## Semantics

#### He He

New York University

November 3, 2020

He He (NYU)

CSCI-GA.2590

November 3, 2020 1 / 33

1

590

# Table of Contents

#### 1. Introduction to semantics

2. Logical representation of meaning

3. Semantic parsing

<ロ > < 同 > < 同 > < 三 > < 三 >

3

SQ (~

#### Syntax vs semantics

Syntax: does the string belong to the language?

Semantics: what is the meaning of the string? Example: "3 + 2 \* 4" (symbols) + : add(2, mult(2, 4))  $2 \times : multi(2, 4) = 8$   $2 \times 4$   $2 \times 4$  $2 \times$ 



### Model-theoretic semantics

An expression is a string of mere symbols.

The expression obtains meaning when evaluated against a model.

The model captures all facts we are interested in.

| expression               | model      | denotation                |
|--------------------------|------------|---------------------------|
| 3 + 2 * 4                | calculator | 11                        |
| the red ball             | an image   | the red ball in the image |
| SELECT Name FROM Student | database   | John                      |
| WHERE Id = $0;$          |            |                           |
| Book me a ticket from    | database   | [action]                  |
| NYC to Seattle           |            |                           |

We understand the expression if we know how to act (in a world).

SQ Q

## Logic and semantics

```
Goal: convert natural language to meaning representation
John likes fruits. (informal)
\forall x \operatorname{FRUIT}(x) \implies \operatorname{LIKES}(x, \operatorname{JOHN}) (formal)
```

Main tool: first-order logic

Why logic?

- Unambiguity: one meaning per statement
- Knowledge: link symbols to knowledge (entities, relations, facts etc.)
- Inference: derive additional knowledge given statements

- 34

## Logic and semantics: example

Natural language: "John likes Mary's friends"

Logical form:  $\forall x \text{ FRIENDS}(x, \text{MARY}) \implies \text{LIKES}(x, \text{JOHN})$ 

World model: state of affairs in the world

People = {John, Mary, Joe, Ted} John is a friend of Mary. Joe is a friend of Mary.

Given the world model,

- ► Is LIKES(JOE, JOHN) true?
- What else can we infer from the statement?

The value of the expression may change given a different world model.

SQ Q

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

## Applications

Question answering (given a database) What is the profit of Mulan? Who is the 46th president of the US?

Robot navigation

Open the pod bay doors, HAL. Pick up all socks in the living room.

#### Natural language interface

Alexa, play my favorite song. Siri, show me how to get home.

# Table of Contents

1. Introduction to semantics

2. Logical representation of meaning

3. Semantic parsing

< 글 > < 글 >

< □ ▶ < @ ▶

æ

SQ (~

# Propositional logic

A **proposition** is a statement that is either true or false. **Propositional logic** deals with propositions and their relations.

Propositional language (syntax):

Propositional symbols: a primitive set of propositions

*p*<sub>1</sub>: John likes Mary*p*<sub>2</sub>: John is a student

#### Logical connectives: rules to build up formulas

|         | symbol      | read                | meaning     | formula               |
|---------|-------------|---------------------|-------------|-----------------------|
| _       | -           | not                 | negation    | $\neg p$              |
|         | $\lor$      | or                  | disjunction | $p \wedge q$          |
|         | $\wedge$    | and                 | conjunction | $p \lor q$            |
|         | $\implies$  | implies / if then   | implication | $p \implies q \vdash$ |
|         | $\iff$      | equivalent to / iff | equivalence | $p \iff q$            |
| Parenth | neses: (, ) |                     |             | Ê Ê                   |
|         |             |                     | < □ ▶ < ₫   | P · · 토 · · 토 · · · ㅋ |

Exercise: how would you check if a formula is valid (i.e. grammatical)?  $\begin{array}{c} ((p \land q) \land \neg p) \\ ((p \lor q) \land r) \implies p) \swarrow \end{array}$ 

Try to draw the parse trees of the formulas.

