Sequence Labeling

He He

New York University

October 5, 2020

He He (NYU)

CSCI-GA.2590

October 5, 2020 1 / 34

王

5900

<ロト < 同ト < 三ト < 三ト

Table of Contents

1. Introduction

2. Maximum-entropy Markov Models

3. Conditional Random Field

4. Neural Sequence Modeling

<ロト < 同ト < 三ト < 三ト

æ

5900

Sequence labeling

the

*

Language modeling as sequence labeling:thefoxfoxjumped \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow

jumped

fox

DT	NN	VBD	IN	DT	NN
1	1	1	1	1	1
the	fox	jumped	over	the	dog

over

э

∃ →

SQ (2)

STOP

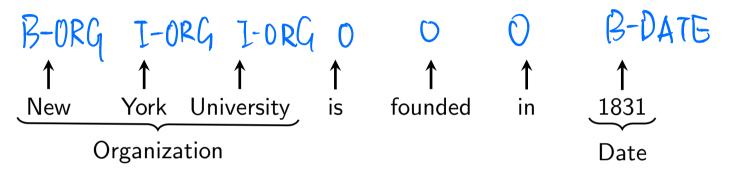
dog

the

< □ ▶

Span prediction

Named-entity recognition (NER):



BIO notation:

- Reduce span prediction to sequence labeling
- B-<tag>: the first word in span <tag>
- I-<tag>: other words in span <tag>
- O: words not in any span

 $\mathcal{A} \mathcal{A} \mathcal{A}$

< ∃ ▶

POS tagging

Part-of-speech: the syntactic role of each word in a sentence

POS tagset:

- Universal dependency tagset
 - Open class tags: content words such as nouns, verbs, adjectives, adverbs etc.
 - Closed class tags: function words such as pronouns, determiners, auxiliary verbs etc.
- Penn Treebank tagset (developed for English, 45 tags)

Application:

- Often the first step in the NLP pipeline.
- Used as features for other NLP tasks.
- Included in tools such as Stanford CoreNLP and spaCy.

SQ Q

The majority baseline

A dumb approach: look up each word in the dictionary and return the most common POS tag.

(4日) (日) (日)

< □ ▶

æ

SQ (~

The majority baseline

A dumb approach: look up each word in the dictionary and return the most common POS tag.

Problem: ambiguity. Example?

Types:		WS	WSJ		wn
Unambiguous	(1 tag)	44,432	(86%)	45,799	(85%)
Ambiguous	(2+ tags)	7,025	(14%)	8,050	(15%)
Tokens:					
Unambiguous	(1 tag)	577,421	(45%)	384,349	(33%)
Ambiguous	(2+ tags)	711,780	(55%)	786,646	(67%)

Figure 8.2 Tag ambiguity for word types in Brown and WSJ, using Treebank-3 (45-tag) tagging. Punctuation were treated as words, and words were kept in their original case.

Most types are unambiguous, but ambiguous ones are common words!

Most common tag: 92% accuracy on WSJ (vs 97% SOTA) Always compare to the majority class baseline.

SQ Q

Table of Contents

1. Introduction

2. Maximum-entropy Markov Models

3. Conditional Random Field

4. Neural Sequence Modeling

<ロ> <同> <同> < 同> < 同> < 三> < 三>

æ

SQ (~

Multiclass classifcation

Task: given $x = (x_1, \ldots, x_m) \in \mathcal{X}^m$, predict $y = (y_1, \ldots, y_m) \in \mathcal{Y}^m$. Predictor: $y_i = h(x, i) \quad \forall i$

