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Logistics

Plan for the rest of the semester

I Next week
I Guest lecture by Victoria Lin

Title: Conversation with Data: Where We Are and What’s Next
I Writing and presentation, summary and outlook

I Final week: project presentations
About 30 groups, 3 min talk + 1 min Q&A

I Deliverables
I HW4: CKY parser, due Dec 8
I Project report: due Dec 20
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Steven Colbert’s conversation with Siri

Colbert: What am I talking about tonight?
Siri: I would perfer not to say.
... ...
Colbert: For the love of God, the cameras are

on, give me something?
Siri: What kind of place are you looking

for? Camera stores or churches
... ...
Colbert: I don’t want to search for anything! I

want to write the show!
Siri: Searching the Web for “search for

anything. I want to write the shuf-
fle.”
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What went wrong?

What am I talking about tonight?

I Who is “I”?

I When is “tonight”?

I What’s the purpose of the talk?

I Who’s the audience?

Context is important!

I Where are you from? (nation, hometown, school?)

I (Ice or no ice? Co↵ee or tea? Morning or afternoon?) The latter,
please.

I Can you pass me the salt?
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Language and communication

Wittgenstein, Philosophical Investigations

“For a large class of cases of the
employment of the word ‘meaning’—though
not for all—this word can be explained in
this way: the meaning of a word is its use in
the language”
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SHRDLU [Winograd 1972]

Person: Pick up a big red block.
Computer: OK.
Person: Grasp the pyramid.
Computer: I DON’T UNDERSTAND

WHICH PYRAMID YOU
MEAN.

... ...

I Connect symbols to the world: utterance ! logical form ! action !
response

I Successful but limited to the blocks world

I Renewed interest in grounded systems with the success of neural
networks
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Tasks that involve grounding

Describing color [MacMahan and Stone, 2015]

Figure: Example from Chris Potts
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Tasks that involve grounding

Visual question answering [Agrawal+ 2015]

He He (NYU) CSCI-GA.2590 November 24, 2020 8 / 45



Tasks that involve grounding

CLEVR: visual reasoning [Johnson+ 2015]
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Tasks that involve grounding

Spatial reasoning [Bisk+ 2017]
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Tasks that involve grounding

ALFRED: instruction following [Shridhar+ 2020]

With real robots, see [Chai+ 2018].
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Tasks that involve grounding

Empathetic dialogue [Rashkin+ 2020]
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Tasks that involve grounding

Winograd schema challenge [Winograd 1972, Levesque 2011, Davis+ 2016]

Jim yelled at Kevin because he was so upset.
Jim comforted Kevin because he was so upset.

The customer walked into the bank and stabbed one of the tellers. He was
immediately taken to the police station.
The customer walked into the bank and stabbed one of the tellers. He was
immediately taken to the hospital.

Ground in social, physical context
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Summary

Connects language (symbols) to the world

I Perception: vision, audio

I Action: navigation, interaction

I Society: commonsense, empathy

model ! agent

I Multimodal: full perception of the world

I Interactive: actively learn about the world

I Multi-agent: consider other agents in the world
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Useful frameworks for thinking about grounding problems

Multimodal: mapping between di↵erent types of signals

I Neural architectures that encode di↵erent signals in the same space

Interactive: take actions and receive feedbacks

I Reinforcement learning: learning from trial and error

Multi-agent: model other agents’ goals and contexts

I Speakers: generate language given the world

I Listeners: interpret language in the world

I The rational speech act model: reason about each other
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Basic multimodal architecture

Key components:

1. Encoders: embed di↵erent signals separately

2. Fusion: create interaction among di↵erent embeddings

3. Decoder: classification, generation etc.

Figure: [Agrawal+ 2016]
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Attention over image

Similar to text QA, we want to interact di↵erent parts in the text and the
image.

What are “words” in images?

Figure: [Yu+ 2019]
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Neural module networks

Visual reasoning () semantic parsing

color(�x .equal(size(x), size(�y .blue(y) ^ cylinder(y))))

How do we execute the logical form on an image?
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Neural module networks

Text capital(x) database lookup
Image color(x) learned function fcolor(x , image)

Share modules (“predicates”/functions) across examples
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Neural module networks

Compose modules:

1. Universal representation: dependency parse (objects and attributes,
events and participants etc.)

2. Composition of modules (e.g. color(x), what(fly))
I Rule-based mapping (restricted domains)
I Model as a latent variable
I Obtain human annotation

Figure: [Andreas+ 2016]
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Multimodal pre-training

Data: image caption, VQA
Self-supervision: masked LM, matching between image/text

Figure: [Tan and Bansal 2019]
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Learning through interaction

Figure: [Ruis+ 2020]

A trial-and-error strategy:

I Agent: Try out random actions in the
world

I World: reward agent when goals are
achieved

How to learn from experience?
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Markov decision process (MDP)

I At time step t, the agent is in state st 2 S.
I It takes an action at 2 A and transitions to state st+1 with

probability P(st+1 = s 0 | st = s, at = a).

I The agent receives an immediate reward r(s, s 0, a).

