
CSCI-GA 2590: Natural Language Processing

Predicting Sequences

Name
NYU ID

Collaborators:
By turning in this assignment, I agree by the honor code of the College of Arts and Science at New York
University and declare that all of this is my own work.

Before you get started, please read the Submission section thoroughly.

Submission

Submission is done on Gradescope.

Written: When submitting the written parts, make sure to select all the pages that contain part of your
answer for that problem, or else you will not get credit. You can either directly type your solution between
the shaded environments in the released .tex file, or write your solution using pen or stylus. A .pdf file
must be submitted.
Programming: Questions marked with “coding” next to the assigned to the points require a coding part
in submission.py. Submit submission.py and we will run an autograder on Gradescope. You can use
functions in util.py. However, please do not import additional libraries (e.g. numpy, sklearn) that aren’t
mentioned in the assignment, otherwise the grader may crash and no credit will be given. You can run
test.py to test your code but you don’t need to submit it.

Problem 1: N-gram Language Models

In this problem, we will derive the MLE solution of n-gram language models. Recall that in n-gram language
models, we assume that a token only depends on n− 1 previous tokens, namely:

p(x1:m) =

m∏
i=1

p(xi | xi−n+1:i−1) ,

where xi ∈ V and x1:i denotes a sequence of i tokens x1, x2, . . . , xi. Note that we assume all sequences are
prepended with a special start token ∗ and appended with the stop token STOP, thus xi = ∗ if i < 1 and
xm = STOP. We model the conditional distribution p(xi | xi−n+1:i−1) by a categorical distribution with
parameters α:

p(w | c) = α[w, c] for w ∈ V, c ∈ Vn−1 .

Let D = {xi1:mi}
N
i=1 be our training set of N sequences, each of length mi.

1. [2 points] Write down the MLE objective for the n-gram model defined above. Note that we need to
add the constraint that the conditional probabilities sum to one given each context.

1

NYU ID Predicting Sequences September 29, 2021

2. [2 points] Recall that the method of Lagrange multipliers allows us to solve an optimization problem
with equality constraints by forming a Lagrangian function, which can be optimized without explicitly
parameterizing in terms of the constraints.

Given an optimization problem to maximize f(x) subject to the constraint g(x) = 0, we can express it
in the form of the Langrangian, which can be written as f(x)− λg(x).

Write down the Langrangian L(α, λ) for the MLE objective using the method of Lagrange multipliers.

CSCI-GA 2590: Natural Language Processing — Fall 2021 2

NYU ID Predicting Sequences September 29, 2021

3. [4 points] Find the solution for α. Define count(·) to be a function which maps a sequence to its
frequency in D. You can assume count(c) > 0 for c ∈ Vn−1. [HINT: The solution for α should be a
function of w and c. You can start by setting the partial derivative of L w.r.t. α[w, c]; and w.r.t. λc
to 0 and combining the two equations.]

CSCI-GA 2590: Natural Language Processing — Fall 2021 3

NYU ID Predicting Sequences September 29, 2021

Problem 2: Noise Contrastive Estimation

In this problem, we will explore efficient training of neural language models using noise-contrastive estimation.
Recall that in neural language modeling, the conditional probability p(w | c) is modeled by

pθ(w | c) =
exp(fθ(w, c))∑

w′∈V exp(fθ(w′, c))
, (1)

where w ∈ V is a token in the vocabulary, c ∈ C is some context, and fθ : V × C → R is a scoring function
indicating how compatible w and c are, e.g. a recurrent neural network.

1. [2 points] As usual, we use MLE to learn the parameters θ ∈ Rd. Show that the gradient of the log
likelihood for a single observation `(θ, w) is

∇θfθ(w, c)− Ew∼pθ [∇θfθ(w, c)] .

CSCI-GA 2590: Natural Language Processing — Fall 2021 4

NYU ID Predicting Sequences September 29, 2021

2. [2 points] Note that computing the gradient can be expensive due to summing over the vocabulary
when computing the expectation term, which arises from the normalizer (or the partition function) in
(1). One idea is to treat the normalizer as another parameter to estimate, i.e.

pθ(w | c) =
exp(fθ(w, c))

exp(zc)
,

where zc ∈ R for each context c. Explain why the MLE solution for zc doesn’t exist.

CSCI-GA 2590: Natural Language Processing — Fall 2021 5

NYU ID Predicting Sequences September 29, 2021

3. [3 points] The key idea in noise contrastive estimation is to reduce the density estimation problem to a
binary classification problem, i.e. deciding whether a word comes from the “true” distribution p(w | c)
or a “noise” distribution pn(w). Note that the noise distribution is context-independent. (This should
remind you of negative sampling in HW1.) Now consider a new data-generating process: Given context
c, with probability 1

k+1 we sample a word from p(w | c); with probability k
k+1 we sample a word from

pn(w) (k ∈ N). In other words, for each “true” sample, we generate k “fake” samples. Let Y be a
binary random variable indicating whether w is a true sample or a fake sample. Show that

p(Y = 1 | w, c) =
p(w | c)

p(w | c) + kpn(w)
.

[HINT: Use Bayes’ rule.]