SQ (~

# World model for propositional logic

Propositional symbols:

 $p_1 = hot$   $p_2 = John$  likes ice cream  $p_3 = John$  ate an ice cream

Formula:  $p_1 \land p_2 \implies p_3$  (Is this true?)

JQ (~

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ■

< <p>Image: Image: Imag

# World model for propositional logic

Propositional symbols:

 $p_1 = hot$  $p_2 = John$  likes ice cream  $p_3 = John$  ate an ice cream

Formula:  $p_1 \wedge p_2 \implies p_3$  (Is this true?) The **world model** in propositional logic is an assignment of truth values to propositional symbols.

|                       | $m_1$ | $m_2$                      | <i>m</i> <sub>3</sub> | $m_4$ | $m_5$ | $m_6$ | $m_7$ | <i>m</i> 8 |
|-----------------------|-------|----------------------------|-----------------------|-------|-------|-------|-------|------------|
| $p_1$                 | T     | Т                          | Т                     | Т     | F     | F     | F     | F          |
| <i>p</i> <sub>2</sub> | Т     | Т                          | F                     | F     | Т     | Т     | F     | F          |
| <i>p</i> 3            | Т     | F                          | Т                     | F     | Т     | F     | Т     | F          |
|                       | I     | $\boldsymbol{\mathcal{A}}$ |                       |       |       |       |       |            |

In which world(s) is the above formula true?

He He (NYU)

SQ (V



Making inference given formulas and the world model: take a course in AI.

< ロ > < 同 > < 三 > < 三 >

3

## Limitations of propositional logic

How do we represent knowledge of a collection of objects?

Everyone who likes ice cream ate an ice cream.

 $p_{
m JOHN}$  (John likes ice cream)  $\implies q_{
m JOHN}$  (John ate an ice cream)  $p_{
m JOE}$  (Joe likes ice cream)  $\implies q_{
m JOE}$  (Joe ate an ice cream)  $p_{
m ALICE}$  (Alice likes ice cream)  $\implies q_{
m ALICE}$  (Alice ate an ice cream)  $p_{
m CAROL}$  (Carol likes ice cream)  $\implies q_{
m CAROL}$  (Carol ate an ice cream) ...

] likes ice cream  $\implies$  [ ] ate an ice cream

Need a compact way to represent a collection of objects!

◆□▶ ◆□▶ ▲三▶ ▲三▶ 三 ���

## First-order logic

First-order logic generalizes propositional logic with several new symbols:

Represent objects:

Constants Primitive objects, e.g. John Variables Placeholder for some object, e.g. xFunctions A map from object(s) to an object, e.g. John  $\rightarrow$  John's farther

Group objects:

Predicate Properties of a set of objects, e.g. students, couples

Quantify a (infinite) set of objects:

Quantifiers Specify the number of objects with a certain property, e.g. all people are mortal.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ● ●

### Constants, variables, functions

#### **Constants** refer to primitive objects such as named entities: JOHN, ICECREAM, HOT

A variable refers to an unspecified object:

x, y, zStudent(x) Friends(x, John)

### A n-ary function maps n objects to an object: MOTHER(x) FRIENDS(MOTHER(x), MOTHER(y))

< 47 ▶

#### Predicates

A **predicate** is an indicator function  $P: X \rightarrow \{\text{true}, \text{false}\}$ .

