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1 Expectation Maximization

The Expectation Maximization algorithm proceeds as follows:

1. Random initialization: θold ← θ0

2. Repeat until convergence

(a) q(z)← arg maxq L(q, θold); (E-step: q∗(z) = p(z | x; θold))

(b) θnew ← arg maxθ L(q∗, θ) (M-step)

In this problem, we will prove that the EM algorithm increases the marginal likelihood monotonically.

1. [1 points] Recall the E-step of the algorithm: q∗(z) = p(z | x; θold). Show that L(q∗, θold) =
log p(x; θold).
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2. [2 points] Recall the M-step of the algorithm: θnew = arg maxθ L(q∗, θ). Show that log p(x; θnew) ≥
log p(x; θold), or in other words, show that EM algorithm increases the marginal likelihood monotoni-
cally. You can use the result from the previous part here.
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2 POS Tagging

In this problem, you will build an English POS tagger using the given data. You just need to submit your
code.

2.1 Data

Datasets. There are two datasets under data.

1. Ice cream climatology dataset (ic). This is a synthetic toy dataset for you to test and debug your
code. We strongly encourage you to start with this easy dataset. The observations are the number of
ice cream cones eaten by Jason each day. The hidden states are the whether each day (C for cold and
H for hot). You will use ictrain for training and ictest for testing. However, this dataset is mainly
for debugging purposes and you don’t need to submit any code for it.

2. English POS tagging dataset (en). This dataset consists of word sequences and the POS tag for
each word. We use coarse English tags in this homework, i.e. only the first character of the original
tag is used, e.g., different types of nouns (NN, NNP, NNS) are reduced to simply nouns (N). The tagset
is described in Table 1. You will develop your model using entrain and endev. We will run you code
for training and testing on a hidden test set.

C Coordinating conjunction or Cardinal number
D Determiner
E Existential there
F Foreign word
I Preposition or subordinating conjunction
J Adjective
L List item marker (a., b., c., ...) (rare)
M Modal (could, would, must, can, might...)
N Noun
P Pronoun or Possessive ending (’s) or Predeterminer
R Adverb or Particle
S Symbol, mathematical (rare)
T The word to
U Interjection (rare)
V Verb
W wh-word (question word)

### Boundary between sentences , Comma
. Period
: Colon, semicolon, or dash
- Parenthesis
‘ Open quotation mark
’ Close quotation mark
$ Currency symbol

Table 1: Tags in the en dataset.

File format. Each line has a single word/tag pair separated by the / character. Punctuation marks count
as words. The special word ### is used for sentence boundaries, and is always tagged with ###. You can think
of it as the special start symbol * and the stop symbol STOP too. When you generate ### that represents a
decision to end a sentence (so ### = STOP). When you then generate the next tag, conditioning on ### as
the previous tag means that you’re at the beginning of a new sentence (so ### = STOP).
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2.2 Evaluation

We will evaluate your program based on the model’s accuracy and the training speed. However, we suggest
you print additional metrics during model debugging and development.

accuracy percentage of test tokens that received the corret tag, excluding the sentence boundary markers
###.

known word accuracy consider only tokens that appear in the training data.

novel word accuracy consider only tokens that do not appear in the training data, in which case the
model can only use the context to predict the tag.

2.3 Implementing the Tagger

Dependencies. Your code should run with python3. You can use any native python functions and the
numpy package. Please do not import additional libraries which will break the auto-grader.

Input/output. Implement a tagger that runs as follows (on the ic dataset):

python submission.py --train ictrain --test ictest

It reads in the training and test files, learns a HMM tagger, and writes a prediction file called output.
output should use the same format as the test file (i.e. each line has a single word/tag pair). We will run
your code to train a model and evaluate the predictions using output. (Note that during grading we may
randomize the tags in the test file, so please do not simply write the test file the program reads in.)

More instructions. Please create a function in your submission file as described below, which will be
used by the autograder to compute the accuracy.

def train and test(entrain,endev,entest)

The function should give an output file output.txt which is of the same format as all the files which were
provided to you (word/tag). It will be used as follows:

from submission import *

from eval import *

//generate output file

train and test(entrain,endev,entest)

accuracy = calculate accuracy(\gold label.txt",\output.txt")

Here entrain and endev are the training set and development set respectively. entest will be the test set
which will be used for testing your data. You can use eval.py to check if your output file is of the correct
format.

