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Attention in encoder-decoder models

Loose ends from last lecture:

1. Concatenate current attention output with the decoder hidden state:
yi = f (yi�1, [hi ; ci ])

2. Concatenate previous attention output with the decoder input:
yi = f (yi�1, [yi�1; ci�1])
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BiLSTM

I Classification: p(y | x) = softmax(linear(pooling(o1, . . . , oT )))

I Sequence labeling: p(yt | x) = softmax(linear(ot))

I Sequence generation: decoder + attention
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Tasks with two inputs

Natural language inference
Premise: 8 million in relief in the form of emergency housing.
Hypothesis: The 8 million dollars for emergency housing was still not
enough to solve the problem.
Label: neutral

Reading comprehension

Super Bowl 50 was an American football game to determine the cham-

pion of the National Football League (NFL) for the 2015 season. The

American Football Conference (AFC) champion Denver Broncos de-

feated the National Football Conference (NFC) champion Carolina

Panthers 24–10 to earn their third Super Bowl title. The game was

played on February 7, 2016, at Levi’s Stadium in the San Francisco

Bay Area at Santa Clara, California.

Question: Which team won Super Bowl 50?
Answer: Denver Broncos
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Encode two inputs

Goal: X ⇥ X ! Y

Simple combination:

I Encode x1 and x2 in Rd separately

I Aggregate the two embeddings, e.g. MLP(pooling(enc(x1), enc(x2)))

I Pooling: concatenation, elementwise max, elementwise product etc.

Finer-grained interaction between the two inputs:

I Can we use something similar to the attention mechanism in seq2seq?
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BiDAF

Bi-Directional Attention Flow for Machine Comprehension [Seo+ 2017]
Key idea: representation of x1 depends on x2 and vice versa
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Attention is all you need?

Word embedding: representation of word meaning

Recurrent neural networks: incorporate variable-length context

Attention mechanism: better modeling of long-range context

Multi-layer biLSTM with various attentions was the go-to architecture for
most NLP tasks.

But: RNNs are sequential and hard to scale

We want deeper models trained with larger data.

Can we get rid of the recurrence and use only attention to access context?
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Transformer overview

Attention is all you need. [Vaswani+ 2017]

Replaces recurrence with:

I Self-attention: an attention memory of the input sequence for each
token in the input sequence (parallelizable)

I Position embedding: models sequential information (doesn’t lose word
order)

Other key components:

I Multi-head attention

I Residual connection and layer norm: improves optimization of deep
models

He He (NYU) CSCI-GA.2590 November 17, 2020 9 / 46



Self-attention

I Same attention memory (K ,V ) for all words (parallelizable)

I Each word (as a query) interacts with all words in the input
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Matrix representation

Figure: From “The Illustrated Transformer”
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Scaled dot-product attention

Scaled dot-product attention

↵(q, k) = q · k/
p
dk

I pdk : dimension of the key vector

I Avoids large attention weights that push the softmax function into
regions of small gradients
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Multi-head attention
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Position embedding

Motivation: model word order in the input sequence

Solution: add a position embedding to each word

Position embedding:

I Encode absolute and relative positions of a word

I (Same dimension as word embeddings)

I Learned or deterministic
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Sinusoidal position embedding

I Same dimension as word embeddings

I Two components (2i , 2i + 1) represent a rotation vector:
sin(!2i t), cos(!2i t) (t is the position)

I Multiple rotation vectors with di↵erent angular velocities: !2i

I Analogous to binary encoding
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Residual connection and layer normalization

I Residual connection: add input to the output of each layer

I Layer normalization: normalize (zero mean, unit variance) over all
features for each sample in the batch

I Position-wise feed-forward networks: same mapping for all positions
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Transformer as an encoder-decoder model

I Stacked transformer block

I Decoder attention:
I Autoregressive generation
I Self-attention over prefix
I Encoder-decoder attention over

inputs

I Output at each position:

p(yt | x , y1:t�1)

I MLE training
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Impact in NLP

I Initially designed for sequential data and obtained SOTA results on
MT

I Replaced recurrent models (e.g. LSTM) on many tasks

I Enabled large-scale training which led to pre-trained models such as
BERT and GPT-2

Minor limitation: fixed length input. (see Longformer, Performer etc.)
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Representation learning

What are good representations?
Allow for easy extraction of information useful to a learning task

Example:

negative the food is good but doesn’t worth an hour wait

Simple features (e.g. BoW) require complex models.
Good features only need simple (e.g. linear) models.

