Semantics

He He
New York University

November 3, 2020

Table of Contents

1. Introduction to semantics
2. Logical representation of meaning
3. Semantic parsing

Syntax vs semantics

Syntax: does the string belong to the language?
Semantics: what is the meaning of the string?
$4 \rightarrow \Delta$
$3+2$
Example: " $3+2 * 4 "$ (symbols)
 constr 4 comet 4

Model-theoretic semantics

An expression is a string of mere symbols.
The expression obtains meaning when evaluated against a model.
The model captures all facts we are interested in.

expression	model	denotation
$3+2 * 4$	calculator	11
the red ball	an image	the red ball in the image
SELECT Name FROM Student	database	John
WHERE Id $=0 ;$		
Book me a ticket from	database	[action]
NYC to Seattle		

We understand the expression if we know how to act (in a world).

Logic and semantics

Goal: convert natural language to meaning representation
John likes fruits. (informal)
$\forall x \operatorname{Fruit}(x) \Longrightarrow \operatorname{Likes}(x$, John) (formal)
Main tool: first-order logic
Why logic?

- Unambiguity: one meaning per statement
- Knowledge: link symbols to knowledge (entities, relations, facts etc.)
- Inference: derive additional knowledge given statements

Logic and semantics: example

Natural language: "John likes Mary's friends"
Logical form: $\forall x$ Friends $(x$, Mary $) \Longrightarrow \operatorname{Likes}(x$, John $)$
World model: state of affairs in the world
People $=\{$ John, Mary, Joe, Ted $\}$
John is a friend of Mary.
Joe is a friend of Mary.

Given the world model,

- Is Likes(Joe, John) true?
- What else can we infer from the statement?

The value of the expression may change given a different world model.

Applications

Question answering (given a database)
What is the profit of Mulan?
Who is the 46th president of the US?
Robot navigation
Open the pod bay doors, HAL.
Pick up all socks in the living room.
Natural language interface
Alexa, play my favorite song.
Siri, show me how to get home.

Table of Contents

1. Introduction to semantics

2. Logical representation of meaning

3. Semantic parsing

Propositional logic

A proposition is a statement that is either true or false.
Propositional logic deals with propositions and their relations.
Propositional language (syntax):

- Propositional symbols: a primitive set of propositions
p_{1} : John likes Mary
p_{2} : John is a student
- Logical connectives: rules to build up formulas

Parsing a formula

Exercise: how would you check if a formula is valid (i.e. grammatical)?

$$
\begin{aligned}
& ((p \wedge q) \wedge \neg p) \\
& ((p \vee q) \wedge r) \Longrightarrow p) \subset
\end{aligned}
$$

Try to draw the parse trees of the formulas.

World model for propositional logic Propositional symbols:

$$
p_{1}=\text { hot }
$$

$p_{2}=$ John likes ice cream
$p_{3}=$ John ate an ice cream
Formula: $p_{1} \wedge p_{2} \Longrightarrow p_{3}$ (Is this true?)

World model for propositional logic

Propositional symbols:

$$
p_{1}=\text { hot }
$$

$p_{2}=$ John likes ice cream
$p_{3}=$ John ate an ice cream
Formula: $p_{1} \wedge p_{2} \Longrightarrow p_{\underline{3}}$ (Is this true?)
The world model in propositional logic is an assigment of truth values to propositional symbols.

	m_{1}	m_{2}	m_{3}	m_{4}	m_{5}	m_{6}	m_{7}	m_{8}
p_{1}	T	T	T	T	F	F	F	F
p_{2}	T	T	F	F	T	T	F	F
p_{3}	T	F	T	F	T	F	T	F

In which world(s) is the above formula true?

Meaning of a formula

Propositional symbols:

$$
\begin{aligned}
& p_{1}=\text { hot } \\
& p_{2}=\text { John likes ice cream } \\
& p_{3}=\text { John ate an ice cream }
\end{aligned}
$$

Formula: $p_{1} \wedge p_{2} \Longrightarrow p_{3} \quad$ Just symbols!
Semantics is given by interpreting the formula against a world model.
A formula specifies a set of world models where it is true.
A set of formulas is a knowledge base (constraints on the world model).
Making inference given formulas and the world model: take a course in AI.