Goal: learn a policy ⇡ : S ! A that maximizes the expected return

E
" 1X

t=0

r(st , st+1, at)

#
where at ⇠ ⇡(st)

He He (NYU) CSCI-GA.2590 November 24, 2020 25 / 45



“If intelligence is a cake, the bulk of the cake is unsupervised learning, the
icing on the cake is supervised learning, and the cherry on the cake is
reinforcement learning (RL).”—Yann Lecun
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Challenges in reinforcement learning

I Delayed reward: which actions are
responsible for the reward/penalty?

I Incomplete information: exploration vs
exploitation

I Real world RL (education, healthcare,
self-driving): expensive exploration

I Extremely flexible framework

I Challenging to do RL from scratch (often needs to pre-train by SL)
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Example with a simulator

Figure: [Ruis+ 2020]

RL formulation:

I Action: walk, turn-L/R, push etc.

I What is the state?

I Reward: 1 if the task is completed and
0 otherwise

Want to learn:

I What is a “square”/“circle”/...?

I What is “small”/“big”/...?

I What is “red”/“green”/“yellow”/...?
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Policy

A typical model for instruction following

Figure: [Misra+ 2017]

I (visual input, textual instruction) ! action

I Stochastic policy: ⇡✓(a | s) = p✓(a | s)
I Parametrization: multimodal networks.

I May need to add history observation into the state.
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Learning

Policy gradient methods: directly learn ⇡ parametrized by ✓ to maximize
the expected return

r✓J(✓) =
1

N

NX

i=1

E [r✓ log ⇡✓(a | s)Q⇡(s, a)]

I Expectation over the starting state distribution and the stationary
distribution of ⇡✓

I Q⇡(s, a): expected return starting from state s, taking action a, and
following ⇡ (“cost-to-go”)

I REINFORCE: estimate Q⇡(s, a) by Monte Carlo sampling

I Implementation

1. Sample trajectories from ⇡✓
2. Receive reward
3. Gradient update: weighted MLE update
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More realistic simulators

Figure: The Room-to-Room dataset [Anderson+ 2018]
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Robot learning

Figure: Interactive Task Learning with Physical Agents [Chai+ 2018]

Often require additional supervision: human demonstration, guidance
through conversation
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Summary

Robot navigation with instructions

Modeling: multimodal neural networks

Learning: reinforcement learning (+ supervised learning)

I Learn the connection between language and the world in an
end-to-end way

I Require a large number of interactions (may not be realistic)

Inference: best action (+ planning)
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Speakers and listeners

Speakers: world to language

I Image caption

I Color description

I Instruction giving

Listeners: language to world

I Semantic parsing

I Visual reasoning

I Instruction following

What are scenarios/tasks with both listeners and speakers?
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Reference games

Identify the target image

Figure: [Vedantam+ 2017]

I Base speaker: caption is consistent with both images
I Context-sensitive speaker: caption is discriminative
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Generating and following instructions

Figure: [Fried+ 2018]

I Rational speaker: what’s the listener’s orientation?

I Rational listener: should I pass exactly two objects or at least two?
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Collaborative games

Figure: [He+ 2017]

I Need knowledge from both agents to solve the puzzle
I E�cient collaboration requires reasoning about the other agent’s

knowledge
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E�cient referential communication

state = {blueSquare, blueCircle, greenSquare}

utterance = {square, circle, green, blue}

Assuming the speaker is cooperative, which object does “blue” refer to?
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Rational speech act model

Literal listener: interprets an utterance according to its literal meaning
“blue”: blueSquare or blueCircle

Pragmatic speaker: minimize the literal listener’s e↵ort of inferring the
state while maximizing communication e�ciency

blueSquare: “blue” or “square”

Pragmatic listener: infer the state by reasoning about the pragmatic
speaker

“blue”: blueSquare
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Rational speech act model

blue 1/2 1/2 0
square 1/2 0 1/2
circle 0 1 0
green 0 0 1

Literal listener L0: interprets an utterance according to its literal meaning

pL0(s | u) / p(s)|{z}
state prior

m(s, u)| {z }
world model
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Rational speech act model

blue 1/2 1/3 0
square 1/2 0 1/3
circle 0 2/3 0
green 0 0 2/3

Pragmatic speaker: minimize the literal listener’s e↵ort of inferring the
state while maximizing communication e�ciency

pS1(u | s) / exp(↵US1(u; s))

US1(u; s) = log pL0(s | u)� C (u)
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Rational speech act model

blue 3/5 2/5 0
square 3/5 0 2/5
circle 0 1 0
green 0 0 1

Pragmatic listener: infer the state by reasoning about the pragmatic
speaker

pL1(s | u) / pS1(u | s)p(s)
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Neural RSA

Limitation of RSA

I Pre-defined (small) lexicon

I Enumerate over all possible sequences

Learned speaker and listener with basic reasoning [Andreas+ 2016]
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Summary

I Philosophy: language as a tool

I Goal: build agents with language capability working in
human-centered environments

I Challenge: scale to realistic, persistent, interactive scenarios (with
humans)
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