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Attention in encoder-decoder models

Loose ends from last lecture:

Encoder . h/; Decoder
Attention “Jgnse

t t

t t

Recurrent layer |— | —| Recurrent layer
n {

Recurrent layer |— | —| Recurrent layer
t — 1
Embedding Embedding
Sources Targets

1. Concatenate current attention output with the decoder hidden state:
yi = f(yi-1, [hi; ci])

2. Concatenate previous attention output with the decoder input:
vi = f(w1, lvi-1; ci-1])

U
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BiLSTM
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» Classification: p(y | x) = softmax(linear(pooling(o1,...,07)))
» Sequence labeling: p(y: | x) = softmax(linear(o;))

» Sequence generation: decoder + attention
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Tasks with two inputs
Natural language inference

Premise: 8 million in relief in the form of emergency housing.

Hypothesis: The 8 million dollars for emergency housing was still not
enough to solve the problem.
Label: neutral

Reading comprehension

Super Bowl 50 was an American football game to determine the cham-
pion of the National Football League (NFL) for the 2015 season. The
American Football Conference (AFC) champion Denver Broncos de-
feated the National Football Conference (NFC) champion Carolina
Panthers 24-10 to earn their third Super Bowl title. The game was
played on February 7, 2016, at Levi's Stadium in the San Francisco
Bay Area at Santa Clara, California.

Question: Which team won Super Bowl 507

Answer: Denver Broncos
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Encode two inputs

Goal: XA x X =Y

Simple combination:
» Encode x; and x, in RY separately
» Aggregate the two embeddings, e.g. MLP(pooling(enc(x1),enc(x2)))

» Pooling: concatenation, elementwise max, elementwise product etc.

Finer-grained interaction between the two inputs:

» Can we use something similar to the attention mechanism in seq2seq?
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BiDAF

Bi-Directional Attention Flow for Machine Comprehension [Seo+ 2017]
Key idea: representation of x; depends on x> and vice versa
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Attention is all you need?

Word embedding: representation of word meaning
Recurrent neural networks: incorporate variable-length context
Attention mechanism: better modeling of long-range context

Multi-layer biLSTM with various attentions was the go-to architecture for
most NLP tasks.

But: RNNs are sequential and hard to scale

We want deeper models trained with larger data.

Can we get rid of the recurrence and use only attention to access context?
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Transformer overview

Attention is all you need. [Vaswani+ 2017]

Replaces recurrence with:

» Self-attention: an attention memory of the input sequence for each
token in the input sequence (parallelizable)

» Position embedding: models sequential information (doesn't lose word
order)

Other key components:
» Multi-head attention

» Residual connection and layer norm: improves optimization of deep
models
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Self-attention
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» Same attention memory (K, V') for all words (parallelizable)

» Each word (as a query) interacts with all words in the input
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Matrix representation
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Scaled dot-product attention
Scaled dot-product attention
a(q, k) =q - k/+/dk 4/——
» /d: dimension of the key vector _ rT -~

» Avoids large attention weights that push the softmax function into
regions of small gradients
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Multi-head attention

1) This is our 2) We embed 3) Split into 8 heads. 4) Calculate attention  5) Concatenate the resulting ~ matrices,
input sentence* each word* We multiply X or using the resulting then multiply with weight matrix W*" to
R with weight matrices ~ Q/K/V matrices produce the output of the layer
X Wo?
Thinking T[] Wol v Qo
Machines I 1 Wo Ko
Vo wo
W;@
*In all encoders other than #0, WK Qs
we don’t need embedding. 1V Ki -
We start directly with the output Vi
of the encoder right below this one
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Position embedding

Motivation: model word order in the input sequence

Solution: add a position embedding to each word

Embedding size
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» Encode absolute and relative positions of a word

» (Same dimension as word embeddings)

» Learned or deterministic
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Sinusoidal position embedding
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» Same dimension as word embeddings 0//7/
» Two components (2/,2i + 1) represent a rotation vector:
sin(wyjt), cos(woit) (t is the position)

» Multiple rotation vectors with dlfFerent angular velocities: wo;

» Analogous to binary encodin -8
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Residual connection and layer normalization
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» Residual connection: add input to the output of each layer

» Layer normalization: normalize (zero mean, unit variance) over all
features for each sample in the batch