Multinomial logistic regression $(\theta \in \mathbb{R}^d)$:

$$p(y_{i} | x) = \frac{\exp \left[\theta \cdot \phi(x, i, y_{i})\right]}{\sum_{y' \in \mathcal{Y}} \exp \left[\theta \cdot \phi(x, i, y')\right]}$$
Feature templates:
 $T_{i} = x \text{ tid}, y$

$$\begin{array}{c} \text{Training dara} \\ x \cdot \text{ Language is fun} \\ y \cdot \text{ NN VB AP} \\ y \cdot \text{ NN VB AP} \\ y = 1 (x \text{ ti}) - (\text{ anguage}, y = \text{ NN}) \end{array}$$

CSCI-GA.2590

JQ P

Multiclass classifcation

Task: given $x = (x_1, \ldots, x_m) \in \mathcal{X}^m$, predict $y = (y_1, \ldots, y_m) \in \mathcal{Y}^m$. Predictor: $y_i = h(x, i) \quad \forall i$

Multinomial logistic regression $(\theta \in \mathbb{R}^d)$:

$$p(y_i \mid x) = \frac{\exp\left[\theta \cdot \phi(x, i, y_i)\right]}{\sum_{y' \in \mathcal{Y}} \exp\left[\theta \cdot \phi(x, i, y')\right]}$$

- Learning: MLE (is the objective convex?)
- Inference: trivial
- Does not consider dependency among y_i's. DT NN ? B-<org> I-<org> ?

▲□▶▲□▶▲■▶▲■▶ ■ めぬ⊙

Maximum-entropy markov model (MEMM)

Model the joint probability of y_1, \ldots, y_m :

$$p(y_1,...,y_m \mid x) = \prod_{i=1}^m p(y_i \mid y_{i-1},x)$$
.

Use the Markov assumption similar to n-gram LM.

lnsert start/end symbols: $y_0 = *$ and $y_m = \text{STOP}$.

Parametrization:

$$p(y_i \mid y_{i-1}, x) = \frac{\exp\left[\theta \cdot \phi(x, i, y_i, y_{i-1})\right]}{\sum_{y' \in \mathcal{Y}} \exp\left[\theta \cdot \phi(x, i, y', y_{i-1})\right]}$$

New feature templates? (See J&M 8.5.1)

SQ Q

Inference

Decoding / Inference:

$$\arg \max_{y \in \mathcal{Y}^m} \prod_{i=1}^m p(y_i \mid y_{i-1}, x)$$
$$= \arg \max_{y \in \mathcal{Y}^m} \sum_{i=1}^m \log p(y_i \mid y_{i-1}, x)$$
$$= \arg \max_{y \in \mathcal{Y}^m} \sum_{i=1}^m \underbrace{s(y_i, y_{i-1})}_{\text{local score}},$$

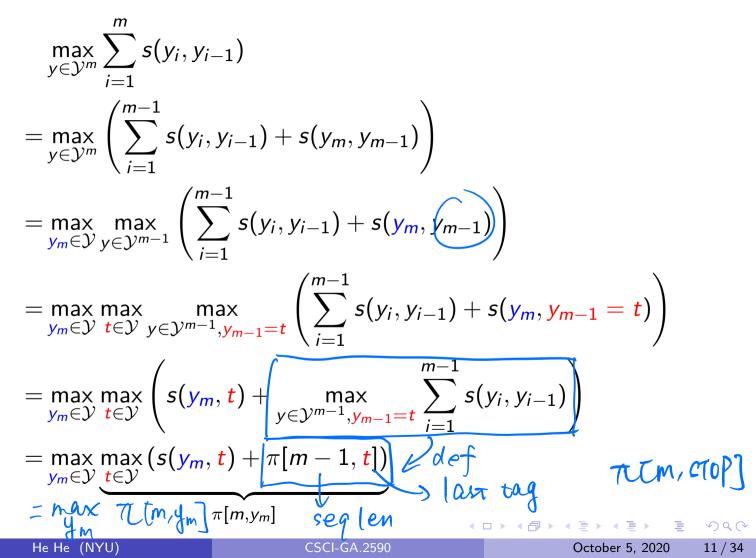
where $s(y_i, y_{i-1}) = \theta \cdot \phi(x, i, y_i, y_{i-1}).$

