Language Models

He He

New York University

September 29, 2020

Table of Contents

\author{

1. Introduction
}
2. N-gram language models
3. Neural language models

4. Recurrent Neural Networks

5. Evaluation

Predict sequences

First part:

- Text representation $\phi:$ text $\rightarrow \mathbb{R}^{d}$
- BoW representation
- Distributed representation (word embeddings)
- Probabilistic models
- Multinomial Naive Bayes
- Logistic regression

Second part:

- Predict sequences
- Predict trees
- Inference algorithms

Language modeling

Motivation: pick the most probable sentence

- Speech recognition
the tail of a dog
the tale of a dog
It's not easy to wreck a nice beach.
It's not easy to recognize speech.
It's not easy to wreck an ice beach.
- Machine translation

He sat on the table.
He sat on the figure.
Such a Europe would the rejection of any ethnic nationalism.
Such a Europe would mark the refusal of all ethnic nationalism.

Problem formulation

- Vocabulary: a finite set of symbols \mathcal{V}, e.g. \{fox, green, red, dreamed, jumped, a, the\}
- Sentence: a finite sequence over the vocabulary $x_{1} x_{2} \ldots x_{n} \in \mathcal{V}^{n}$ where $n \geq 0$ (empty sequence when $n=0$)
- The set of all sentences: \mathcal{V}^{*}
- Goal: Assign a probability $p(x)$ to all sentences $x \in \mathcal{V}^{*}$.

Problem formulation

- Vocabulary: a finite set of symbols \mathcal{V}, e.g. \{fox, green, red, dreamed, jumped, a, the\}
- Sentence: a finite sequence over the vocabulary $x_{1} x_{2} \ldots x_{n} \in \mathcal{V}^{n}$ where $n \geq 0$ (empty sequence when $n=0$)
- The set of all sentences: \mathcal{V}^{*}
- Goal: Assign a probability $p(x)$ to all sentences $x \in \mathcal{V}^{*}$.

Assign probabilities:
the fox jumped 0.0)
the green fox dreamed 0,001
the green dreamed fox 0,000
dreamed red fox the 0.0001

Table of Contents

1. Introduction

2. N-gram language models
3. Neural language models
4. Recurrent Neural Networks
5. Evaluation

Learning a LM

- Given a corpus consisting of a set of sentences: $D=\left\{x^{(i)}\right\}_{i=1}^{N}$

Define

$$
p_{s}(x)=\frac{\operatorname{count}(\mathrm{x})}{N}
$$

(Check that $\sum_{x \in \mathcal{V}} p_{s}(x)=1$.)
Is p_{s} a good LM?

- estimation
- zero prob. on unseen data / generalization

Learning a LM

- Given a corpus consisting of a set of sentences: $D=\left\{x^{(i)}\right\}_{i=1}^{N}$
- Define

$$
p_{s}(x)=\frac{\operatorname{count}(x)}{N}
$$

(Check that $\sum_{x \in \mathcal{V}^{*}} p_{s}(x)=1$.)

- Is p_{s} a good LM?

Need to reduce the number of model parameters.

Simplification 1: sentences to symbols

Decompose the joint probability using chain rule:

$$
\begin{aligned}
p(x) & =p\left(x_{1}, \ldots, x_{n}\right) \\
& =p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{1}, x_{2}\right) \ldots p\left(x_{n} \mid x_{1}, \ldots, x_{n-1}\right) \\
& =p\left(x_{n}\right) P\left(x_{n-1} \mid x_{n}\right) \ldots P\left(x_{1} \mid x_{2} \ldots x_{n-1}\right) \\
& \text { leff to oight }
\end{aligned}
$$

Reduced number of outcomes: \mathcal{V}^{*} (sentences) to \mathcal{V} (symbols)
But there is still a large number of contexts!

Simplification 2: limited context

Reduce dependence on context by the Markov assumption:

- First-order Markov model

$$
\begin{aligned}
p\left(x_{i} \mid x_{1}, \ldots, x_{i-1}\right) & =p\left(x_{i} \mid x_{i-1}\right) \\
p(x) & =\prod_{i=1}^{n} p\left(x_{i} \mid x_{i-1}\right)
\end{aligned}
$$

- Number of contexts: $|\mathcal{V}|$
- Number of parameters: $|\mathcal{V}|^{2}$

Beginning of a sequence:

$$
p\left(x_{1} \mid x_{1-1}\right)=?
$$

Assume sequence starts with a special start symbol: $x_{0}=*$.