» Position-wise feed-forward networks: same mapping for all positions
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Transformer as an encoder-decoder model

Output
Probabilities

» Stacked transformer block

» Decoder attention:

» Autoregressive generation
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Impact in NLP

» Initially designed for sequential data and obtained SOTA results on
MT

» Replaced recurrent models (e.g. LSTM) on many tasks

» Enabled large-scale training which led to pre-trained models such as
BERT and GPT-2

Minor limitation: fixed length input. (see Longformer, Performer etc.)
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Representation learning
What are good representations?
Allow for easy extraction of information useful to a learning task

Example:

negative the food is good but doesn't worth an hour wait

Simple features (e.g. BoW) require complex models.
Good features only need simple (e.g. linear) models.
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Figure: Sentiment neuron [Radford+ 2017]
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Representation learning

Applications of good representations:
» Learning with small data: fine-tuning on learned representations
» Multi-task and transfer learning: shared factors across tasks

» Domain adaptation: more abstract features are less sensitive to
domain-specific variations

» Clustering

What should be the objective of representation learning (unsupervised)?

» Self-supervised learning: obtain representations through generative
modeling

» Auto-encoders: directy learn the mapping from input to a (latent)
representation
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Self-supervised learning

Key idea: oredlct parts of the input from the other parts

|:| D < 8 possible locations

........... -

A

Classifiern

7

CNN CNN

Randomly Sample Patch
Sample Second Patch

Unsupervised visual representation learning by context prediction,
Carl Doersch, Abhinav Gupta, Alexei A. Efros, ICCV 2015

Figure: Slide from Andrew Zisserman

» Other supervision signals: color, rotation etc.

» Video: predict future frames from past frames
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Representation learning in NLP

Word embeddings
» CBOW, Skip-gram, GloVe, fastText etc.

» Used as the input layer and aggregated to form sequence
representations

Sentence embeddings

» Skip-thought, InferSent, universal sentence encoder etc.

» Challenge: sentence-level supervision

Can we learn something in between?

Word embedding with contextual information
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Transfering knowledge from neural LM

Key idea: use representation from a generative model (i.e. an LM)
» Representation (e.g. hidden state at each word) is context-sensitive

» Contains relevant contextual information for predicting the next word

Early work:

» Fine-tune a recurrent LM for downstream tasks [Dai+ 2015,
Howard+ 2018]

» Use word embedding from a pre-trained LM in addition to standard
word embedding [Peters+ 2017]

» Promising results on a smaller scale

Embeddings from language models (ELMo) [Peters+ 2018]
» Use word embeddings from a bi-directional LM
» Success on multiple NLP tasks
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ELMo pretraining

Forward /backward language models:
> prod(x) = [11—1 P(xe | X1:6-1; Ofwa)
——
past
> powd(X) = [T 7 P(Xt | Xex1:7; Obwd)
N——

future

» Each LM is a two layer LSTM, with shared input embedding layer and
softmax layer

Subword representation:

» First layer word embedding is from character convolutions

Data: one-billion word benchmark (monolingual data from WMT)
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ELMo embeddings

Contextual embeddings capture word senses.

Source

Nearest Neighbors

GloVe play

playing, game, games, played, players, plays, player,
Play, football, multiplayer

Chico Ruiz made a spec-
tacular play on Alusik ’s

BILM grounder {...}

Kieffer , the only junior in the group , was commended
for his ability to hit in the clutch , as well as his all-round
excellent play .

Olivia De Havilland
signed to do a Broadway

play for Garson {...}

Figure:
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{...} they were actors who had been handed fat roles in
a successful play , and had talent enough to fill the roles
competently , with nice understatement .

From [Peters+ 2018].
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ELMo Fine-tuning

Obtain contextual word embeddings from each layer j € 0,..., L of biLM:

—
[ht,j; ht,j] forj >0

Embed(x;, ) =
be.) {CharEmbed(xt) for j=0

Task-specific combination of embeddings:

L

Embed(x;) = ’yz w;Embed(xt, j)
j=0

Fix biLM and use the contextual word embeddings as input to task-specific
models. (Can also add to the output layer.)

