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Generative vs discriminative models

Generative modeling:

Discriminative modeling:

Examples:

generative discriminative

classification Naive Bayes logistic regression
sequence labeling
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Generative modeling for sequence labeling

the

DT

fox

NN

jumped

VBD

over

IN

the

DT

dog

NN

Task: given x = (x1, . . . , xm) 2 Xm, predict y = (y1, . . . , ym) 2 Ym

Three questions:

I Modeling: how to define a parametric joint distribution p(x , y ; ✓)?

I Learning: how to estimate the parameters ✓ given observed data?

I Inference: how to e�ciently find argmaxy2Ym p(x , y ; ✓) given x?
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Decompose the joint probability

the

DT

fox

NN

jumped

VBD

over

IN

the

DT

dog

NN

p(x , y) = p(x | y)p(y)
= p(x1, . . . , xm | y)p(y)

=
mY

i=1

p(xi | y)p(y) Naive Bayes assumption

=
mY

i=1

p(xi | yi )p(y1, . . . , ym) a word only depends its own tag

=
mY

i=1

p(xi | yi )
mY

i=1

p(yi | yi�1) Markov assumption
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Hidden Markov models

Hidden Markov model (HMM):

I Discrete-time, discrete-state Markov chain

I Hidden states zi 2 Y (e.g. POS tags)

I Observations xi 2 X (e.g. words)

p(x1:m, y1:m) =
mY

i=1

p(xi | yi )| {z }
emission probability

mY

i=1

p(yi | yi�1)| {z }
transition probability

For sequence labeling:

I Transition probabilities: p(yi = t | yi�1 = t 0) = ✓t|t0

I Emission probabilities: p(xi = w | yi = t) = �w |t
I y0 = ⇤, ym = STOP
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Learning: MLE

Data: D = {(x , y)} (x 2 Xm, y 2 Ym)
Task: estimate transition probabilities ✓t|t0 and emission probabilities �w |t
(# parameters?)

`(✓, �) =
X

(x ,y)2D

 
mX

i=1

log p(xi | yi ) +
mX

i=1

log p(yi | yi�1)

!

max
✓,�

X

(x ,y)2D

 
mX

i=1

log �xi |yi +
mX

i=1

log ✓yi |yi�1

!

s.t.
X

w2X
�w |t = 1 8w 2 X

X

t2Y[{STOP}

✓t|t0 = 1 8t 0 2 Y [ {⇤}
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MLE solution

Count the occurrence of certain transitions and emissions in the data.

Transition probabilities:

✓t|t0 =
count(t 0 ! t)P

a2Y[{STOP} count(t
0 ! a)

Emission probabilities:

�w |t =
count(w , t)P

w 02X count(w 0, t)
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Inference

Task: given x 2 Xm, find the most likely y 2 Ym

argmax
y2Ym

log p(x , y)

= argmax
y2Ym

mX

i=1

log p(xi | yi ) +
mX

i=1

log p(yi | yi�1)

Viterbi + backtracking:

⇡[j , t] = max
t02Y

�
log p(xj | t) + log p(t | t 0) + ⇡[j � 1, t 0]

�

He He (NYU) CSCI-GA.2590 October 11, 2020 9 / 36



Table of Contents

1. HMM (fully observable case)

2. Expectation Minimization

3. EM for HMM

He He (NYU) CSCI-GA.2590 October 11, 2020 10 / 36



Naive Bayes with missing labels

Task:

I Assume data is generated from a Naive Bayes model.

I Observe
�
x (i)

 N
i=1

without labels.

I Estimate model parameters and the most likely labels.

ID US government gene lab label

1 1 1 0 0 ?
2 0 1 0 0 ?
3 0 0 1 1 ?
4 0 1 1 1 ?
5 1 1 0 0 ?
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A chicken and egg problem

If we know the model parameters, we can predict labels easily.
If we know the labels, we can estiamte the model parameters easily.

Idea: start with guesses of labels, then iteratively refine it.

ID US government gene lab label

1 1 1 0 0

0

2 0 1 0 0

0

3 0 0 1 1

0

4 0 1 1 1

1

5 1 1 0 0

1

US government gene lab

p(· | 0)

1/3 2/3 1/3 1/3

p(· | 1)

1/2 1 1/2 1/2
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A chicken and egg problem

If we know the model parameters, we can predict labels easily.
If we know the labels, we can estiamte the model parameters easily.

Idea: start with guesses of labels, then iteratively refine it.