Model sequences of variable lengths

Sample a sequence from the first-order Markov model $p\left(x_{i} \mid x_{i-1}\right)$:

* It is ...

When to stop?

Model sequences of variable lengths

Sample a sequence from the first-order Markov model $p\left(x_{i} \mid x_{i-1}\right)$:

When to stop?
Assume that all sequences end with a stop symbol STOP, e.g.

$$
\begin{aligned}
& p(\text { the }, \text { fox, jumped, STOP }) \\
= & p(\text { the } \mid *) p(\text { fox } \mid \text { the }) p(\text { jumped } \mid \text { fox }) p(\text { STOP } \mid \text { jumped })
\end{aligned}
$$

LM with the STOP symbol:

- Vocabulary: STOP $\in \mathcal{V}$
- Sentence: $x_{1} x_{2} \ldots x_{n} \in \mathcal{V}^{n}$ for $n \geq 1$ and $x_{n}=$ STOP.

$$
x_{1}=\text { STOP }=\text { empty sequeme }
$$

N-gram LM

- Unigram language model:

$$
p\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} p\left(x_{i}\right)
$$

- Bigram language model $\left(x_{0}=*\right)$:

$$
p\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} p\left(x_{i} \mid x_{i-1}\right)
$$

- Trigram language model $\left(x_{-1}=*, x_{0}=*\right)$:

$$
p\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} p\left(x_{i} \mid x_{i-2}, x_{i-1}\right)
$$

- n-gram language model:

$$
p\left(x_{1}, \ldots, x_{m}\right)=\prod_{i=1}^{m} p(x_{i} \mid \underbrace{x_{i-n+1}, \ldots, x_{i-1}}_{\text {previous } n-1 \text { words }}) .
$$

Parameter estimation

- Data: a corpus $\left\{x^{(i)}\right\}_{i=1}^{N}$ where $x \in \mathcal{V}$.
- Model: bigram LM $p\left(w \mid w^{\prime}\right)$ for $w, w^{\prime} \in \mathcal{V}$.

$$
p\left(w \mid w^{\prime}\right)=\theta_{w \mid w^{\prime}}
$$

where $\sum_{w \in \mathcal{V}} p\left(w \mid w^{\prime}\right)=1 \quad \forall w^{\prime} \in \mathcal{V}$.
MLE:
$\max _{\theta \in \mathbb{R}^{|v| \times|N|}} \ell(\theta)=\sum_{c=1}^{N} \sum_{j=1}^{n} \log \underbrace{}_{\theta_{x_{j} \mid x_{j-1}}^{p\left(x_{j} \mid x_{j-1}\right)}}$

$$
\text { St. } \sum_{w \in V} \theta_{w \mid w^{\prime}}=1 \quad \forall w^{\prime} \in V
$$

MLE solution

- Unigram LM

$$
\hat{p}(x)=\frac{\operatorname{count}(w)}{\sum_{w \in \mathcal{V}} \operatorname{count}(w)}
$$

- Bigram LM

$$
\hat{p}\left(w \mid w^{\prime}\right)=\frac{\operatorname{count}\left(w, w^{\prime}\right)}{\sum_{w \in \mathcal{V}} \operatorname{count}\left(w, w^{\prime}\right)}=\operatorname{count}(w \prime)
$$

- In general, for n-gram LM,

$$
\hat{p}(w \mid c)=\frac{\operatorname{count}(w, c)}{\sum_{w \in \mathcal{V}} \operatorname{count}(w, c)}
$$

where $c \in \mathcal{V}^{n-1}$.

Example

- Training corpus
\{The fox is red, The red fox jumped, I saw a red fox\}
- Collect counts

$$
\begin{aligned}
& \operatorname{count}(\text { fox })=3 \\
& \operatorname{count}(\text { red })=3 \\
& \operatorname{count}(\text { red, } \mathrm{fox})=2
\end{aligned}
$$

- Parameter estimates

$$
\begin{aligned}
& \hat{p}(\text { red } \mid \text { fox })=\frac{\text { count }(\text { red, fox })}{\operatorname{connt}(\text { fox })}=\frac{2}{3} \\
& \hat{p}(\text { saw } \mid i)=\frac{1}{l}=1
\end{aligned}
$$

Example

- Training corpus
\{The fox is red, The red fox jumped, I saw a red fox\}
- Collect counts

$$
\begin{aligned}
& \operatorname{count}(\text { fox })=3 \\
& \operatorname{count}(\text { red })=3 \\
& \operatorname{count}(\text { red, fox })=2
\end{aligned}
$$