Regularization is important: Ly or dropout.
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ELMo results

Improvement on a wide range on NLP tasks:

» reading comprehension (SQuUAD)

» entailment/natural language inference (SNLI)
» semantic role labeling (SRL)
» coreference resolution (Coref)
» named entity recognition (NER)
» sentiment analysis (SST-5)
INCREASE
TASK PREVIOUS SOTA OUR ELMo + (ABSOLUTE/
BASELINE BASELINE RELATIVE)
SQuAD | Liu et al. (2017) 84.4 | 81.1 85.8 4.7124.9%
SNLI | Chen et al. (2017) 88.6 || 88.0 88.7+0.17 0.7/5.8%
SRL | Heetal. (2017) 81.7 || 81.4 84.6 3.2/17.2%
Coref | Leeetal. (2017) 67.2 || 67.2 70.4 3.2/9.8%
NER | Petersetal. (2017)  91.93+0.19 || 90.15  922240.10 2.06/21%
SST-5 | McCann et al. (2017) 53.7 || 514 547+05  3.3/6.8%
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Takeaways

» Main idea: use biLM for representaiton learning

» QOutputs from all layers are useful

» Lower layer is better for syntactic tasks, e.g. POS tagging,
parsing

» Hight layer is better for semantic tasks, e.g. question answering,
NLI

» Some fine-tuning of the pre-trained model is needed.

» Large-scale training is important

Next, pre-trained transformer models.
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November 17, 2020 29 /46



Transformer models

All of these models are Transformer models

ELMo

Oct 2017
Training:
800M words
42 GPU days

o UWNLP
klz OpenAI Google Al OpenAI

Figure: Slide from Chris Manning
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Bidirectional Encoder Representations from Transformers
(BERT)

Pre-training:
1. Masked LM:
ExnD,ivprask 108 P(Xi | X=i; 0)
(not a LM) ﬁ.LP(M‘.‘W—L) £ P
» x_;: noised version of x where X; is replaced by [MASK], a
random token, or the original token
» p(xi | x_j; #) = Transformer(x_;, i)

2. Next sentence prediction:

]Exle,szpnext |Og p(y | X17 X2)

» y: whether x? follows x?

» Not as useful as masked LM
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BERT sentence pair encoding

O\ -
Input E[cu.sl )my dog is | cute |E [SEP] he | likes || play | ##ing | [SEP]
Token
Embeddings E[CLS] Emy Edog Eis Ecute E[SEP] Ehe EIikes Eplay E#xing E[SEP]
-+ = L = = L )l = L L )l = L ]
Segment
Embeddings EA EA EA EA EA EA EB EB EB EB EB
L 2 L L o = = = L ] e = = =
Position
Embeddings Eo El E2 E3 E4 E5 E6 E7 Es E9 E10

[CLS]: first token of all sequences; used for next sentence prediction
Distinguish two sentences in a pair: [SEP] and segment embedding

Learned position embedding

vvyyy

Subword unit: wordpiece (basically byte pair encoding)
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BERT fine-tuning
All weights are fine-tuned (with a small learning rate)

Class

Class
Label Label
&
oE B A o [ n =] -
BERT BERT
[ren & | (& [ Een[ & ] [&] Eas| & || & | - &
= w3 p e B e i - .
[—]m =) (&) es [tor (az] . [roew
I_'_I [
I
Sentence 1 Sentence 2 Single Sentence
(a) Sentence Pair Classification Tasks: (b) Single Sentence Classification Tasks:
MNLI, QQP, QNLI, STS-B, MRPC, SST-2, ColLA
RTE, SWAG
Start/End Span 0 B-PER 0
209 5 F
) =)~ () e =] -
BERT BERT
Lo ) & |~ [ ][ Ewen ][ & |~ [&] Eosn | & || E &
- =
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Recent progress

GLUE: benchmark of natural language understanding tasks

BERT-

Large

GLUE Score

60

Over 3x reduction in error in 2 years, “superhuman” performance

Figure: Slide from Chris Manning
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Summary

Off-the-shelf solution for NLP tasks: fine-tune BERT (and friends)

What's next?
» Processing long text
» Efficient training/inference
» Learning with a small amount of data

» Generalize to new test distributions (solve tasks, not datasets)
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Overview

Motivation: Directly learn a (parametric) mapping from the input to the
representation

Encoder: dimensionality reduction (data to code)

z = ency(x)

Decoder: reconstruction (code to data)

x = dec,(ency(x))

Learning: reconstruction loss

J(0,7) = 1 Z L(x, decy(ency(x)))

’D‘ x€D

L: MSE, cross-entropy etc.
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Autoencoder

2o

» Parametrize encoder and decoder by neural networks
» What model can we use if x is text?