ID US government gene lab label

1 1 1 0 0 0
2 0 1 0 0 0
3 0 0 1 1 0
4 0 1 1 1 1
5 1 1 0 0 1

US government gene lab

p(· | 0) 1/3 2/3 1/3 1/3
p(· | 1) 1/2 1 1/2 1/2
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Algorithm: EM for NB

1. Initialization: ✓  random parameters

2. Repeat until convergence:

(i) Inference:
q(y | x (i)) = p(y | x (i); ✓)

(ii) Update parameters:

✓w |y =

PN
i=1 q(y | x (i))I

⇥
w in x i

⇤
PN

i=1 q(y | x (i))

I With fully observed data, q(y | x (i)) = 1 if y (i) = y .

I Similar to the MLE solution except that we’re using “soft counts”.

I What is the algorithm optimizing?
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Objective: maximize marginal likelihood

Likelihood: L(✓;D) =
Q

x2D p(x ; ✓)

Marginal likelihood: L(✓;D) =
Q

x2D
P

z2Zp(x , z ; ✓)

I Marginalize over the (discrete) latent variable z 2 Z (e.g. missing
labels)

Maximum marginal log-likelihood estimator:

✓̂ = argmax
✓2⇥

X

x2D
log

X

z2Z
p(x , z ; ✓)

Goal: maximize log p(x ; ✓)
Challenge: in general not concave, hard to optimize
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Intuition

Problem: marginal log-likelihood is hard to optimize (only observing the
words)

Observation: complete data log-likelihood is easy to optimize (observing
both words and tags)

max
✓

log p(x , z ; ✓)

Idea: guess a distribution of the latent variables q(z) (soft tags)

Maximize the expected complete data log-likelihood:

max
✓

X

z2Z
q(z) log p(x , z ; ✓)

EM assumption: the expected complete data log-likelihood is easy to
optimize (use soft counts)
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Lower bound of the marginal log-likelihood

log p(x ; ✓) = log
X

z2Z
p(x , z ; ✓)

= log
X

z2Z
q(z)

p(x , z ; ✓)

q(z)
= logEz [p(x , z ; ✓)]

�
X

z2Z
q(z) log

p(x , z ; ✓)

q(z)
= Ez [log p(x , z ; ✓)]

def
= L(q, ✓)

I Evidence: log p(x ; ✓)

I Evidence lower bound (ELBO): L(q, ✓)
I q: chosen to be a family of tractable distributions

I Idea: maximize the ELBO instead of log p(x ; ✓)
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Justification for maximizing ELBO

L(q, ✓) =
X

z2Z
q(z) log

p(x , z ; ✓)

q(z)

=
X

z2Z
q(z) log

p(z | x ; ✓)p(x ; ✓)
q(z)

= �
X

z2Z
q(z) log

q(z)

p(z | x ; ✓) +
X

z2Z
q(z) log p(x ; ✓)

= �KL (q(z)kp(z | x ; ✓)) + log p(x ; ✓)| {z }
evidence

I KL divergence: measures “distance” between two distributions (not
symmetric!)

I KL (qkp) � 0 with equality i↵ q(z) = p(z | x).
I ELBO = evidence - KL  evidence
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Justification for maximizing ELBO

L(q, ✓) = �KL (q(z)kp(z | x ; ✓)) + log p(x ; ✓)

Fix ✓ = ✓0 and maxq L(q, ✓0): q⇤ = p(z | x ; ✓0)

Let ✓⇤, q⇤ be the global optimzer of L(q, ✓), then ✓⇤ is the global
optimizer of log p(x ; ✓). (Proof: exercise)
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Summary

Latent variable models: clustering, latent structure, missing lables etc.

Parameter estimation: maximum marginal log-likelihood

Challenge: directly maximize the evidence log p(x ; ✓) is hard

Solution: maximize the evidence lower bound:

ELBO = L(q, ✓) = �KL (q(z)kp(z | x ; ✓)) + log p(x ; ✓)

Why does it work?

q⇤(z) = p(z | x ; ✓) 8✓ 2 ⇥

L(q⇤, ✓⇤) = max
✓

log p(x ; ✓)
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EM algorithm

Coordinate ascent on L(q, ✓)
1. Random initialization: ✓old  ✓0

2. Repeat until convergence

(i) q(z) argmaxq L(q, ✓old)

Expectation (the E-step): q⇤(z) = p(z | x ; ✓old)

J(✓) =
X

z2Z
q⇤(z) log

p(x , z ; ✓)

q⇤(z)

(ii) ✓new  argmax✓ L(q⇤, ✓)

Minimization (the M-step): ✓new  argmax
✓

J(✓)

EM puts no constraint on q in the E-step and assumes the M-step is easy.
In general, both steps can be hard.
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Monotonically increasing likelihood

Exercise: prove that EM increases the marginal likelihood monotonically

log p(x ; ✓new) � log p(x ; ✓old) .