- Parameter estimates

$$
\begin{aligned}
& \hat{p}(\text { red } \mid \text { fox })= \\
& \hat{p}(\text { saw } \mid i)=
\end{aligned}
$$

- What is the probability of "I saw a brown fox jumped"? $=0$

Real n-gram counts
Google Books n-gram counts

Efficient implementation

- Memory, inference speed

- Context encodings, tries, caching, ...
- kenlm (https://github.com/kpu/kenlm)

Summary

Language models: assign probabilities to sentences
N -gram language models:

- Assume each word only conditions on the previous $n-1$ words
- MLE estimate: counting n-grams in the training corpus

Problems with vanilla n -gram models:

- Estimate of probabilities involving rare n-grams is inaccurate
- Sentences containing unseen n -grams have zero probability

Backoff and interpolation

What context size should we use?
Backoff: Use higher-order models when we have enough evidence.

- Stupid backoff:

Interpolation: mixture of n -gram models

$$
p\left(x_{i} \mid x_{i-2}, x_{i-1}\right)=\lambda_{1} p\left(x_{i} \mid x_{i-2}, x_{i-1}\right)+\lambda_{2} p\left(x_{i} \mid x_{i-1}\right)+\lambda_{3} p\left(x_{i}\right)
$$

where $\lambda_{1}+\lambda_{2}+\lambda_{3}=1$.

- λ can depend on context. $\lambda_{1}\left(x_{i-2}, x_{i-1}\right), \lambda_{2}\left(x_{i-1}\right)$
- Tune λ 's on the validation set.

Smoothing

How to estimate frequencies of unseen words?
More generally, estimate unseen elements in the support of a distribution.

- Given frequencies of observed species, what's the probability of encountering a new species?
- Given observed genetic variations from a certain population, what's the probability of observing new mutations?

Key idea: reserve some probability mass for unseen words

Add- α smoothing

$$
\text { Original estimate: } \frac{\operatorname{connt}(x)}{N}
$$

Discounted counts:

$$
\begin{aligned}
\frac{\operatorname{con}^{*}(x)}{N} & =\frac{\operatorname{cont}(x)+\alpha}{N+\alpha|V|} \\
\operatorname{comn}^{*}(x) & =(\operatorname{connt}(\infty)+\alpha) \frac{N}{N+\alpha|V|}
\end{aligned}
$$

Add-one smoothing

How does smoothing change the estimate?
Example:
$\operatorname{count}(x)=10, N=100,|\mathcal{V}|=1000$
Original: $10 / 100=0.1 \quad|\times|V|$
Smoothed: $(10+1) /(100+1000) \approx 0.01$
Assigns too much probability mass to unseen words!
Tuning α on validation set helps but still not good enough for LM.

Good-Turing smoothing

Key idea: use the validation set for estimation

Leave-one-out cross validation

Good-Turing smoothing

- Let N_{r} be the number of tokens that occur r times in the corpus
- How many held-out tokens are unseen during training? N।
\square
tran
val
$c(x)=0$

$$
c(x)=1
$$

How many held-out tokens are seen k times during training?

$$
(k+1) N_{k+1}
$$

- What's the "correct" count of a word that occur k times in the corpus? $\quad(k+1) N(\rightarrow$ Counts in held -out

$$
\operatorname{comut}^{+}(x)=\frac{(k+1) N k+1}{N / r} \Rightarrow \text { tworde veer }
$$ words recur

What's the probability of a word that occur k times in training?

$$
\hat{p}_{k}=\frac{\cos ^{*}(x)}{N_{1}}=\frac{(k+1) N_{\text {keel }}}{M N_{k}}
$$

$$
\hat{P}_{0}=\frac{N_{1}}{M}
$$

Kneser-Ney smoothing

Widely used for n-gram LMs.
Idea 1: absolute discounting.

		Cen	
Count in 22M Words	Avg in Next 22M	Good-Turing c*	
1	0.448	0.446	
2	1.25	1.26	
3	2.24	2.24	
4	3.23	3.24	

Figure: Good-Turing counts from Dan Klein's slides

Just subtract 0.75 or some constant.