» Problem: z could just copy the input x and no meaningful
representation is learned!
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Denoise autoencoder

Intuition: structural information is needed to recover a corrupted input

Learning: reconstruction clean input from a corrputed version

J(0,7) = Z Esmpe(-1x) [L(x, decy (ency(X)))]

XED

» Corruption: delete/insert/substitute words, Gaussian noise for images

» Which model we have seen can be considered as a denoise

autoencoder? (2 ERT

He He (NYU) CSCI-GA.2590
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Variational autoencoder
Model z as a latent variable:

p(x;0) = Z p(x, z;0) (/ p(x,z;0)dz if z is continuous)

zeZ#

Recall the evidence lowerbound (see lecture on
( JM(MMM/{ o
ELBO = log p(x; 0) — KL (q(z)|p(z | x; #))

B 5 p(x, z; 6)
=2 az)1es = s

zeEZ

Concept check: What is g(z) for EM? P(%lO( 3@)

In general, we can learn q(z) for each sample:

max max Z q(z; ) log M
0 x€D '\l zeZ q(z, /Y) (

He He (NYU) CSCI-GA.2590
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Variational autoencoder
Objective:

p(x, z;0)
max Z max Z q(z;~) log

e | ez a(z:7)
EM-style learning:
1. Solve v for each sample (using SGD):

Vo max ELBO(x; 6°9, ~)

2. One-step update §°'9:

gnew . gold + Vg Z ELBO(X, 0, 7;)

xeD

Problems:
» Step 1 is expensive!

» How to compute the gradient?

He He (NYU) CSCI-GA.2590
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Amortized variational inference

Problem: finding the optimal variation distribution for each sample x is
expensive

vE < maxELBO(x; 6%, 4)
Yy

Idea: learn the mapping fy: x — 5

Note that f;(x) specifies the distribution g(z;7x). Let's use q(z | x; ¢) to
denote g4(z).

Estimate ¢ (same for all x)

Update ¢ and 6 iteratively for each mini-batch.

November 17, 2020 42 / 46



Gradient computation

Need to compute V4ELBO(x; ¢,0) and VyELBO(x; ¢, 0)

Monte Carlo sampling (REINFORCE):

,z;0 20
VoEqg(zx:6) [|og :((ZX;; gb))] = Eq(z|x:¢) [V¢q(z | x; @) log :((Zx’i; (/5))]
LIy () [ o p(x,2; 6)
~ ; Vedlz [ x0)lo8 i T g)

where zU) ~ g(z | x; ¢).

Problem: gradient estimator has high variance.
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Reparametrization trick

Original form Reparameterised form
|_ _________________ 1 r—---=-""-""-""-"="-"=-"=-"=-"-"=-"=-"=-"=-=-= 1
I o I
| \f | | Backprop \f/ :
| |
: I : I
| ~qEex) | 3t/0y 2, =90xe) |
| . / N
. Y 9 l laf/aqh )
| . =0L/3g, :
| o o I | o o ____ |
«_: Deterministic node [Kingma, 2013]
: [Bengio, 2013]
. - Random node [Kingma and Welling 2014]

[Rezende et al 2014]
Original distribution: z() ~ g(z | x; ¢)

Auxiliary independent random variable: € ~ p(e)
Reparametrization trick: z = T (¢, x; ¢)
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Parametrization by neural networks

RNNs work <EOS>

RNNs work <E0S> RNNs work
Joint distribution: p(x,z;0) = p(x | z;0)p(z;0)

Prior: p(z;0) =N (z]0,/)

Likelihood: p(x | z; ) = decy(z)

Variational distribution: q(z | x; ¢) = ency(x) = pe(x), afb(x)
Reparametrization:

e ~N(0,1)
z = pg(x) +03(x) - €

O = =

i
)
Jo)
@)
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Summary

» Autoencoders: directly learn a low-dimensional representation through
reconstruction

» VAEs: impose structure on the latent representation

» In addition to representation learning, also used for latent
variable models in NLP
» Issues: posterior collapse, evaluation
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