Limitations of propositional logic

How do we represent knowledge of a collection of objects?
Everyone who likes ice cream ate an ice cream.
$p_{\text {Jонн }}$ (John likes ice cream) $\Longrightarrow q_{\text {Jонл }}$ (John ate an ice cream)
$p_{\text {JoE }}$ (Joe likes ice cream) $\Longrightarrow q_{\text {Joe }}$ (Joe ate an ice cream)
$p_{\text {Alice }}$ (Alice likes ice cream) $\Longrightarrow q_{\text {Alice }}$ (Alice ate an ice cream)
$p_{\text {Carol }}$ (Carol likes ice cream) $\Longrightarrow q_{\mathrm{Carol}}$ (Carol ate an ice cream)
[] likes ice cream $\Longrightarrow \quad[\quad$ ate an ice cream
Need a compact way to represent a collection of objects!

First-order logic

First-order logic generalizes propositional logic with several new symbols:
Represent objects:
Constants Primitive objects, e.g. John
Variables Placeholder for some object, e.g. x
Functions A map from object(s) to an object, e.g. John \rightarrow John's farther

Group objects:
Predicate Properties of a set of objects, e.g. students, couples
Quantify a (infinite) set of objects:
Quantifiers Specify the number of objects with a certain property, e.g. all people are mortal.

Constants, variables, functions

Constants refer to primitive objects such as named entities:
John, IceCream, Нot

A variable refers to an unspecified object:
x, y, z
Student(x)
Friends (x, John)
A n-ary function maps n objects to an object:
Mother (x)
Friends(Mother(x) , $\operatorname{Mother(y))~}$

Predicates

A predicate is an indicator function $P: X \rightarrow\{$ true, false $\}$.

- Describes properties of object(s)
- $P(x)$ is an atomic formula

Student(Mary)
Smaller(Desk, Computer)
Friends(John, Mary) \Longrightarrow Friends(Mary, John)

Quantifiers
Universal quantifier \forall :

- The statement is true for every object
- $\forall x P(x)$ is equivalent to $P(A) \wedge P(B) \wedge \ldots$
- All people are mortal: $\forall x \operatorname{Person}(x) \circlearrowleft \operatorname{Mortal}(x)$

Existential quantifier \exists :

- The statement is true for some object
- $\exists x P(x)$ is equivalent to $P(A) \vee P(B) \vee$
- Some people are mortal: $\exists x \operatorname{Person}(x) \wedge \operatorname{Iortal}(x)$

Translate "everyone speaksanguage":
(1) $\exists x \operatorname{bng}(x) \wedge(\forall y \operatorname{person}(y) \rightarrow \operatorname{speak}(y, x))$
(2) $\forall y$ person $\rightarrow(\exists x \operatorname{long}(x) \wedge \operatorname{speak}(y, x))$

Syntax of first-order logic

Terms refer to objects:

- Constant symbol, e.g. John
- Variable symbol, e.g. x
- Function of terms, e.g. $\operatorname{Mother}(x)$, Capital(NY)

Formula evaluates to true or false:

- Predicate over terms is an atomic formula, e.g. Student(Mother(John))
- Connectives applied to formulas (similar to propositional logic)
- Quantifiers applied to formulas
$\forall \nsim \operatorname{Student}(x) \Longrightarrow \operatorname{Happy}(x)$
$\exists \chi \operatorname{Student}(x) \underset{\bigwedge}{\operatorname{Happy}}(x)$

World model of first-order logic
How do we know if Friends(John, Mary) is true?
World model of propositional logic:

proposition	truthful value
John is a friend of Mary	True
John is a friend of Joe	False

World model of first-order logic: objects and their relations

constant symbol	
Jobject	
John	a
MARY	b
predicate symbol	set of n-tuples
Friends	$\{(a, b),(b, a)\}$

Graph representation of the world model

Summary

Syntax produces symbols and well-formed formulas.
Semantics grounds symbols to a world and allows for evaluation of formulas.

We have seen how it works for formal languages such as propositional logic and first-order logic.

Next, formal language to natural language.

Table of Contents

1. Introduction to semantics

2. Logical representation of meaning

3. Semantic parsing

System overview

Utterance Linguistic expression.
"Call John, please."

Logical form Formal meaning representation of the utterance
Call(John) program
executor
Denotation Mapping of the meaning representation in the model Calling $\mathrm{XXX}-\mathrm{XXX}-\mathrm{XXXX}$... execution result

Translate NL to logical language

Key idea: compositionality

- Sentence: READS(John) (What's the denotation?)
- We would like to construct it recursively
- John: John (a unique entity)
- sings: a predicate (function) that takes an entity (one argument)

A brief introduction to lambda calculus

Lambda calculus / λ-calculus

- A notation for applying a function to an argument

$$
\lambda x \cdot x^{2}+x
$$

- A function that is waiting for the value of a variable to be filled
- Function application by β-reduction

$$
\left(\lambda x \cdot x^{2}+x\right)(2)=2^{2}+2=6
$$

- Takes multiple arguments by "currying"

$$
\begin{aligned}
(\lambda x \cdot \lambda y \cdot x y)(2) & =\lambda y \cdot 2 y \\
(\lambda x \cdot \lambda y \cdot x y)(3)(2) & =(\lambda y \cdot 2 y)(3)=6
\end{aligned}
$$

