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Sequence labeling

Language modeling as sequence labeling:
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Part-of-speech (POS) tagging:
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Span prediction

Named-entity recognition (NER):

New York University is founded in 1831

Organization Date

BIO notation:

I Reduce span prediction to sequence labeling

I B-<tag>: the first word in span <tag>

I I-<tag>: other words in span <tag>

I O: words not in any span
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POS tagging

Part-of-speech: the syntactic role of each word in a sentence

POS tagset:

I Universal dependency tagset
I Open class tags: content words such as nouns, verbs,

adjectives, adverbs etc.
I Closed class tags: function words such as pronouns,

determiners, auxiliary verbs etc.

I Penn Treebank tagset (developed for English, 45 tags)

Application:

I Often the first step in the NLP pipeline.

I Used as features for other NLP tasks.

I Included in tools such as Stanford CoreNLP and spaCy.
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The majority baseline

A dumb approach: look up each word in the dictionary and return the
most common POS tag.

Problem: ambiguity. Example?

Most types are unambiguous, but ambiguous ones are common words!

Most common tag: 92% accuracy on WSJ (vs 97% SOTA)
Always compare to the majority class baseline.
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Multiclass classifcation

Task: given x = (x1, . . . , xm) 2 Xm, predict y = (y1, . . . , ym) 2 Ym.
Predictor: yi = h(x , i) 8i

Multinomial logistic regression (✓ 2 Rd):

p(yi | x) =
exp [✓ · �(x , i , yi )]P

y 02Y exp [✓ · �(x , i , y 0)]

Feature templates:
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Multiclass classifcation

Task: given x = (x1, . . . , xm) 2 Xm, predict y = (y1, . . . , ym) 2 Ym.
Predictor: yi = h(x , i) 8i

Multinomial logistic regression (✓ 2 Rd):

p(yi | x) =
exp [✓ · �(x , i , yi )]P

y 02Y exp [✓ · �(x , i , y 0)]

I Learning: MLE (is the objective convex?)

I Inference: trivial

I Does not consider dependency among yi ’s.

DT NN ?
B-<org> I-<org> ?
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Maximum-entropy markov model (MEMM)

Model the joint probability of y1, . . . , ym:

p(y1, . . . , ym | x) =
mY

i=1

p(yi | yi�1, x) .

I Use the Markov assumption similar to n-gram LM.

I Insert start/end symbols: y0 = ⇤ and ym = STOP.

Parametrization:

p(yi | yi�1, x) =
exp [✓ · �(x , i , yi , yi�1)]P

y 02Y exp [✓ · �(x , i , y 0, yi�1)]

New feature templates? (See J&M 8.5.1)
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Inference

Decoding / Inference:

argmax
y2Ym

mY

i=1

p(yi | yi�1, x)

= argmax
y2Ym

mX

i=1

log p(yi | yi�1, x)

= argmax
y2Ym

mX

i=1

s(yi , yi�1)| {z }
local score

,

where s(yi , yi�1) = ✓ · �(x , i , yi , yi�1).

I Bruteforce: exact, O(|Y|m)
I Greedy: inexact, O(m)

He He (NYU) CSCI-GA.2590 October 5, 2020 10 / 34



Viterbi decoding

max
y2Ym

mX

i=1

s(yi , yi�1)

= max
y2Ym

 
m�1X

i=1

s(yi , yi�1) + s(ym, ym�1)

!

= max
ym2Y

max
y2Ym�1

 
m�1X

i=1

s(yi , yi�1) + s(ym, ym�1)

!

= max
ym2Y

max
t2Y

max
y2Ym�1,ym�1=t

 
m�1X

i=1

s(yi , yi�1) + s(ym, ym�1 = t)

!

= max
ym2Y

max
t2Y

 
s(ym, t) + max

y2Ym�1,ym�1=t

m�1X

i=1

s(yi , yi�1)

!

