Machine Learning Basics

He He

New York University

September 8, 2021

Table of Contents

Generalization

Optimization

Loss functions

Rule-based approach

Figure: Fig 1-1 from *Hands-On Machine Learning with Scikit-Learn and TensorFlow* by Aurelien Geron (2017).

Machine learning approach

Figure: Fig 1-2 from *Hands-On Machine Learning with Scikit-Learn and TensorFlow* by Aurelien Geron (2017).

Example: spam filter

Rules

Contains "Viagra" Contains "Rolex" Subject line is all caps

Learning from data

. . .

- 1. Collect emails labeled as spam or non-spam
- 2. (Design features)
- 3. Learn a predictor

Pros and cons?

Keys to success

 Availability of large amounts of (annotated) data Scraping, crowdsourcing, expert annotation

- Generalize to unseen samples (test set)
 - Assume that there is a (unknown) data generating distribution: ${\cal D}$ over ${\cal X}\times {\cal Y}$
 - Training set: *m* samples from $\mathcal{D}\left\{(x^{(i)}, y^{(i)})\right\}_{i=1}^{m}$
 - ▶ Learn model $h: \mathcal{X} \to \mathcal{Y}$
 - ► Goal: minimize $\mathbb{E}_{(x,y)\sim D}$ [error(h, x, y)] (estimated on the test set)

Empirical risk minimization (ERM)

- Our goal is to minimize the expected loss (risk), but it cannot be computed (why?).
- How can we estimate it?

Empirical risk minimization (ERM)

- Our goal is to minimize the expected loss (risk), but it cannot be computed (why?).
- How can we estimate it?
- Minimize the average loss (empirical risk) on the training set

1

$$\min_{h} \frac{1}{m} \sum_{i=1}^{m} \operatorname{error}(h, x^{(i)}, y^{(i)})$$

▶ In the limit of infinite samples, empirical risk converges to risk (LLN).

Given limited data though, can we generalize by ERM?

Overfitting vs underfitting

- > Trivial solution to (unconstrained) ERM: memorize the data points
- Need to extrapolate information from one part of the input space to unobserved parts!

Overfitting vs underfitting

- > Trivial solution to (unconstrained) ERM: memorize the data points
- Need to extrapolate information from one part of the input space to unobserved parts!

- ▶ Constrain the prediction function to a subset, i.e. a **hypothesis space** $h \in \mathcal{H}$.
- Trade-off between complexity of \mathcal{H} (approximiation error) and estimation error
- \blacktriangleright Question for us: how to choose a good ${\cal H}$ for certain domains

Table of Contents

Generalization

Optimization

Loss functions

Overall picture

- 1. Obtain training data $D_{\text{train}} = \{(x^{(i)}, y^{(i)})\}_{i=1}^{n}$.
- 2. Choose a loss function L and a hypothesis class \mathcal{H} (domain knowledge).
- 3. Learn a predictor by minimizing the empirical risk (optimization).

Gradient descent

- The gradient of a function F at a point w is the direction of fastest increase in the function value
- To minimze F(w), move in the opposite direction

$$w \leftarrow w - \eta \nabla_w F(w)$$

Converge to a local minimum (also global minimum if F(w) is convex) with carefully chosen step sizes

Convex optimization (unconstrained)

▶ A function $f : \mathbb{R}^d \to \mathbb{R}$ is convex if for all $x, y \in \mathbb{R}^d$ and $\theta \in [0, 1]$ we have

$$f(heta x + (1 - heta)y) \leq heta f(x) + (1 - heta)f(y)$$
.

- f is concave if -f is convex.
- Locally optimal points are also globally optimal.
- For unconstrained problems, x is optimal iff $\nabla f(x) = 0$.

Stochastic gradient descent

Gradient descent (GD) for ERM

$$w \leftarrow w - \eta \nabla_w \underbrace{\sum_{i=1}^n L(x^{(i)}, y^{(i)}, f_w)}_{\text{training loss}}$$

Stochastic gradient descent

Gradient descent (GD) for ERM

$$w \leftarrow w - \eta \nabla_w \underbrace{\sum_{i=1}^n L(x^{(i)}, y^{(i)}, f_w)}_{\text{training loss}}$$

Stochastic gradient descent (SGD): take noisy but faster steps

For each
$$(x, y) \in D_{\text{train}}$$
:
 $w \leftarrow w - \eta \nabla_w \underbrace{L(x, y, f_w)}_{\text{example loss}}$

 $\mathsf{GD} \mathsf{ vs} \mathsf{ SGD}$

Figure: Minimize
$$1.25(x+6)^2 + (y-8)^2$$

(Figure from "Understanding Machine Learning: From Theory to Algorithms".)

Stochastic gradient descent

Each update is efficient in both time and space

Can be slow to converge

Popular in large-scale ML, including non-convex problems

In practice,

Randomly sample examples. Fixed or diminishing step sizes, e.g. 1/t, $1/\sqrt{t}$. Stop when objective does not improve.

Table of Contents

Generalization

Optimization

Loss functions

Zero-one loss

- ▶ Binary classification: $y \in \{+1, -1\}$.
 - ▶ Model: f_w : $\mathcal{X} \to \mathsf{R}$ parametrized by $w \in \mathsf{R}^d$.
 - Output prediction: $sign(f_w(x))$.
- Zero-one (0-1) loss

$$L(x, y, f_w) = \mathbb{I}\left[\operatorname{sign}(f_w(x)) = y\right] = \mathbb{I}\left[yf_w(x) \le 0\right]$$
(1)

Zero-one loss

- ▶ Binary classification: $y \in \{+1, -1\}$.
 - ▶ Model: f_w : $\mathcal{X} \to \mathsf{R}$ parametrized by $w \in \mathsf{R}^d$.
 - Output prediction: $sign(f_w(x))$.
- Zero-one (0-1) loss

$$L(x, y, f_w) = \mathbb{I}\left[\operatorname{sign}(f_w(x)) = y\right] = \mathbb{I}\left[yf_w(x) \le 0\right]$$
(1)

Not feasible for ERM

Hinge loss

$$L(x, y, f_w) = \max(1 - yf_w(x), 0)$$

- Loss is zero if margin is larger than 1
- \blacktriangleright Not differentiable at margin = 1

• Subgradient:
$$\{g: f(x) \ge x_0 + g^T(x - x_0)\}$$

Logistic loss

$$L(x, y, f_w) = \log(1 + e^{-yf_w(x)})$$

► Differentiable

Always wants more margin (loss is never 0)

- Bias-complexity trade-off: choose hypothesis class based on prior knowledge
- Learning algorithm: empirical risk minimization
- Optimization: stochastic gradient descent