(w , y)
def
= frequency of w in documents with label y

pMLE(w | y) =
count(w , y)∑

w∈V count(w , y)

= how often the word occur in positive/negative documents

pMLE(y = k) =

∑N
i=1 I

(
y (i) = k

)
N

= fraction of positive/negative documents

Smoothing: reserve probability mass for unseen words

p(w | y) =
α + count(w , y)∑

w∈V count(w , y) + α|V|

Laplace smoothing: α = 1
12 / 32

 How well would this model generalize to unseen documents? What if we have a word that's not seen during training?

Feature design

Naive Bayes doesn’t have to use single words as features

I Lexicons, e.g., LIWC.

I Task-specific features, e.g., is the email subject all caps.

I Bytes and characters, e.g., used in language ID detection.

13 / 32

 Char/byte NB model is a very fast and effective language ID detector (e.g., google translate).

Summary of Naive Bayes models

I Modeling: the conditional indepedence assumption simplifies the problem

I Learning: MLE (or ERM with negative log-likelihood loss)

I Inference: very fast (adding up scores of each word)

14 / 32

Table of Contents

Generative models: naive Bayes

Discriminative models: logistic regression

Regularization, model selection, evaluation

15 / 32

Discriminative models

Idea: directly model the conditional distribution p(y | x)

generative models discriminative models

modeling joint: p(x , y) conditional: p(y | x)

assumption on y yes yes

assumption on x yes no

development generative story feature extractor

16 / 32

 In Naive Bayes model, we used Bayes rule to get p(yx) given p(xy) and the class prior p(y). But one question here is, if p(yx) is what we are ultimately interested in, why bother modeling the data likelihood and the prior as opposed to directly modeling p(yx).

Discriminative models

Idea: directly model the conditional distribution p(y | x)

generative models discriminative models

modeling joint: p(x , y) conditional: p(y | x)

assumption on y yes yes

assumption on x yes no

development generative story feature extractor

16 / 32

 In Naive Bayes model, we used Bayes rule to get p(yx) given p(xy) and the class prior p(y). But one question here is, if p(yx) is what we are ultimately interested in, why bother modeling the data likelihood and the prior as opposed to directly modeling p(yx).

Model p(y | x)

How to model p(y | x)?

y is a Bernoulli variable:

p(y | x) = αy (1− α)(1−y)

Bring in x :
p(y | x) = h(x)y (1− h(x))(1−y) h(x) ∈ [0, 1]

Parametrize h(x) using a linear function:

h(x) = w · φ(x) + b φ : X → Rd

Problem: h(x) ∈ R (score)

17 / 32

Model p(y | x)

How to model p(y | x)?

y is a Bernoulli variable:

p(y | x) = αy (1− α)(1−y)

Bring in x :
p(y | x) = h(x)y (1− h(x))(1−y) h(x) ∈ [0, 1]

Parametrize h(x) using a linear function:

h(x) = w · φ(x) + b φ : X → Rd

Problem: h(x) ∈ R (score)

17 / 32

Model p(y | x)

How to model p(y | x)?

y is a Bernoulli variable:

p(y | x) = αy (1− α)(1−y)

Bring in x :
p(y | x) = h(x)y (1− h(x))(1−y) h(x) ∈ [0, 1]

Parametrize h(x) using a linear function:

h(x) = w · φ(x) + b φ : X → Rd

Problem: h(x) ∈ R (score)

17 / 32

Logistic regression
Map w · φ(x) ∈ R to a probability by the logistic function

p(y = 1 | x ;w) =
1

1 + e−w ·φ(x)
(y ∈ {0, 1})

p(y = k | x ;w) =
ewk ·φ(x)∑
i∈Y e

wi ·φ(x)
(y ∈ {1, . . . ,K}) “softmax”

18 / 32

 Note that in multiclass classification setting, there is one w for each class.

Inference

ŷ = arg max
k∈Y

p(y = k | x ;w) (5)

= arg max
k∈Y

ewk ·φ(x)∑
i∈Y e

wi ·φ(x)
(6)

= arg max
k∈Y

ewk ·φ(x) (7)

= arg max
k∈Y

wk · φ(x)︸ ︷︷ ︸
score for class k

(8)

19 / 32

MLE for logistic regression

[board]

I Likelihood function is concave

I No closed-form solution

I Use gradient ascent

20 / 32

LR is probabilisti, so we can still do MLE.