Kneser-Ney smoothing

Idea 2: consider word versatility rather than word counts.
Motivation:
$\operatorname{count}($ San Francisco $)=100, \operatorname{count}($ Minneapolis $)=10$
I recently visited

Kneser-Ney smoothing

Idea 2: consider word versatility rather than word counts.
Motivation:
$\operatorname{count}($ San Francisco $)=100, \operatorname{count}($ Minneapolis $)=10$
I recently visited \qquad

Some words can only follow specific contexts, i.e. less versatile.
Continuation probability: how likely is w allowed in a context

$$
\begin{aligned}
& p_{\text {unigram }}(w) \propto \sum_{w^{\prime} \in \mathcal{V}} \operatorname{count}\left(w, w^{\prime}\right) \\
& p_{\text {continuation }}(w) \propto\left|\left\{w^{\prime}: \operatorname{count}\left(w, w^{\prime}\right)>0\right\}\right| \\
& \beta(w)=\frac{\# \text { bigram types ends with } w}{\# \text { bigram types }}
\end{aligned}
$$

Kneser-Ney smoothing

Combine the two ideas:

$$
\begin{aligned}
& \text { the two ideas: } \\
& \text { max f } \\
& \hat{p}\left(w \mid w^{\prime}\right)=\frac{\operatorname{count}\left(w, w^{\prime}\right)-d^{\prime}}{\operatorname{count}\left(w^{\prime}\right)}+\lambda\left(w^{\prime}\right) p_{\text {continuation }}(w) \\
& \text { ado. dismount }
\end{aligned}
$$

- Works well for ASR and MT.
- Dominating n-gram model before neural LIs.

Summary

Key ideas in n -gram language models:

Markov assumption:

- Trigram models are reasonable.
- ASR, MT often use 4- or 5-gram models.

Discounting / Smoothing:

- "Borrow" probability mass for unseen words
- Good-Turing smoothing, absolute discount

Dynamic context:

- Use more context if there is evidence
- Katz backoff, Kneser-Ney

See Chen and Goodman (1999) for more results.

Table of Contents

1. Introduction

2. N-gram language models
3. Neural language models

4. Recurrent Neural Networks

5. Evaluation

N-gram models by classification
Log-linear language model: $\theta_{w}-\phi(c)$, outpet

$$
p(w \mid c)=\frac{\exp [\theta \cdot \phi(w, c)]}{\sum_{w^{\prime} \in \underline{v}} \exp \left[\theta \cdot \phi\left(w^{\prime}, c\right)\right]}
$$

Feature templates:

$$
\begin{aligned}
T_{1}(w, c) & =w, c[-1] \\
T_{2}(w, c) & =w, \cos (c[-1]) \\
T_{3}(w, c) & =w, c[-1], c[-2] \\
& =
\end{aligned}
$$

Learn by MLE and SGD.

Fearures:

- Dota=
the brown fox jugd.
$-\oint_{1}(w, c)$
$=1(\omega=t h e, c[-1]=-*)$
$\phi_{2}(\omega, c)$
$=I(w=$ browen, $c[-1]=$ thi $)$

Feed-forward neural networks

Key idea in neural nets: feature/representation learning
Building blocks:

- Input layer: raw features (no learnable parameters)
- Hidden layer: perceptron + nonlinear activation function
- Output layer: linear (+ transformation, e.g. softmax)

Feed-forward neural language models

Encode the (fixed-length) context using feed-forward NN:

Computation graphs

Function as a node that takes in inputs and produces outputs.

- Typical computation graph:

- Broken out into components:

Compose multiple functions
Compose two functions $g: \mathbb{R}^{p} \rightarrow \mathbb{R}^{n}$ and $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.

$$
\vec{c}=f \circ g(\vec{a})=f(g(\vec{a}))_{0,} \quad g(\vec{a})=\vec{b}
$$

- How does change in a_{j} affect c_{i} ? $\frac{\partial c_{i}}{\partial a_{j}}=\frac{\partial C_{i}}{\partial \widehat{b}} \cdot \frac{\partial \vec{b}}{\partial a_{j}}, ~$
\quad Sum changes induced on all paths from a_{j} to c_{i}.
- Changes on one path is the product of changes on each edge.

$$
\frac{\partial c_{i}}{\partial a_{j}}=\sum_{k=1}^{n} \frac{\partial c_{i}}{\partial b_{k}} \frac{\partial b_{k}}{\partial a_{j}} .
$$

Computation graph example

(1) $\frac{\partial l}{\partial r}=2 r$
(2) $\frac{\partial l}{\partial \hat{y}}=\frac{\partial l}{\partial r} \cdot \frac{\partial r}{\partial \hat{y}}=2 r \times 1=2 r$
(3) $\frac{\partial l}{\partial w}=\frac{\partial l}{\partial r} \cdot \frac{\partial r}{\partial \tilde{y}} \cdot \frac{\partial \hat{y}}{\partial w}=2 r x$

Backpropogation

Backpropogation $=$ chain rule + dynamic programming on a computation graph

Forward pass

- Topological order: every node appears before its children
- For each node, compute the output given the input (from its parents).