= max
ym2Y

max
t2Y

(s(ym, t) + ⇡[m � 1, t])
| {z }

⇡[m,ym]
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Viterbi decoding

DP: ⇡[j , t] = maxt02Y ⇡[j � 1, t 0] + s(yj = t, yj�1 = t
0)

Backtracking: p[j , t] = argmaxt02Y ⇡[j � 1, t 0] + s(yj = t, yj�1 = t
0)

N

V

A

N

V

A

N

V

A

y1

language

y2

is

y3

fun

START STOP

Time complexity?
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Viterbi decoding on the graph

DP: ⇡[j , t] = maxt02Y ⇡[j � 1, t 0] + s(yj = t, yj�1 = t
0)
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Summary

Sequence labeling: Xm ! Ym

I Majority baseline: yi = h(xi ) (no context)

I Multiclass classification: yi = h(x , i) (global input context)

I MEMM: yi = h(x , i , yi�1) (global input context, previous output
context)

Problem: yt cannot be influenced by future evidence (more on this later)

Next: score x and the output y instead of local components yi
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Structured prediction

Task: given x = (x1, . . . , xm) 2 Xm, predict y = (y1, . . . , ym) 2 Ym.

I Similar to multiclass classification except that Y is very large

I Compatibility score: h : X ⇥ Y ! R
I Predictor: argmaxy2Ym h(x , y)

General idea:

I h(x , y) = f (✓ · �(x , y))
I � should be decomposable so that inference is tractable

I Loss functions: structured hinge loss, negative log-likelihood etc.

I Inference: viterbi, interger linear programming (ILP)
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Graphical models

Graphical model:

I A joint distribution of a set of random variables

I Learn the distribution from data

I Inference: compute conditional/marginal distributions

Example of a directed graphical model (aka Bayes nets):
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Undirected graphical models

Undirected graphical model (aka Markov random field):

I More natural for relational or spatial data

Conditional random field:

I MRF conditioned on observed data

I Parameterization:

p(y | x ; ✓) = 1

Z (x , ✓)

Y

c2C
 c(yc | x ; ✓)

I Z (x , ✓): partition function (normalizer)
I  c : non-negative clique potential functions, also called factors
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Linear-chain CRF

Model dependence among Yi ’s

p(y | x ; ✓) = 1

Z (x , ✓)

mY

i=1

 i (y1, . . . , ym | x ; ✓)
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Linear-chain CRF

Model dependence among neighboring Yi ’s

p(y | x ; ✓) = 1

Z (x , ✓)

mY

i=1

 i (yi , yi�1 | x ; ✓)
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Linear-chain CRF for sequence labeling

Log-linear potential function:

 i (yi , yi�1 | x ; ✓) = exp (✓ · �(x , i , yi , yi�1))

p(y | x ; ✓) /
mY

i=1

exp (✓ · �(x , i , yi , yi�1))

= exp

 
mX

i=1

✓ · �(x , i , yi , yi�1)

!

Log-linear model with decomposable global feature function:

�(x , y) =
mX

i=1

�(x , i , yi , yi�1)

p(y | x ; ✓) = exp (
Pm

i=1 ✓ · �(x , i , yi , yi�1))P
y 02Ym exp

�Pm
i=1 ✓ · �(x , i , y 0i , y 0i�1)

�

=
exp (✓ · �(x , y))P

y 02Ym exp (✓ · �(x , y))
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Learning

MLE:

`(✓) =
X

(x ,y)2D

log p(y | x ; ✓)

=
X

(x ,y)2D

log
exp (✓ · �(x , y))P

y 02Ym exp (✓ · �(x , y))

I Is the objective di↵erentiable?

I Use back-propogation (autodi↵) (equivalent to the forward-backward
algorithm).

I Main challenge: compute the partition function.
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Compute the partition function

log
X

y2Ym

exp

 
mX

i=1

s(yi , yi�1)

!

= log
X

y2Ym

 
exp

 
m�1X

i=1

s(yi , yi�1)

!
exp (s(ym, ym�1))

!

= log
X

ym2Y

X

t2Y

X

y2Ym�1,ym�1=t

exp

 
m�1X

i=1

s(yi , yi�1)

!
exp (s(ym, ym�1 = t))

= log
X

ym2Y

X

t2Y
exp (s(ym, ym�1 = t))

X

y2Ym�1,ym�1=t

exp

 
m�1X

i=1

s(yi , yi�1)

!