▶ Bruteforce: exact, $O(|\mathcal{Y}|^m)$

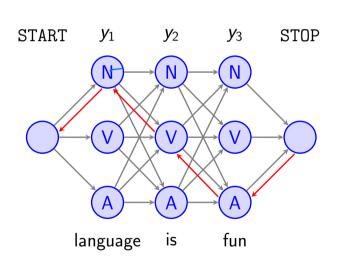
► Greedy: inexact, *O*(*m*)

500

Viterbi decoding



Viterbi decoding $[0 \ NN]$ DP: $\pi[j, t] = \max_{t' \in \mathcal{Y}} \pi[j - 1, t'] + s(y_j = t, y_{j-1} = t')$ Backtracking: $p[j, t] = \arg \max_{t' \in \mathcal{Y}} \pi[j - 1, t'] + s(y_i = t, y_{j-1} = t')$



Base:
$$\pi[0, t] = 0$$
 $\forall t \in V$
For $j = i: m$
For $t = i: 1Yi$
 $\pi T j, \tau j = \cdots$
Feturn $\pi[m, STOP]$

Time complexity? $\pi[j,t]$ $j \in \{1, ..., m\}$ $t \in \{1, ..., m\}$ $t \in \{1, ..., m\}$

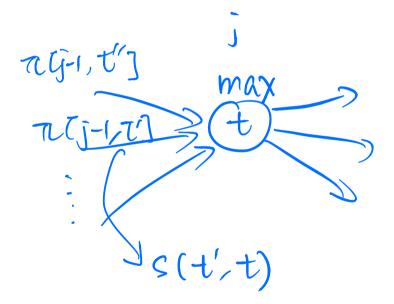
He He (NYU)

October 5, 2020 12 / 34

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Viterbi decoding on the graph

DP:
$$\pi[j, t] = \max_{t' \in \mathcal{Y}} \pi[j - 1, t'] + s(y_j = t, y_{j-1} = t')$$



3

5900

Summary

Sequence labeling: $\mathcal{X}^m \to \mathcal{Y}^m$

- **Majority baseline**: $y_i = h(x_i)$ (no context)
- Multiclass classification: $y_i = h(x, i)$ (global input context)
- MEMM: y_i = h(x, i, y_{i-1}) (global input context, previous output context)

Problem: y_t cannot be influenced by future evidence (more on this later)

Next: score x and the output y instead of local components y_i

◆□▶ ◆□▶ ▲三▶ ▲三▶ 三 ���

Table of Contents

1. Introduction

2. Maximum-entropy Markov Models

3. Conditional Random Field

4. Neural Sequence Modeling

<ロト < 同ト < 三ト < 三ト

3

SQ (~

Structured prediction

Task: given $x = (x_1, \ldots, x_m) \in \mathcal{X}^m$, predict $y = (y_1, \ldots, y_m) \in \mathcal{Y}^m$.

- Similar to multiclass classification except that \mathcal{Y} is very large
- Compatibility score: $h: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$
- ▶ Predictor: $\arg \max_{y \in \mathcal{Y}^m} h(x, y)$

General idea:

- $h(x,y) = f(\theta \cdot \Phi(x,y))$
- Φ should be decomposable so that inference is tractable
- Loss functions: structured hinge loss, negative log-likelihood etc.
- Inference: viterbi, interger linear programming (ILP)

◆□▶ ◆□▶ ▲三▶ ▲三▶ 三 ���

Graphical models

Graphical model:

- A joint distribution of a set of random variables
- Learn the distribution from data
- Inference: compute conditional/marginal distributions

Example of a directed graphical model (aka Bayes nets):

$$F(y) = \prod_{i=1}^{m} P(y_i | Pa(y_i))$$
$$= \prod_{i=1}^{m} P(y_i | N \cdot y_{T-i})$$