- Describes properties of object(s)
- P(x) is an atomic formula STUDENT(MARY)
   SMALLER(DESK, COMPUTER)
   FRIENDS(JOHN, MARY) => FRIENDS(MARY, JOHN)

▲□ ▲ = ▶ ▲ = ▶ ● ● ●

# Quantifiers

#### Universal quantifier $\forall$ :

- The statement is true for every object
- ►  $\forall x \ P(x)$  is equivalent to  $P(A) \land P(B) \land \ldots$
- ► All people are mortal:  $\forall x \operatorname{Person}(x) \rightleftharpoons \operatorname{Mortal}(x)$

#### **Existential quantifier** $\exists$ :

- The statement is true for some object
- ►  $\exists x \ P(x)$  is equivalent to  $P(A) \lor P(B) \lor \dots$
- Some people are mortal:  $\exists x \operatorname{Person}(x) \land \operatorname{MORTAL}(x)$

Translate "everyone speaks a anguage":

O Ex long(x) ~ (Yy person(y) -> speakcy x))
(2) Hy person -> (Zx long(x) ^ speak(y,x))

SQ Q

Syntax of first-order logic

Terms refer to objects:

- **Constant symbol**, e.g. JOHN
- ► Variable symbol, e.g. *x*
- Function of terms, e.g. MOTHER(x), CAPITAL(NY)

Formula evaluates to true or false:

- Predicate over terms is an atomic formula, e.g. STUDENT(MOTHER(JOHN))
- Connectives applied to formulas (similar to propositional logic) STUDENT(x) A HAPPY(x)

• Quantifiers applied to formulas • STUDENT(x)  $\implies$  HAPPY(x) • STUDENT(x)  $\implies$  HAPPY(x) • A

SQ Q

(4) ∃ → (3) ∃

## World model of first-order logic

How do we know if FRIENDS(JOHN, MARY) is true?

World model of propositional logic:

| proposition              | truthful value |
|--------------------------|----------------|
| John is a friend of Mary | True           |
| John is a friend of Joe  | False          |

World model of first-order logic: objects and their relations

|     | constant sym   | bol object              |  |
|-----|----------------|-------------------------|--|
|     | John           | а                       |  |
|     | MARY           | b                       |  |
| pre | edicate symbol | set of <i>n</i> -tuples |  |
| Fr  | LIENDS         | $\{(a,b),(b,a)\}$       |  |
|     |                |                         |  |

JQ (~

Graph representation of the world model



Syntax produces symbols and well-formed formulas.

Semantics grounds symbols to a world and allows for evaluation of formulas.

We have seen how it works for formal languages such as propositional logic and first-order logic.

Next, formal language to natural language.

< 47 ▶

3

SQ (V

# Table of Contents

1. Introduction to semantics

2. Logical representation of meaning

3. Semantic parsing

3

SQ (~

<ロト < 同ト < 三ト < 三ト

### System overview

```
Utterance Linguistic expression.

"Call John, please."

persing

Logical form Formal meaning representation of the utterance

CALL(JOHN) program

executor

Denotation Mapping of the meaning representation in the model

Calling XXX-XXX-XXXX ... execution result
```

SQ Q

▶ ◀ ᆿ ▶

Translate NL to logical language

Key idea: compositionality



- Sentence: READS(JOHN) (What's the denotation?)
- We would like to construct it recursively
  - John: JOHN (a unique entity)
  - sings: a predicate (function) that takes an entity (one argument)

SQ Q

A brief introduction to lambda calculus

Lambda calculus /  $\lambda$ -calculus

A notation for applying a function to an argument

$$\lambda x.x^2 + x$$

A function that is waiting for the value of a variable to be filled
 Function application by β-reduction

$$(\lambda x.x^2 + x)(2) = 2^2 + 2 = 6$$

Takes multiple arguments by "currying"

$$(\lambda x.\lambda y.xy)(2) = \lambda y.2y$$
  
 $(\lambda x.\lambda y.xy)(3)(2) = (\lambda y.2y)(3) = 6$ 

3

Translate NL to logical language

Verbs are predicates

- ▶ reads:  $\lambda x$ .READS(x) (waiting for an NP)
- ► likes:  $\lambda x \cdot \lambda y \cdot \text{LIKES}(x, y)$  (waiting for two NPs)



3

SQ Q

**I I I I I I** 

< 47 ► <

Translate NL to logical language

Verbs are predicates

- ▶ reads:  $\lambda x$ .READS(x) (waiting for an NP)
- ► likes:  $\lambda x \cdot \lambda y \cdot \text{Likes}(x, y)$  (waiting for two NPs)



э.