MLE for logistic regression

[board]

I Likelihood function is concave

I No closed-form solution

I Use gradient ascent

20 / 32

LR is probabilisti, so we can still do MLE.

BoW representation
Feature extractor: φ : Vn → Rd .

Idea: a sentence is the “sum” of words.

Example:

V = {the, a, an, in, for, penny, pound}
sentence = in for a penny, in for a pound

x = (in, for, a, penny, in, for, a, pound)

φBoW(x) =
n∑

i=1

φone-hot(xi)

[board]

21 / 32

Compare with naive Bayes

I Our naive Bayes model (xi ∈ {1, . . . , |V|}):

Xi | Y = y ∼ Categorical(θ1,y , . . . , θ|V|,y) .

I The naive Bayes generative story produces a BoW vector following a multinomial
distribution:

φBoW(X) | Y = y ∼ Multinomial(θ1,y , . . . , θ|V|,y , n) .

I Both multinomial naive Bayes and logistic regression learn a linear separator
w · φBoW(x) + b = 0.

Question: what’s the advantage of using logistic regression?

22 / 32

 In this sense, NB is trying to model the BoW feature vector.

 In addition, they both learn a linear predictor which simply sums the score of each word at inference time. For NB, w is log.

Compare with naive Bayes

I Our naive Bayes model (xi ∈ {1, . . . , |V|}):

Xi | Y = y ∼ Categorical(θ1,y , . . . , θ|V|,y) .

I The naive Bayes generative story produces a BoW vector following a multinomial
distribution:

φBoW(X) | Y = y ∼ Multinomial(θ1,y , . . . , θ|V|,y , n) .

I Both multinomial naive Bayes and logistic regression learn a linear separator
w · φBoW(x) + b = 0.

Question: what’s the advantage of using logistic regression?

22 / 32

 In this sense, NB is trying to model the BoW feature vector.

 In addition, they both learn a linear predictor which simply sums the score of each word at inference time. For NB, w is log.

Compare with naive Bayes

I Our naive Bayes model (xi ∈ {1, . . . , |V|}):

Xi | Y = y ∼ Categorical(θ1,y , . . . , θ|V|,y) .

I The naive Bayes generative story produces a BoW vector following a multinomial
distribution:

φBoW(X) | Y = y ∼ Multinomial(θ1,y , . . . , θ|V|,y , n) .

I Both multinomial naive Bayes and logistic regression learn a linear separator
w · φBoW(x) + b = 0.

Question: what’s the advantage of using logistic regression?

22 / 32

 In this sense, NB is trying to model the BoW feature vector.

 In addition, they both learn a linear predictor which simply sums the score of each word at inference time. For NB, w is log.

Feature extractor

Logistic regression allows for richer features.

Define each feature as a function φi : X → R.

φ1(x) =

{
1 x contains “happy”

0 otherwise
,

φ2(x) =

{
1 x contains words with suffix “yyyy”

0 otherwise
.

In practice, use a dictionary

feature vector["prefix=un+suffix=ing"] = 1

23 / 32

 With NB, we can still include these features as variables, but we'll have to think about modeling them as a parametrized distribution and handling the sparsity problem during estimation.

Feature vectors for multiclass classification
Multinomial logistic regression

p(y = k | x ;w) =
ewk ·φ(x)∑
i∈Y e

wi ·φ(x)
(y ∈ {1, . . . ,K})

p(y = k | x ;w) =
ew ·Ψ(x ,k)∑
i∈Y e

w ·Ψ(x ,i)
(y ∈ {1, . . . ,K})

scores of each class → compatibility of an input and a label

Multivector construction of Ψ(x , y):

Ψ(x , 1)
def
=

 0︸︷︷︸
y = 0

, φ(x)︸︷︷︸
y = 1

, . . . , 0︸︷︷︸
y = K



24 / 32

Feature vectors for multiclass classification
Multinomial logistic regression

p(y = k | x ;w) =
ewk ·φ(x)∑
i∈Y e

wi ·φ(x)
(y ∈ {1, . . . ,K})

p(y = k | x ;w) =
ew ·Ψ(x ,k)∑
i∈Y e

w ·Ψ(x ,i)
(y ∈ {1, . . . ,K})

scores of each class → compatibility of an input and a label

Multivector construction of Ψ(x , y):

Ψ(x , 1)
def
=

 0︸︷︷︸
y = 0

, φ(x)︸︷︷︸
y = 1

, . . . , 0︸︷︷︸
y = K


24 / 32

N-gram features

Potential problems with the the BoW representation?