- ∢ ⊒ ▶

- B

SQ Q

Undirected graphical models

Undirected graphical model (aka Markov random field):

More natural for relational or spatial data

Conditional random field:

- \blacktriangleright MRF conditioned on observed data χ
- Parameterization:

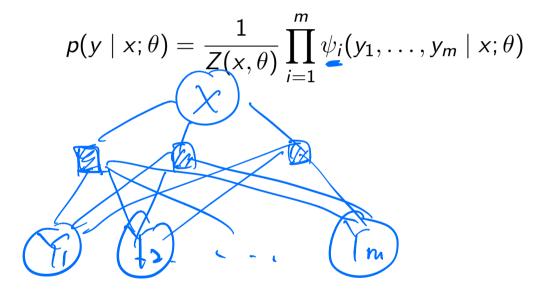
$$p(y \mid x; \theta) = \frac{1}{Z(x, \theta)} \prod_{c \in \mathcal{C}} \psi_c(y_c \mid x; \theta)$$

Z(x, θ): partition function (normalizer)
 ψ_c: non-negative clique potential functions, also called factors

▲□ ▲ = ▲ = ▶ ▲ = ● の Q @

Linear-chain CRF

Model dependence among Y_i 's



・ 同 ト ・ 三 ト ・ 三 ト

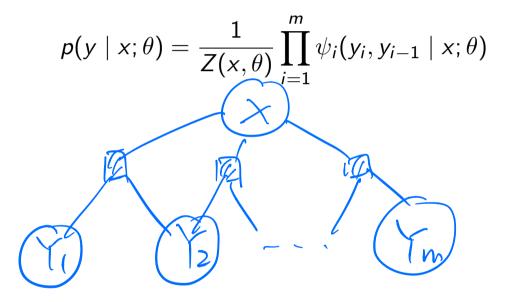
< <p>I

3

SQ (~

Linear-chain CRF

Model dependence among neighboring Y_i 's



< ∃ >

< □ ▶

3

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Linear-chain CRF for sequence labeling

Log-linear potential function:

$$\psi_i(y_i, y_{i-1} \mid x; \theta) = \exp(\theta \cdot \phi(x, i, y_i, y_{i-1}))$$
 $p(y \mid x; \theta) \propto \prod_{i=1}^m \exp(\theta \cdot \phi(x, i, y_i, y_{i-1}))$
 $= \exp\left(\sum_{i=1}^m \theta \cdot \phi(x, i, y_i, y_{i-1})\right)$

Log-linear model with decomposable global feature function:

$$\begin{aligned}
\Phi(x,y) &= \sum_{i=1}^{m} \phi(x,i,y_{i},y_{i-1}) \\
p(y \mid x;\theta) &= \frac{\exp\left(\sum_{i=1}^{m} \theta \cdot \phi(x,i,y_{i},y_{i-1})\right)}{\sum_{y' \in \mathcal{Y}^{m}} \exp\left(\sum_{i=1}^{m} \theta \cdot \phi(x,i,y'_{i},y'_{i-1})\right)} \\
&= \frac{\exp\left(\theta \cdot \Phi(x,y)\right)}{\sum_{y' \in \mathcal{Y}^{m}} \exp\left(\theta \cdot \Phi(x,y)\right)}
\end{aligned}$$

He He (NYU)

October 5, 2020 21 / 34

Learning

MLE:

$$\ell(\theta) = \sum_{(x,y)\in\mathcal{D}} \log p(y \mid x; \theta)$$
$$= \sum_{(x,y)\in\mathcal{D}} \log \frac{\exp\left(\theta \cdot \Phi(x,y)\right)}{\sum_{y'\in\mathcal{Y}^m} \exp\left(\theta \cdot \Phi(x,y)\right)}$$

- Is the objective differentiable?
- Use back-propogation (autodiff) (equivalent to the forward-backward algorithm).
- Main challenge: compute the partition function.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