Figure: Sentiment neuron [Radford+ 2017]
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Representation learning

Applications of good representations:

I Learning with small data: fine-tuning on learned representations

I Multi-task and transfer learning: shared factors across tasks

I Domain adaptation: more abstract features are less sensitive to
domain-specific variations

I Clustering

What should be the objective of representation learning (unsupervised)?

I Self-supervised learning: obtain representations through generative
modeling

I Auto-encoders: directy learn the mapping from input to a (latent)
representation
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Self-supervised learning

Key idea: predict parts of the input from the other parts

Figure: Slide from Andrew Zisserman

I Other supervision signals: color, rotation etc.

I Video: predict future frames from past frames
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Representation learning in NLP

Word embeddings

I CBOW, Skip-gram, GloVe, fastText etc.

I Used as the input layer and aggregated to form sequence
representations

Sentence embeddings

I Skip-thought, InferSent, universal sentence encoder etc.

I Challenge: sentence-level supervision

Can we learn something in between?

Word embedding with contextual information
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Transfering knowledge from neural LM

Key idea: use representation from a generative model (i.e. an LM)

I Representation (e.g. hidden state at each word) is context-sensitive

I Contains relevant contextual information for predicting the next word

Early work:

I Fine-tune a recurrent LM for downstream tasks [Dai+ 2015,
Howard+ 2018]

I Use word embedding from a pre-trained LM in addition to standard
word embedding [Peters+ 2017]

I Promising results on a smaller scale

Embeddings from language models (ELMo) [Peters+ 2018]

I Use word embeddings from a bi-directional LM

I Success on multiple NLP tasks
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ELMo pretraining

Forward/backward language models:

I pfwd(x) =
QT

t=1
p(xt | x1:t�1| {z }

past

; ✓fwd)

I pbwd(x) =
Q

1

t=T p(xt | xt+1:T| {z }
future

; ✓bwd)

I Each LM is a two layer LSTM, with shared input embedding layer and
softmax layer

Subword representation:

I First layer word embedding is from character convolutions

Data: one-billion word benchmark (monolingual data from WMT)
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ELMo embeddings

Contextual embeddings capture word senses.

Figure: From [Peters+ 2018].
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ELMo Fine-tuning

Obtain contextual word embeddings from each layer j 2 0, . . . , L of biLM:

Embed(xt , j) =

(
[
�!
h t,j ;

 �
h t,j ] for j > 0

CharEmbed(xt) for j = 0

Task-specific combination of embeddings:

Embed(xt) = �
LX

j=0

wjEmbed(xt , j)

Fix biLM and use the contextual word embeddings as input to task-specific
models. (Can also add to the output layer.)

Regularization is important: L2 or dropout.
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ELMo results

Improvement on a wide range on NLP tasks:

I reading comprehension (SQuAD)

I entailment/natural language inference (SNLI)

I semantic role labeling (SRL)

I coreference resolution (Coref)

I named entity recognition (NER)

I sentiment analysis (SST-5)
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Takeaways

I Main idea: use biLM for representaiton learning

I Outputs from all layers are useful
I Lower layer is better for syntactic tasks, e.g. POS tagging,

parsing
I Hight layer is better for semantic tasks, e.g. question answering,

NLI
I Some fine-tuning of the pre-trained model is needed.

I Large-scale training is important

Next, pre-trained transformer models.
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Transformer models

Figure: Slide from Chris Manning
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Bidirectional Encoder Representations from Transformers

(BERT)

Pre-training:

1. Masked LM:
Ex⇠D,i⇠pmask

log p(xi | x�i ; ✓)

(not a LM)
I x�i : noised version of x where xi is replaced by [MASK], a

random token, or the original token
I p(xi | x�i ; ✓) = Transformer(x�i , i)

2. Next sentence prediction:

Ex1⇠D,x2⇠pnext log p(y | x1, x2)

I y : whether x2 follows x1

I Not as useful as masked LM
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BERT sentence pair encoding

I [CLS]: first token of all sequences; used for next sentence prediction

I Distinguish two sentences in a pair: [SEP] and segment embedding

I Learned position embedding

I Subword unit: wordpiece (basically byte pair encoding)
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BERT fine-tuning

All weights are fine-tuned (with a small learning rate)
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Recent progress

GLUE: benchmark of natural language understanding tasks

Figure: Slide from Chris Manning

He He (NYU) CSCI-GA.2590 November 17, 2020 34 / 46



Summary

O↵-the-shelf solution for NLP tasks: fine-tune BERT (and friends)

What’s next?