Key steps. You are free to implement the tagger however you want. Here are the suggested steps:

1. Read the training data and store the word-tag and tag-tag counts.

2. Compute the emission and transition probabilities in HMM.

3. Read the test data and compute the tag sequence that maximizes p(words, tags) given by the HMM.

4. Compute and print the accuracy on the test data and other metrics or statistics.

Make sure to do all computation in the log space.
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Check your implementation on the ic dataset. Implement a vanilla HMM tagger using unsmoothed
counts and Viterbi decoding covered in lecture 6. The program submission.py should produce an accuracy
of 87.88% or 90.91%. There are two accuracies because of arbitrary tie breaking during decoding. It may
seem to be a problem on this toy data, but it’s very rare to have two sequences with the same probabilities in
realistic datasets. Therefore, breaking ties arbitrarily is common in practice. Next, let’s improve the tagger
to make it work on the en dataset.

Smoothed probabilities. To make the tagger work on the real data, the first thing you need to implement
is smoothed probabilities. It’s common to encounter unseen word-tag and tag-tag pairs at test time. Without
smoothing, you might see nan warnings during inference. For example, you can use simple add-1 smoothing.

Pruning. Now, if you try to run the tagger on the en dataset, you may find that it’s pretty slow even with
our reduced coarse tagset. You can speed up the tagger by ignoring word-tag pairs that do not appear in the
training set. You can derive a tag dictionary from the training set that records the set of allowed tags for
each word, and only consider allowed tags for each word during viterbi decoding. For unseen words, all tags
are allowed. With pruning, we may miss the actual best tag sequence, but it would significantly improve the
decoding speed.

Unigram tagger. You can easily adapt the tagger to use unigram transtion probabilities p(yi), i.e. the
joint probability is

p(x, y) =

n∏
i=1

p(xi | yi)p(yi) .

This tagger is very fast because it essentially predicts the tag that maximizes p(yi | xi) for each word
separately. On endev, this baseline tagger gets an accuracy of 91.59% with add-1 smoothing.

Improving the tagger. The baseline unigram tagger is actually quite accurate with an accuracy of
91.59%. You bigram tagger should at least beat this baseline. Better accuracy or speed will get more
credits. Here are some possible improvements:

• In the baseline we used simple add-λ smoothing where λ = 1. You can try to tune λ by cross
validation. For transition probabilities, a better way is to use smoothing techniques we learned in
n-gram language models. (Note that the tag sequence is essentially modeled by a bigram language
model:

∏n
i=1 p(yi | yi−1).) For example, using interpolation we have

p(yi | yi−1) = λp̂(yi | yi−1) + (1− λ)p̂(yi) ,

where p̂ are the unsmoothed MLE estimates.

• You can use a higher-order HMM to consider wider tag context, e.g. use a trigram model for the tag
sequence:

n∏
i=1

p(yi | yi−2, yi−1) .

This will require changes to the Viterbi algorithm. Each cell in the lattice now represents a tag bigram,
so the runtime becomes O(n|Y|3). Read J&M 8.4.7 for more details.

• You may have noticed that the accuracy on novel words is much lower than the accuracy on known
words. The strongest source of information for guessing the part-of-speech of unknown words is mor-
phology, e.g. word suffix. Maybe the word “actuary” is a noun because it ends in “ry”, or because
“actuaries” appears in training data as a noun. Read J&M 8.4.9 for more details on how to build more
interesting emission models.

The state-of-the-art performance is around 97%. Note that the performance may not be improved even if
you implemented all the above techniques (correctly) because you only have around 100k words for training.
Also there is often a trade-off between accuracy and speed. Before you start to implement a technique, do
some error analysis to figure out where the performance falls short, e.g. should you improve accuracy on
open-class words or closed-class words, which component is taking the most of the time.
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2.4 Grading

We will run your program submission.py on a hidden test set and compute accuracy based on output

produced by your program. The file names must match. We will also evaluate the speed of your tagger in
wall clock time, which counts both training and inference time. To get full credit (5 points), your accuracy
should beat the baseline unigram tagger. The top 25% submissions in terms of accuracy will get 1 extra
point. The top 25% submissions in terms of speed will also get 1 extra point.
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