▲ 同 ▶ ▲ 三 ▶ ▲ 三 ▶ ■ 三

Compute the partition function

Compute the partition function DP:

$$\exp(\pi[j, t]) = \sum_{t' \in \mathcal{Y}} \exp\left(s(y_j = t, y_{j-1} = t') + \pi[j-1, t']\right)$$
$$\pi[j, t] = \log\sum_{t' \in \mathcal{Y}} \exp\left(s(y_j = t, y_{j-1} = t') + \pi[j-1, t']\right)$$
$$\max_{t' \in \mathcal{Y}} \exp\left(s(y_j = t, y_{j-1} = t') + \pi[j-1, t']\right)$$

The logsumexp function:

$$logsumexp(x_1, \dots, x_n) = log(e^{x_1} + \dots + e^{x_n})$$

$$logsumexp(x_1, \dots, x_n) = x^* + log(e^{x_1 - x^*} + \dots + e^{x_n - x^*})$$

$$\bigvee^* = (M \cup (X_1 - X_n))$$

 Same as Viterbi except that max is replaced by logsumexp.
 Is this a coincidence?
 A⊗b ⊕ A⊗C = A⊗C b⊕C) max(a + b, a + c) = a + max(b, c)

$$logsumexp(a + b, a + c) = a + logsumexp(b, c)$$

He He (NYU)

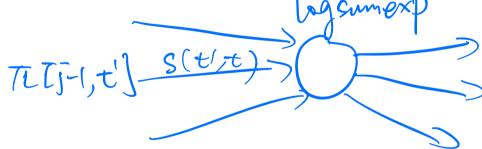
SQ (V

Forward algorithm on the graph

DP:

$$\underline{\pi[j,t]} = \log \sum_{t' \in \mathcal{Y}} \exp \left(s(y_j = t, y_{j-1} = t') + \pi[j-1,t'] \right)$$

$$\underbrace{\pi[j,t]}_{t' \in \mathcal{Y}} \exp \left(s(y_j = t, y_{j-1} = t') + \pi[j-1,t'] \right)$$



3

5900

- ∢ ⊒ →

< ロ > < 同 > < 三 > <

Learning

Use forward algorithm to compute:

$$loss = -\ell(\theta, x, y) = -\log \frac{\exp(\theta \cdot \Phi(x, y))}{\sum_{y' \in \mathcal{Y}^m} \exp(\theta \cdot \Phi(x, y))}$$

loss.backward()

Exercise: show that the optimal solution satisfies

$$\sum_{(x,y)\in\mathcal{D}}\Phi_k(x,y)=\sum_{(x,y)\in\mathcal{D}}\mathbb{E}_{y\sim p_\theta}\left[\Phi_k(x,y)\right]$$

Interpretation: Observed counts of feature k equals expected counts of feature k.

(日)

3

SQ (~

Inference

$$\begin{aligned} &\arg \max \log p(y \mid x; \theta) \\ &= \arg \max \log \exp \left(\theta \cdot \Phi(x, y)\right) \\ &= \arg \max_{y \in \mathcal{Y}^m} \sum_{i=1}^m s(y_i, y_{i-1}) \end{aligned}$$

- Find highest-scoring sequence.
- Use Viterbi + backtracking.

CSCI-GA.2590

< ∃ >

1

590

(二)、(四)、(三)、

Summary

Conditional random field

- Undirected graphical model
- Use factors to capture dependence among random variables
- Need to trade-off modeling and inference

Linear-chain CRF for sequence labeling

- Models dependence between neighboring outputs
- Learning: forward algorithm + backpropagation
- Inference: Viterbi algorithm