Translate NL to logical language

Verbs are predicates

- reads: $\lambda x \cdot \operatorname{READS}(x)$ (waiting for an NP)
- likes: $\lambda x \cdot \lambda y \cdot \operatorname{Likes}(x, y)$ (waiting for two RPs)
s: Likes (John, Mary)

NP:John

John

V: $\lambda x \cdot \lambda y$. likes (y, x) NP:MARY
likes

Mary

Translate NL to logical language

Verbs are predicates

- reads: $\lambda x \cdot \operatorname{READS}(x)$ (waiting for an NP)
- likes: $\lambda x \cdot \lambda y \cdot \operatorname{Likes}(x, y)$ (waiting for two NPs)

Compositional semantics

Bottom up parsing:

- Start with the semantics of each word
- Combine semantics of spans according to certain rules
- Associate a combination rule with each grammar rule

$$
\begin{array}{lll}
\mathrm{V}: \lambda y \cdot \lambda x \cdot \operatorname{LikES}(x, y) & \rightarrow \text { likes } \\
\mathrm{NP}: \mathrm{JoHN} & \rightarrow & \text { John } \\
\mathrm{VP}: \alpha(\beta) & \rightarrow \mathrm{V}: \alpha \mathrm{NP}: \beta \\
\mathrm{S}: \beta(\alpha) & \rightarrow \mathrm{NP}: \alpha \mathrm{VP}: \beta
\end{array}
$$

- Get semantics by function applcation
- Lexical rules can be complex!

Quantification

John bought a book
Bought(John, Book)?

Quantification

John bought a book
Bought(John, Book)?
"book" is not a unique entity! Bought(Mary, Book)
Correct logical form: $\exists x \operatorname{BoOk}(x) \wedge \operatorname{Bought}(J o h n, x)$
But what should be the semantics of "a"? $\lambda P \cdot \lambda Q \cdot \exists x P(x) \wedge Q(x)$
"a book": $\lambda Q \cdot \exists \operatorname{BoOK}(x) \wedge Q(x)$. (Need to change other NP rules)
What about "the", "every", "most"?
We also want to represent tense: "bought" vs "will buy". (event variables)

Learning from derivations

Input: John bought a book (utterance)
Output: $\exists x \operatorname{Book}(x) \wedge \operatorname{BOUGHt}(J O H N, x)$ (logical form)
Can we use approaches in syntactic parsing?

Learning from derivations

Input: John bought a book (utterance)
Output: $\exists x \operatorname{BoOk}(x) \wedge \operatorname{BoUGHt}(J O H N, x)$ (logical form)
Can we use approaches in syntactic parsing?
Obstacles:

- Derivations are rarely annotated.
- Unlike syntactic parsing, cannot obtain derivations from logical forms.
- Spurious derivation: wrong derivations that reach the correct logical form.

Learning from logical forms

x : John bought a book (utterance)
y : $\exists x \operatorname{Book}(x) \wedge \operatorname{Bought}(J o h n, x)$ (logical form)
Key idea: model derivation as a latent variable z [Zettlemoyer and Collins, 2005]

Learning: maximum marginal likelihood

$$
\begin{aligned}
\log p(y \mid x) & =\log \sum_{z} p(y, z \mid x) \\
& =\log \sum_{z} \frac{\exp (\theta \cdot \Phi(x, y, z))}{\sum_{z^{\prime}, y^{\prime}} \exp \left(\theta \cdot \Phi\left(x, y^{\prime}, z^{\prime}\right)\right)}
\end{aligned}
$$

- Need to learn both the lexicon and the model parameters (for CCG)
- Use EM algorithm (with approximation)

Framework

Figure: [Liang 2016]

Datasets

Geo880

- 880 questions and database queries about US geography
- "what is the highest point in the largest state?"
- Compositional utterances in a clean, narrow domain

ATIS

- 5418 utterances of airline queries and paired logical forms
- "show me information on american airlines from fort worth texas to philadelphia"
- More flexible word order but simpler logic

Free917, WebQuestions

- Questions and paired logical forms on Freebase
- Logically less complex but scales to many more predicates

Challenges

Meaning representation

- Domain-specific vs domain-general
- Natural language vs programming language
- Interaction with annotation and learning

Learning

- End-to-end (utterance to action)?
- Reinforcement learning (robotics, visual grounding)
- Interactive learning (obtain user feedback)

