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Rule-based approach

Figure: Fig 1-1 from Hands-On Machine Learning with Scikit-Learn and TensorFlow by
Aurelien Geron (2017).
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Machine learning approach

Figure: Fig 1-2 from Hands-On Machine Learning with Scikit-Learn and TensorFlow by
Aurelien Geron (2017).
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Example: spam filter

I Rules

Contains “Viagra”
Contains “Rolex”
Subject line is all caps
...

I Learning from data

1. Collect emails labeled as spam or non-spam
2. (Design features)
3. Learn a predictor

Pros and cons?
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Keys to success

I Availability of large amounts of (annotated) data

Scraping, crowdsourcing, expert annotation

I Generalize to unseen samples (test set)

I Assume that there is a (unknown) data generating distribution: D over
X × Y

I Training set: m samples from D
{

(x (i), y (i))
}m
i=1

I Learn model h : X → Y
I Goal: minimize E(x ,y)∼D [error(h, x , y)] (estimated on the test set)
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Empirical risk minimization (ERM)

I Our goal is to minimize the expected loss (risk), but it cannot be computed
(why?).

I How can we estimate it?

I Minimize the average loss (empirical risk) on the training set

min
h

1

m

m∑
i=1

error(h, x (i), y (i))

I In the limit of infinite samples, empirical risk converges to risk (LLN).

I Given limited data though, can we generalize by ERM?
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Overfitting vs underfitting

I Trivial solution to (unconstrained) ERM: memorize the data points

I Need to extrapolate information from one part of the input space to unobserved
parts!

I Constrain the prediction function to a subset, i.e. a hypothesis space h ∈ H.

I Trade-off between complexity of H (approximiation error) and estimation error

I Question for us: how to choose a good H for certain domains
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Overall picture

1. Obtain training data Dtrain =
{

(x (i), y (i))
}n
i=1

.

2. Choose a loss function L and a hypothesis class H (domain knowledge).

3. Learn a predictor by minimizing the empirical risk (optimization).
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Gradient descent

I The gradient of a function F at a point w is the direction of fastest increase in
the function value

I To minimze F (w), move in the opposite direction

w ← w − η∇wF (w)

I Converge to a local minimum (also global minimum if F (w) is convex) with
carefully chosen step sizes
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Convex optimization (unconstrained)

I A function f : Rd → R is convex if for all x , y ∈ Rd and θ ∈ [0, 1] we have

f (θx + (1− θ)y) ≤ θf (x) + (1− θ)f (y) .

I f is concave if −f is convex.

I Locally optimal points are also globally optimal.

I For unconstrained problems, x is optimal iff ∇f (x) = 0.
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Stochastic gradient descent

I Gradient descent (GD) for ERM

w ← w − η∇w

n∑
i=1

L(x (i), y (i), fw )︸ ︷︷ ︸
training loss

I Stochastic gradient descent (SGD): take noisy but faster steps

For each (x , y) ∈ Dtrain :

w ← w − η∇w L(x , y , fw )︸ ︷︷ ︸
example loss
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GD vs SGD

Figure: Minimize 1.25(x + 6)2 + (y − 8)2

(Figure from “Understanding Machine Learning: From Theory to Algorithms”.)
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Stochastic gradient descent

I Each update is efficient in both time and space

I Can be slow to converge

I Popular in large-scale ML, including non-convex problems

I In practice,

Randomly sample examples.
Fixed or diminishing step sizes, e.g. 1/t, 1/

√
t.

Stop when objective does not improve.
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Zero-one loss
I Binary classification: y ∈ {+1,−1}.

I Model: fw : X → R parametrized by w ∈ Rd .
I Output prediction: sign(fw (x)).

I Zero-one (0-1) loss

L(x , y , fw ) = I [sign(fw (x)) = y ] = I [yfw (x) ≤ 0] (1)

Not feasible for ERM
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Hinge loss

L(x , y , fw ) = max(1− yfw (x), 0)

I Loss is zero if margin is larger than 1

I Not differentiable at margin = 1

I Subgradient:
{
g : f (x) ≥ x0 + gT (x − x0)

}
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Logistic loss

L(x , y , fw ) = log(1 + e−yfw (x))

I Differentiable

I Always wants more margin (loss is never 0)
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Summary

I Bias-complexity trade-off: choose hypothesis class based on prior knowledge

I Learning algorithm: empirical risk minimization

I Optimization: stochastic gradient descent
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