< ∃ ▶

- B

SQ Q

Table of Contents

1. Introduction

2. Maximum-entropy Markov Models

3. Conditional Random Field

4. Neural Sequence Modeling

<ロ> <同> <同> < 同> < 同> < 三> < 三>

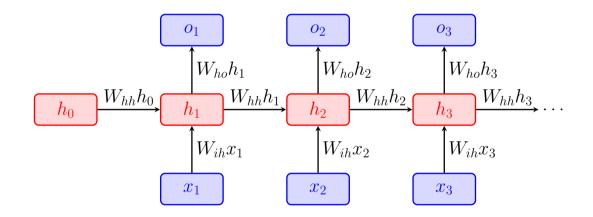
3

SQ (~

Classification using recurrent neural networks

Logistic regression with h_t as the features:

$$p(y_i \mid x) = \operatorname{softmax}(W_{ho}h_i + b)$$



What is the problem?

CSCI-GA.2590

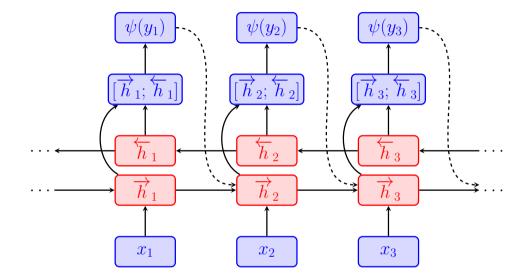
-

Э

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Bi-directional RNN

Use two RNNs to summarize the "past" and the "future":



• Concatenated hidden states: $h_i = [\overrightarrow{h}_{1:m}; \overleftarrow{h}_{1:m}]$

• Optional: use y_{i-1} as inputs: $\vec{h}'_i = [\vec{h}_i; \quad \underbrace{W_{yh}y_{i-1}}_{}]$ [MEMM]

label embedding

< ロ > < 同 > < 三 > < 三 >

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Bi-LSTM CRF

Use neural nets to compute the local scores:

$$s(y_i, y_{i-1}) = s_{\text{unigram}}(y_i) + s_{\text{bigram}}(y_i, y_{i-1})$$

Basic implementation:

$$egin{aligned} &s_{ ext{unigram}}(y_i) = (W_{ho}h_i + b)[y_i] \ &s_{ ext{bigram}}(y_i, y_{i-1}) = heta_{y_i, y_{i-1}} & (|\mathcal{Y}|^2 ext{ parameters }) \end{aligned}$$

Context-dependent scores:

$$egin{aligned} &s_{ ext{unigram}}(y_i) = (W_{ho}h_i + b)[y_i] \ &s_{ ext{bigram}}(y_i, y_{i-1}) = w_{y_i, y_{i-1}} \cdot h_i + b_{y_i, y_{i-1}} \end{aligned}$$

CSCI-GA.2590

<ロ > < 同 > < 同 > < 三 > < 三 >

3

SQ (~

Does it worth it?

Typical neural sequence models:

$$p(y \mid x; \theta) = \prod_{i=1}^{m} p(y_i \mid x, y_{1:i-1}; \theta)$$

Exposure bias: a learning problem

- Conditions on gold y_{1:i-1} during training but predicted ŷ_{1:i-1} during test
- Solution: search-aware training

Label bias: a model problem

- Locally normalized models are strictly less expressive than globally normalized given partial inputs [Andor+ 16]
- Solution: globally normalized models or better encoder

- B

 $\land \land \land \land$

Empirical results from [Goyal+ 19]

	Unidirectional	Bidirectional
pretrain-greedy	76.54	92.59
pretrain-beam	77.76	93.29
locally normalized	83.9	93.76
globally normalized	83.93	93.73

Table 2: Accuracy results on CCG supertagging when initialized with a regular teacher-forcing model. Reported using *Unidirectional* and *Bidirectional* encoders respectively with fixed attention tagging decoder. *pretrain-greedy* and *pretrain-beam* refer to the output of decoding the initializer model. *locally normalized* and *globally normalized* refer to searchaware soft-beam models

SQ (V

・ロト ・ 『 ・ ・ ヨ ・ ・ 日 ・