Backpropogation

Backward pass

- Reverse topological order: every node appear after its children
- For each node, compute the partial derivative of its output w.r.t. its input, multiplied by the partial derivative from its children (chain rule).

Summary

Neural networks

- Automatically learn the features
- Optimize by SGD (implemented by back-propogation)
- Non-convex, may not reach a global minimum

Feed-forward neural language models

- Use fixed-size context (similar to n-gram models)
- Represent context by feed-forward neural networks

Table of Contents

1. Introduction

2. N-gram language models
3. Neural language models
4. Recurrent Neural Networks
5. Evaluation

Recurrent neural networks

How much context is needed?
... I went to-_
Idea: compute context representation recurrently

$$
h_{t}=\sigma(\underbrace{W_{h h} h_{t-1}}_{\text {previous state }}+\underbrace{W_{i h} x_{t}}_{\text {new input }}+b_{h})
$$

Backpropogation through time

Exercise: compute $\frac{\partial h_{t}}{\partial h_{i}} \frac{\partial l}{\partial \omega}=\frac{\partial l}{\partial y_{t}} \frac{\partial y_{t}}{\partial f} \frac{\partial f}{\partial h_{t}} \frac{\partial h_{t}}{\partial W}$

$$
\begin{aligned}
& h_{t}=\sigma(\underbrace{W_{h h} h_{t-1}}_{\substack{\text { previous state }}}+\underbrace{W_{i h} x_{t}}_{\text {new input }}+b_{h}) \cdot \sum_{i=1}^{t} \frac{\partial h_{t}}{\partial h_{i}} \\
& y_{t}=f\left(h_{t}\right)
\end{aligned}
$$

Problem:

- Gradient involves repeated multiplication of $W_{h h}=Q \wedge^{k} Q^{\top}$
- Gradient will vanish / explode

Quick fixes:

- Truncate after k steps (i.e. detach in the backward pass)
- Gradient clipping

Gated recurrent neural networks

Long-short term memory (LSTM)

- Memory cell: decide when to "memorize" or "forget" a state

$$
\begin{aligned}
\frac{\partial C_{t}}{\partial c_{t-1}} & c_{t}
\end{aligned}=\underbrace{[0,1]}_{\text {update }} \underbrace{i_{t} \odot \tilde{c}_{t}}_{\text {with new memory }}+\underbrace{[0,1]}_{\text {reset old memory }} \underbrace{f_{t}}_{t \odot c_{t-1}}
$$

- Input gate and forget gate

$$
\begin{aligned}
i_{t} & =\operatorname{sigmoid}\left(W_{x i} x_{t}+W_{h i} h_{t-1}+b_{i}\right) \\
f_{t} & =\operatorname{sigmoid}\left(W_{x f} x_{t}+W_{h f} h_{t-1}+b_{f}\right)
\end{aligned}
$$

- Hidden state

$$
\begin{aligned}
& h_{t}=o_{t} \odot c_{t}, \text { where } \\
& o_{t}=\operatorname{sigmoid}\left(W_{x o} x_{t}+W_{h o} h_{t-1}+b_{o}\right) .
\end{aligned}
$$

Table of Contents

1. Introduction

2. N-gram language models
3. Neural language models
4. Recurrent Neural Networks
5. Evaluation

Perplexity

What is the loss function for learning language models?
Held-out likelihood on test data D :

$$
\ell(D)=\sum_{i=1}^{|D|} \log p_{\theta}\left(x_{i} \mid x_{1: i-1}\right)
$$

Perplexity:

$$
\operatorname{PPL}(D)=2\left(-\frac{e(D)}{|D|} \cdot \operatorname{aug}\right. \text { NLL loss on test data }
$$

$$
\begin{aligned}
& \text { सnedist } \\
& \uparrow\left(p, p_{\theta}\right) \stackrel{H(p)}{=}=-\mathbb{E}_{x \sim p} \log p_{\theta}(x) .
\end{aligned}
$$

- Interpretation: a model of perplexity k predicts the next word by throwing a fair k-sided die.