I Processing long text

I E�cient training/inference

I Learning with a small amount of data

I Generalize to new test distributions (solve tasks, not datasets)
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Overview

Motivation: Directly learn a (parametric) mapping from the input to the
representation

Encoder: dimensionality reduction (data to code)

z = enc✓(x)

Decoder: reconstruction (code to data)

x = dec�(enc✓(x))

Learning: reconstruction loss

J(✓, �) =
1

|D|
X

x2D
L(x , dec�(enc✓(x)))

L: MSE, cross-entropy etc.
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Autoencoder

I Parametrize encoder and decoder by neural networks

I What model can we use if x is text?

I Problem: z could just copy the input x and no meaningful
representation is learned!
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Denoise autoencoder

Intuition: structural information is needed to recover a corrupted input

Learning: reconstruction clean input from a corrputed version

J(✓, �) =
1

|D|
X

x2D
Ex̃⇠pc (·|x) [L(x , dec�(enc✓(x̃)))]

I Corruption: delete/insert/substitute words, Gaussian noise for images

I Which model we have seen can be considered as a denoise
autoencoder?
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Variational autoencoder

Model z as a latent variable:

p(x ; ✓) =
X

z2Z
p(x , z ; ✓) (

Z

z
p(x , z ; ✓)dz if z is continuous)

Recall the evidence lowerbound (see lecture on EM)

ELBO = log p(x ; ✓)� KL (q(z)kp(z | x ; ✓))

=
X

z2Z
q(z) log

p(x , z ; ✓)

q(z)

Concept check: What is q(z) for EM?

In general, we can learn q(z) for each sample:

max
✓

X

x2D
max
�

X

z2Z
q(z ; �) log

p(x , z ; ✓)

q(z ; �)
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Variational autoencoder

Objective:

max
✓

X

x2D
max
�

X

z2Z
q(z ; �) log

p(x , z ; ✓)

q(z ; �)

EM-style learning:

1. Solve � for each sample (using SGD):

�⇤x  max
�

ELBO(x ; ✓old, �)

2. One-step update ✓old:

✓new  ✓old +r✓

X

x2D
ELBO(x ; ✓, �⇤x )

Problems:

I Step 1 is expensive!

I How to compute the gradient?
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Amortized variational inference

Problem: finding the optimal variation distribution for each sample x is
expensive

�⇤x  max
�

ELBO(x ; ✓old, �)

Idea: learn the mapping f� : x ! �⇤x

Note that f�(x) specifies the distribution q(z ; �x). Let’s use q(z | x ;�) to
denote q�(z).

Estimate � (same for all x)

max
�

X

x2D
ELBO(x ; ✓,�)

= max
�

X

x2D
Eq(z|x ;�)


log

p(x , z ; ✓)

q(z | x ;�)

�

Update � and ✓ iteratively for each mini-batch.
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Gradient computation

Need to compute r�ELBO(x ;�, ✓) and r✓ELBO(x ;�, ✓)

Monte Carlo sampling (REINFORCE):

r�Eq(z|x ;�)


log

p(x , z ; ✓)

q(z | x ;�)

�
= Eq(z|x ;�)


r�q(z | x ;�) log p(x , z ; ✓)

q(z | x ;�)

�

⇡ 1

n

nX

i=1

"
r�q(z

(i) | x ;�) log p(x , z(i); ✓)

q(z(i) | x ;�)

#

where z(i) ⇠ q(z | x ;�).

Problem: gradient estimator has high variance.
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Reparametrization trick

Original distribution: z(i) ⇠ q(z | x ;�)
Auxiliary independent random variable: ✏ ⇠ p(✏)
Reparametrization trick: z = T (✏, x ;�)
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Parametrization by neural networks

Joint distribution: p(x , z ; ✓) = p(x | z ; ✓)p(z ; ✓)

Prior: p(z ; ✓) = N (z | 0, I )

Likelihood: p(x | z ; ✓) = dec✓(z)

Variational distribution: q(z | x ;�) = enc�(x) = µ�(x),�2

�(x)

Reparametrization:

✏ ⇠ N (0, I )

z = µ�(x) + �2

�(x) · ✏
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Summary

I Autoencoders: directly learn a low-dimensional representation through
reconstruction

I VAEs: impose structure on the latent representation
I In addition to representation learning, also used for latent

variable models in NLP
I Issues: posterior collapse, evaluation
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