CSCI-GA 2590: Natural Language Processing — Fall 2021 6

NYU ID Predicting Sequences September 29, 2021

4. [4 points] [Optional] We have reduced the problem of estimating p(w | c) to predicting whether a
sample (w, c) is true or fake. To learn a classifier, let’s parametrize p(Y = 1 | w, c). Note that pn is
known since it’s chosen by us, so we just need to parametrize p(w | c). Recall that we do not want
to compute the normalizer, so (1) is not an option. Instead, let’s model the normalizer as another
parameter. We can either explicitly model it as in (2), or directly learn a self-normalizing function (i.e.
zc = 0):

p̃θ(w | c) = exp(gθ(w, c)) .

Here we will proceed with the latter.1

For each word, we sample k fake words wn from pn(w). Thus the log likelihood for a word and its
noise samples is

`NCE(θ, w, k) = log pθ(Y = 1 | w, c) + kEw′∼pn log pθ(Y = 0 | w′, c) .

In practice, expectation over pn is approxmiated by k Monte Carlo samples.

Next, let’s analyze how this objective connects to the MLE objective. Let pD(w | c) be the true
distribution of words and consider the expected log likelihood. Let θ∗ be the solution of

max
θ∈Rd

Ew∼pD [`MLE(θ, w)]

and θ∗n be the solution of
max
θ∈Rd

Ew∼pD [`NCE(θ, w, k)] .

Assuming fθ and gθ have the same parametrization, show that when k → ∞, θ∗ and θ∗n satisfy the
same first order condition, i.e.

Ew∼pD [∇θfθ(w, c)|θ=θ∗] = Ew∼pθ∗ [∇θfθ(w, c)|θ=θ∗] ,

Ew∼pD
[
∇θgθ(w, c)|θ=θ∗n

]
= Ew∼p̃θ∗n

[
∇θgθ(w, c)|θ=θ∗n

]
.

1Empirically, it has been observed that setting zc to be a constant works just fine when gθ is a neural network.

CSCI-GA 2590: Natural Language Processing — Fall 2021 7

NYU ID Predicting Sequences September 29, 2021

Problem 3: Conditional Random Fields

In this problem, you will implement inference algorithms for the CRF model and compare different
sequence prediction models on synthetic data. You may want to go over the mxnet tutorial.ipynb

first before you start.

Environment setup: Follow instructions in README.md to set up the environment for running the
code.

(a) [2 points] To get started, take a look at the function generate dataset identity in util.py

and the class UnigramModel in model.py. Given x = (x1, . . . xn) where xi ∈ V, the model makes
an independent prediction at each step using only input at that step, i.e. p(yi | xi). Run python

test.py unigram to train a UnigramModel. It outputs the average hamming loss in the end. Let
y = (y1, . . . , yn) be the gold labels and ŷ = (ŷ1, . . . , ŷn) be the predicted labels, take a look at
hamming loss in submission.py and write down the loss function.

CSCI-GA 2590: Natural Language Processing — Fall 2021 8

NYU ID Predicting Sequences September 29, 2021

(b) [2 points] Take a look at the RNNModel in model.py. It uses a bi-directional LSTM to encode
x and makes independent predictions for each yi. This time let’s use the dataset generated
by generate dataset rnn. Compare the result by running python test.py unigram --data

rnn and python test.py rnn --data rnn. Which model has a lower error rate? Explain your
findings.

CSCI-GA 2590: Natural Language Processing — Fall 2021 9

NYU ID Predicting Sequences September 29, 2021

(c) [4 points, coding] Next, we are going to add a CRF layer on top of the RNN model (see
CRFRNNModel in model.py). Here we use the autograd function in MXNet to compute gradient
for us, so we only need to implement the forward pass (the counterpart of the forward algorithm).
Take a look at crf loss. The main challenge here is to compute the normalizer which sums over
all possible sequences:

normalizer =
∑
y∈Yn

exp [s(y)]

=
∑
y∈Yn

exp

[
n∑
i=1

u(yi) +

n∑
i=2

b(yi, yi−1)

]

where u and b are scores from the CRFRNNModel. Note that here we assume y1 = ∗ (the start
symbol). Implement compute normalizer using the logsumexp function in util.py. Your result
must match bruteforce normalizer. [HINT: You can compute all sums using array operations.
np.expand dims is very helpful here.]

See submission.py. No written submission.

(d) [4 points, coding] During inference, we will use Viterbi decoding to find

arg max
y∈Yn

s(y)

where s(y) =
∑n
i=1 u(yi)+

∑n
i=2 b(yi, yi−1). Implement viterbi decode. Your result must match

bruteforce decode. [HINT: You can compute all sums using array operations. np.expand dims

is very helpful here.]

See submission.py. No written submission.

CSCI-GA 2590: Natural Language Processing — Fall 2021 10

NYU ID Predicting Sequences September 29, 2021

(e) [3 points] We are ready to test the CRFRNN model now. Use the HMM data (take a look
at generate dataset hmm in util.py) and compare it with the RNN model by running python

test.py rnn --data hmm and python test.py crfrnn --data hmm. Compare the results. [NOTE:
This is an open-ended question. Discuss any findings you have is fine, e.g. runtime, error rate,
convergence rate etc.]

CSCI-GA 2590: Natural Language Processing — Fall 2021 11