N-gram features:

in for a penny , in for a pound

I Unigram: in, for, a, ...

I Bigram: in/for, for/a, a/penny, ...

I Trigram: in/for/a, for/a/penny, ...

What’s the pros/cons of using higher order n-grams?

25 / 32

 BoW problem: new york, don't like

N-gram features

Potential problems with the the BoW representation?

N-gram features:

in for a penny , in for a pound

I Unigram: in, for, a, ...

I Bigram: in/for, for/a, a/penny, ...

I Trigram: in/for/a, for/a/penny, ...

What’s the pros/cons of using higher order n-grams?

25 / 32

 BoW problem: new york, don't like

Table of Contents

Generative models: naive Bayes

Discriminative models: logistic regression

Regularization, model selection, evaluation

26 / 32

Error decomposition

(ignoring optimization error)

risk(h)− risk(h∗) = approximation error + estimation error

[board]

Larger hypothesis class: approximation error ↓, estimation error ↑

Smaller hypothesis class: approximation error ↑, estimation error ↓

How to control the size of the hypothesis class?

27 / 32

Error decomposition

(ignoring optimization error)

risk(h)− risk(h∗) = approximation error + estimation error

[board]

Larger hypothesis class: approximation error ↓, estimation error ↑

Smaller hypothesis class: approximation error ↑, estimation error ↓

How to control the size of the hypothesis class?

27 / 32

Reduce the dimensionality

Linear predictors: H =
{
w : w ∈ Rd

}
Reduce the number of features:
[discussion]

Other predictors:

I Depth of decision trees

I Degree of polynomials

I Number of decision stumps in boosting

28 / 32

 stopwords, stemming, filter by frequency

 feature selection (fwd/bwd), L1

Reduce the dimensionality

Linear predictors: H =
{
w : w ∈ Rd

}
Reduce the number of features:
[discussion]

Other predictors:

I Depth of decision trees

I Degree of polynomials

I Number of decision stumps in boosting

28 / 32

 stopwords, stemming, filter by frequency

 feature selection (fwd/bwd), L1

Regularization

Reduce the “size” of w :

min
w

1

N

N∑
i=1

L(x (i), y (i),w)︸ ︷︷ ︸
average loss

+
λ

2
‖w‖2

2︸ ︷︷ ︸
`2 norm

Why is small norm good? Small change in the input doesn’t cause large change in the
output.

[board]

29 / 32

Gradient descent with `2 regularization

Run SGD on

min
w

1

N

N∑
i=1

L(x (i), y (i),w)︸ ︷︷ ︸
average loss

+
λ

2
‖w‖2

2︸ ︷︷ ︸
`2 norm

Also called weight decay in the deep learning literature:

w ← w − η(∇wL(x , y ,w) + λw)

Shrink w in each update.

30 / 32

Hyperparameter tuning

Hyperparameters: parameters of the learning algorithm (not the model)

Example: use MLE to learn a logistic regression model using BoW features

How do we select hyperparameters?

Pick those minimizing the training error?

Pick those minimizing the test error?

31 / 32

What are the hyperparams in this case?

 Dillema: training error overfit. test error don't know.

Hyperparameter tuning

Hyperparameters: parameters of the learning algorithm (not the model)

Example: use MLE to learn a logistic regression model using BoW features

How do we select hyperparameters?

Pick those minimizing the training error?

Pick those minimizing the test error?

31 / 32

What are the hyperparams in this case?

 Dillema: training error overfit. test error don't know.

Hyperparameter tuning

Hyperparameters: parameters of the learning algorithm (not the model)

Example: use MLE to learn a logistic regression model using BoW features

How do we select hyperparameters?

Pick those minimizing the training error?

Pick those minimizing the test error?

31 / 32

What are the hyperparams in this case?

 Dillema: training error overfit. test error don't know.

Validation

Validation set: a subset of the training data reserved for tuning the learning algorithm
(also called the development set).

K -fold cross validation
[board]

It’s important to look at the data and errors during development, but not the test set.

32 / 32

Validation

Validation set: a subset of the training data reserved for tuning the learning algorithm
(also called the development set).

K -fold cross validation
[board]

It’s important to look at the data and errors during development, but not the test set.

32 / 32

	Generative models: naive Bayes
	Discriminative models: logistic regression
	Regularization, model selection, evaluation