= log
X

ym2Y

X

t2Y
exp (s(ym, ym�1 = t)) exp (⇡[m � 1, ym])

= log
X

ym2Y

X

t2Y
exp (s(ym, ym�1 = t) + (⇡[m � 1, ym]))

| {z }
exp(⇡[m,ym])
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Compute the partition function

DP:

exp(⇡[j , t]) =
X

t02Y
exp

�
s(yj = t, yj�1 = t

0) + ⇡[j � 1, t 0]
�

⇡[j , t] = log
X

t02Y
exp

�
s(yj = t, yj�1 = t

0) + ⇡[j � 1, t 0]
�

The logsumexp function:

logsumexp(x1, . . . , xn) = log (ex1 + . . .+ e
xn)

logsumexp(x1, . . . , xn) = x
⇤ + log

⇣
e
x1�x⇤ + . . .+ e

xn�x⇤
⌘

I Same as Viterbi except that max is replaced by logsumexp.

I Is this a coincidence?

max(a+ b, a+ c) = a+max(b, c)

logsumexp(a+ b, a+ c) = a+ logsumexp(b, c)
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Forward algorithm on the graph

DP:

⇡[j , t] = log
X

t02Y
exp

�
s(yj = t, yj�1 = t

0) + ⇡[j � 1, t 0]
�
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Learning

Use forward algorithm to compute:

loss = �`(✓, x , y) = � log
exp (✓ · �(x , y))P

y 02Ym exp (✓ · �(x , y))
loss.backward()

Exercise: show that the optimal solution satisfies

X

(x ,y)2D

�k(x , y) =
X

(x ,y)2D

Ey⇠p✓ [�k(x , y)]

Interpretation: Observed counts of feature k equals expected counts of
feature k .
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Inference

argmax
y2Ym

log p(y | x ; ✓)

= argmax
y2Ym

log exp (✓ · �(x , y))

= argmax
y2Ym

mX

i=1

s(yi , yi�1)

I Find highest-scoring sequence.

I Use Viterbi + backtracking.
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Summary

Conditional random field

I Undirected graphical model

I Use factors to capture dependence among random variables

I Need to trade-o↵ modeling and inference

Linear-chain CRF for sequence labeling

I Models dependence between neighboring outputs

I Learning: forward algorithm + backpropagation

I Inference: Viterbi algorithm
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Classification using recurrent neural networks

Logistic regression with ht as the features:

p(yi | x) = softmax(Whohi + b)

h0 h1

x1

o1

Wihx1

Whoh1

h2

x2

o2

Wihx2

Whoh2

h3

x3

o3

Wihx3

Whoh3

. . .Whhh0 Whhh1 Whhh2 Whhh3

What is the problem?
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Bi-directional RNN

Use two RNNs to summarize the “past” and the “future”:

. . .

. . .

�!
h 1

x1

 �
h 1

[
�!
h 1;
 �
h 1]

 (y1)

�!
h 2

x2

 �
h 2

[
�!
h 2;
 �
h 2]

 (y2)

�!
h 3

x3

 �
h 3

[
�!
h 3;
 �
h 3]

 (y3)

. . .

. . .

I Concatenated hidden states: hi = [
�!
h 1:m;

 �
h 1:m]

I Optional: use yi�1 as inputs:
�!
h

0
i = [
�!
h i ; Wyhyi�1| {z }

label embedding

]
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Bi-LSTM CRF

Use neural nets to compute the local scores:

s(yi , yi�1) = sunigram(yi ) + sbigram(yi , yi�1)

Basic implementation:

sunigram(yi ) = (Whohi + b)[yi ]

sbigram(yi , yi�1) = ✓yi ,yi�1 (|Y|2 parameters )

Context-dependent scores:

sunigram(yi ) = (Whohi + b)[yi ]

sbigram(yi , yi�1) = wyi ,yi�1 · hi + byi ,yi�1
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Does it worth it?

Typical neural sequence models:

p(y | x ; ✓) =
mY

i=1

p(yi | x , y1:i�1; ✓)

Exposure bias: a learning problem

I Conditions on gold y1:i�1 during training but predicted ŷ1:i�1 during
test

I Solution: search-aware training

Label bias: a model problem

I Locally normalized models are strictly less expressive than globally
normalized given partial inputs [Andor+ 16]

I Solution: globally normalized models or better encoder
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Does it worth it?

Empirical results from [Goyal+ 19]
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