Does EM converge to a global maximum?
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EM for multinomial naive Bayes
Setting: x = (x1, . . . , xm) 2 Vm, z 2 {1, . . . ,K} ,D =

�
x (i)

 N
i=1

E-step:

q⇤(z) = p(z | x ; ✓old) =
Qm

i=1 p(xi | z ; ✓old)p(z ; ✓old)P
z 02Z

Qm
i=1 p(xi | z 0; ✓old)p(z 0; ✓old)

J(✓) =
X

x2D

X

z2Z
q⇤x (z)log p(x , z ; ✓) =

X

x2D

X

z2Z
q⇤x (z) log

mY

i=1

p(xi | z ; ✓)p(z ; ✓)

M-step:

max
✓

X

x2D

X

z2Z
q⇤x (z)

 
X

w2V
log ✓count(w |x)

w |z + log ✓z

!

s.t.
X

w2V
✓w |z = 1 8w 2 V,

X

z2Z
✓z = 1 ,

where count(w | x) def
= # occurrence of w in x
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EM for multinomial naive Bayes

M-step has closed-form solution:

✓z =

P
x2D q⇤x (z)P

z2Z
P

x2D q⇤x (z)| {z }
soft label count

✓w |z =

P
x2D q⇤x (z)count(w | x)P

w2V
P

x2D q⇤x (z)count(w | x)| {z }
soft word count

Similar to the MLE solution except that we’re using soft counts.
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M-step for multinomial naive Bayes

max
✓

X

x2D

X

z2Z
q⇤x (z)

 
X

w2V
log ✓count(w |x)

w |z + log ✓z

!

s.t.
X

w2V
✓w |z = 1 8w 2 V,

X

z2Z
✓z = 1
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Summary

Expectation minimization (EM) algorithm: maximizing ELBO L(q, ✓)
by coordinate ascent

E-step: Compute the expected complete data log-likelihood J(✓) using
q⇤(z) = p(z | x ; ✓old)

M-step: Maximize J(✓) to obtain ✓new

Assumptions: E-step and M-step are easy to compute

Properties: Monotonically improve the likelihood and converge to a
stationary point
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HMM recap

Setting:

I Hidden states zi 2 Y (e.g. POS tags)

I Observations xi 2 X (e.g. words)

p(x1:m, y1:m) =
mY

i=1

p(xi | yi )| {z }
emission probability

mY

i=1

p(yi | yi�1)| {z }
transition probability

Parameters:

I Transition probabilities: p(yi = t | yi�1 = t 0) = ✓t|t0

I Emission probabilities: p(xi = w | yi = t) = �w |t
I y0 = ⇤, ym = STOP

Task: estimate parameters given incomplete observations
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E-step for HMM

E-step:

q⇤(z) = p(z | x ; ✓, �)

L(q⇤, ✓, �) =
X

x2D

X

z2Z
q⇤x (z) log p(x , z ; ✓, �)

| {z }
expected complete log-likelihood

=
X

x2D

X

z2Z
q⇤x (z) log

mY

i=1

p(xi | zi )p(zi | zi�1)

| {z }
HMM

=
X

x2D

X

z2Z
q⇤x (z)

mX

i=1

0

BB@log p(xi | zi ; �)| {z }
�xi |zi

+ log p(zi | zi�1; ✓)| {z }
✓zi |zi�1

1

CCA
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M-step for HMM
M-step (similar to the NB solution):

max
✓,�

L(q⇤, ✓, �) =
X

x2D

X

z2Z
q⇤x (z)

mX

i=1

�
log �xi |zi + log ✓zi |zi�1

�

Emission probabilities:

�w |t =

P
x2D

P
z2Z q⇤x (z)count(w , t | x , z)P

w 02X
P

x2D
P

z2Z q⇤x (z)count(w
0, t | x , z)

count(w , t | x , z) def
= # word-tag pairs (w , t) in (x , z)

Transition probabilities:

✓t|t0 =

P
x2D

P
z2Z q⇤x (z)count(t

0 ! t | z)P
a2Y

P
x2D

P
z2Z q⇤x (z)count(t

0 ! a | z)

count(t 0 ! t | z) def
= # tag bigrams (t 0, t) in z
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M-step for HMM
Challenge:

P
z2Ym q⇤x (z)count(w , t | x , z)

the

DT

fox

NN

jumped

VBD

over

IN

the

DT

dog

NN

Group sequences where zi = t:

X

z2Ym

q⇤x (z)count(w , t | x , z) =
mX

i=1

µx(zi = t)I [xi = w ]

µx(zi = t) =
X

{z2Ym|zi=t}

q⇤x (z)
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M-step for HMM
Challenge:

P
z2Ym q⇤x (z)count(t

0 ! t | z)

the

DT

fox

NN

jumped

VBD

over

IN

the

DT

dog

NN

Group sequences where zi = t, zi�1 = t 0:

X

z2Ym

q⇤x (z)count(t
0 ! t | z) =

mX

i=1

µx(zi = t, zi�1 = t 0)

µx(zi = t) =
X

{z2Ym|zi=t,zi�1=t}

q⇤x (z)

He He (NYU) CSCI-GA.2590 October 11, 2020 31 / 36



Compute tag marginals
µx(zi = t): probability of the i-th tag being t given observed words x

µx(zi = t) =
X

z:zi=t

q⇤x (z) /
X

z:zi=t

mY

j=1

q(xi | zi )q(zi | zi�1)| {z }
 (zi ,zi�1)

=
X

z:zi=t

i�1Y

j=1

 (zj , zj�1)
mY

j=i

 (zj , zj�1)

=
X

t0

X

z:zi=t,zi�1=t0

i�1Y

j=1

 (zj , zj�1)
mY

j=i

 (zj , zj�1)

=
X

t0

0

BB@
X

z1:i�1

zi�1=t0

i�1Y

j=1

 (zj , zj�1)

1

CCA (t, t 0)

0

B@
X

zi+1:m
zi=t

mY

j=i

 (zj , zj�1)

1

CA

=
X

t0

↵[i � 1, t] (t, t 0)�[i , t] = ↵[i , t]�[i , t]
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Compute tag marginals

Forward probabilities: probability of tag sequence prefix ending at zi = t.

↵[i , t]
def
= q(x1, . . . , xi , zi = t)

↵[i , t] =
X

t02Y
↵[i � 1, t 0] (t 0, t)

Backward probabilities: probability of tag sequence su�x starting from
zi+1 give zi = t.

�[i , t]
def
= q(xi+1, . . . , xm | zi = t)

�[i , t] =
X

t02Y
�[i + 1, t 0] (t, t 0)
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Compute tag marginals

1. Compute forward and backward probabilities

↵[i , t] 8i 2 {1, . . . ,m} , t 2 Y [ {STOP}
�[i , t] 8i 2 {m, . . . , 1} , t 2 Y [ {⇤}

2. Comptute the tag unigram and bigram marginals

µx(zi = t)
def
= q(zi = t | x)

=
↵[i , t]�[i , t]

q(x)
=
↵[i , t]�[i , t]

↵[m, STOP]

µx(zi�1 = t 0, zi = t)
def
= q(zi�1 = t 0, zi = t | x)

=
↵[i � 1, t 0] (t 0, t)�[i , t]

q(x)

In practice, compute in the log space.
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Updated parameters

Emission probabilities:

�w |t =

P
x2D

P
z2Z q⇤x (z)count(w , t | x , z)P

w 02X
P

x2D
P

z2Z q⇤x (z)count(w
0, t | x , z)

=

P
x2D

Pm
i=1 µx(zi = t)I [xi = w ]P

w 02X
P

x2D
Pm

i=1 µx(zi = t)I [xi = w 0]

Transition probabilities:

✓t|t0 =

P
x2D

P
z2Z q⇤x (z)count(t

0 ! t | z)P
a2Y

P
x2D

P
z2Z q⇤x (z)count(t

0 ! a | z)

=

P
x2D

Pm
i=1 µx(zi�1 = t 0, zi = t)P

a2Y
P

x2D
Pm

i=1 µx(zi�1 = t 0, zi = a)
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Summary

EM for HMM:

1. Randomly initialize the emission and transition probabilities

2. Repeat until convergence

(i) Compute forward and backward probabilities
(ii) Update the emission and transition probabilities using expected

counts

If the solution is bad, re-run EM with a di↵erent random seed.

General EM:

I One example of variational methods (use a tractable q to
approximate p)

I May need approximation in both the E-step and the M-step

I Useful in probabilistic models and Bayesian methods
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