# Compositional semantics

Bottom up parsing:

- Start with the semantics of each word
- Combine semantics of spans according to certain rules
  - Associate a combination rule with each grammar rule

Get semantics by function application

Lexical rules can be complex!

SQ Q

<\=> = =

## Quantification

John bought a book

BOUGHT (JOHN, BOOK)?

<ロト < 同ト < 三ト < 三ト

臣

Quantification



BOUGHT (JOHN, BOOK)?

"book" is not a unique entity! BOUGHT(MARY, BOOK) Correct logical form:  $\exists x BOOK(x) \land BOUGHT(JOHN, x)$ But what should be the semantics of "a"?  $\lambda P.\lambda Q.\exists x P(x) \land Q(x)$ "a book":  $\lambda Q.\exists BOOK(x) \land Q(x)$ . (Need to change other NP rules) What about "the", "every", "most"?

We also want to represent tense: "bought" vs "will buy". (event variables)

3

SQ (~

## Learning from derivations

Input: John bought a book (utterance) Output:  $\exists x \operatorname{BOOK}(x) \land \operatorname{BOUGHT}(\operatorname{JOHN}, x)$  (logical form)

Can we use approaches in syntactic parsing?

 $\mathcal{A} \mathcal{A} \mathcal{A}$ 

# Learning from derivations

Input: John bought a book (utterance) Output:  $\exists x \operatorname{BOOK}(x) \land \operatorname{BOUGHT}(\operatorname{JOHN}, x)$  (logical form)

Can we use approaches in syntactic parsing?

Obstacles:

- Derivations are rarely annotated.
- Unlike syntactic parsing, cannot obtain derivations from logical forms.
- Spurious derivation: wrong derivations that reach the correct logical form.

SQ (V

# Learning from logical forms

*x*: John bought a book (utterance) *y*:  $\exists x \operatorname{BOOK}(x) \land \operatorname{BOUGHT}(\operatorname{JOHN}, x)$  (logical form)

Key idea: model derivation as a latent variable *z* [Zettlemoyer and Collins, 2005]

Learning: maximum marginal likelihood

$$\begin{split} & \text{og } p(y \mid x) = \log \sum_{z} p(y, z \mid x) \\ & = \log \sum_{z} \frac{\exp\left(\theta \cdot \Phi(x, y, z)\right)}{\sum_{z', y'} \exp\left(\theta \cdot \Phi(x, y', z')\right)} \end{split}$$

Need to learn both the lexicon and the model parameters (for CCG)

Use EM algorithm (with approximation)

He He (NYU)

▲ □ ▶ ▲ Ξ ▶ ▲ Ξ ▶ ● ○ ○ ○ ○

#### Framework



Figure: [Liang 2016]

3

590

<ロ> < 同> < 同> < 三> < 三>

CSCI-GA.2590

He He (NYU)

### Datasets

Geo880

- 880 questions and database queries about US geography
- "what is the highest point in the largest state?"
- Compositional utterances in a clean, narrow domain

ATIS

- 5418 utterances of airline queries and paired logical forms
- "show me information on american airlines from fort worth texas to philadelphia"
- More flexible word order but simpler logic

#### Free917, WebQuestions

- Questions and paired logical forms on Freebase
- Logically less complex but scales to many more predicates

- B

 $\land \land \land \land$ 

### Challenges

Meaning representation

- Domain-specific vs domain-general
- Natural language vs programming language
- Interaction with annotation and learning

Learning

- End-to-end (utterance to action)?
- Reinforcement learning (robotics, visual grounding)
- Interactive learning (obtain user feedback)

< ∃ >

3