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Predict sequences

First part:

> Text representation ¢: text — R

» BoW representation
» Distributed representation (word embeddings)

» Probabilistic models

» Multinomial Naive Bayes
» Logistic regression

Second part:
» Predict sequences
» Predict trees

» Inference algorithms
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Language modeling

Motivation: pick the most probable sentence

» Speech recognition
the tail of a dog
the tale of a dog

It's not easy to wreck a nice beach.
It's not easy to recognize speech.
It's not easy to wreck an ice beach.

» Machine translation

He sat on the table.
He sat on the figure.

Such a Europe would the rejection of any ethnic nationalism.
Such a Europe would mark the refusal of all ethnic nationalism.
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Problem formulation

» Vocabulary: a finite set of symbols V, e.g.
{fox, green, red, dreamed, jJumped, a, the}

» Sentence: a finite sequence over the vocabulary xixo...x, € V"
where n > 0 (empty sequence when n = 0)

» The set of all sentences: V*

» Goal: Assign a probability p(x) to all sentences x € V*.
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Problem formulation

» Vocabulary: a finite set of symbols V, e.g.
{fox, green, red, dreamed, jJumped, a, the}

» Sentence: a finite sequence over the vocabulary xixo...x, € V"
where n > 0 (empty sequence when n = 0)

» The set of all sentences: V*

» Goal: Assign a probability p(x) to all sentences x € V*.

Assign probabilities:
the fox jumped 0_&))
the green fox dreamed 0.6 |
the green dreamed fox O,@'O@l
dreamed red fox the 0. 9—90\
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Learning a LM

: .y N
» Given a corpus consisting of a set of sentences: D = {x(’)}i:1

» Define
count(x)

ps(x) = N

(Check that @ ps(x) =1.)

» Is ps a good LM?
— est mati om
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Learning a LM

: .y N
» Given a corpus consisting of a set of sentences: D = {x(’)}izl

» Define
count(x)

ps(x) = N

(Check that ) .y ps(x) = 1.)

» |Is ps a good LM?

Need to reduce the number of model parameters.
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Simplification 1: sentences to symbols

Decompose the joint probability using chain rule:

p(x) = p(x1,...,xn)
= p(x1)p(x2 | x1)p(x3 | x1,%x2) ... p(Xn | X1, ..., Xn—1)

= PO P (oo 3) - P06 .- 5,-)
l@{{ to (gt

Reduced number of outcomes: V* (sentences) to V (symbols)

But there is still a large number of contexts!
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Simplification 2: limited context

Reduce dependence on context by the Markov assumption:

» First-order Markov model
p(xi | X1,y xi-1) = p(x; | xi-1)

p(x) = | [ p(xi | xi-1)
i=1

» Number of contexts: |V|

» Number of parameters: |V|?

Beginning of a sequence:

p(x1 | x1-1) =7

Assume sequence starts with a special start symbol: xg = x*.
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Model sequences of variable lengths

(e

Sample a sequence from the first-order Markov model p(x; | xj—1):

£ Tt s _..

When to stop?
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Model sequences of variable lengths

Sample a sequence from the first-order Markov model p(x; | xj—1):

When to stop?
Assume that all sequences end with a stop symbol STOP, e.g.

p(the, fox, jumped, STOP)
= p(the | x)p(fox | the)p(jumped | fox)p(STOP | jumped)

LM with the STOP symbol:
» Vocabulary: STOP € V
» Sentence: x1x>...x, € V" for n > 1 and x,, = STOP.

<, =STop - Crphy 2wl
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N-gram LM

» Unigram language model:
n
P(X]_, R 7Xn) — HP(XI) .
i=1

» Bigram language model (xg = *):

n
p(X17 s 7Xn) — Hp(xi ‘ Xi—l) .
i=1

» Trigram language model (x_1 = *, xp = *):

n
p(X17 SR 7Xn) — Hp(xi ’ Xi—QaXi—l) .
i=1

» n-gram language model:

m

p(X17 s 7Xm) — H ,D(Xi ’ 3<I'—n-|—17 s 7XI'—])) .
i=1 : v
previous n — 1 words
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Parameter estimation

» Data: a corpus {x(")};vzl where x € V&)
» Model: bigram LM p(w | w’) for w,w’ € V.
p(W | W,) — 9W|W’
where >° ., p(w | w')=1 VvYw' eV
MLE: (P_a C(x\
(
Ww/)( «Q(@) = ( J’( Pv\J)\——-\_)/

0 &RV x| G o 1y
C.1. z'w@_\; QW‘U\;' = Vv W'G\)
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MLE solution

» Unigram LM
~ \__ count(w)
Plx) = Y - wey count(w)
» Bigram LM
R count(w, w’
B(w | w') = . )

> wey count(w, w') — M(WD

» In general, for n-gram LM,

count(w, c)

ﬁ(WIC)=Z

wey count(w, c)

where ¢ € Y"1,
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Example

» Training corpus
{The fox is red, The red fox jumped,| saw a red fox}
» Collect counts

count(fox) = 3
count(red) = 3
count(red, fox) = 2

> .
Parameter estimates M (- f’Qﬂ(/ 6:63()

p(red | fox) = S =
p(saw | i) = ( t/m;m(-f—p)c)
[ >

P
3
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Example

» Training corpus
{The fox is red, The red fox jumped,| saw a red fox}
» Collect counts

count(fox) = 3
count(red) = 3
count(red, fox) = 2

» Parameter estimates
p(red | fox) =
plsaw | i) =
» What is the probability of “l saw a brown fox jumped”? — 0
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Real n-gram counts

Google Books n-gram counts

ree

Efficient implementation —1 ! Nl G4 b=

» Memory, inference speed
» Context encodings, tries, caching, ...
» kenlm (https://github.com/kpu/kenlm)
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Summary

Language models: assign probabilities to sentences

N-gram language models:
» Assume each word only conditions on the previous n — 1 words

» MLE estimate: counting n-grams in the training corpus

Problems with vanilla n-gram models:
» Estimate of probabilities involving rare n-grams is inaccurate

» Sentences containing unseen n-grams have zero probability
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Backoff and interpolation

What context size should we use?

Backoff: Use higher-order models when we have enough evidence.

» Stupid backoff:

count(xj_p+1:/)

SY{(XI | Xi—nt1:i-1) = count(Xj—pt1:i—1) it COU”F(Xi—nH:i) > 0
Ap\(Xi ’ Xi—n+2:i—1) otherwise
<

Interpolation: mixture of n-gram models

p(x; | xi—2,xi—1) = Ap(xi | Xi—2, Xi—1) + Aap(x; | xi—1) + A3p(xi)

where \{ + Ao + A3 = 1.

» )\ can depend on context. )\‘ C%E«—Z/XLLI) r “\"' CMC‘Q

» Tune \'s on the validation set.
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Smoothing

How to estimate frequencies of unseen words?

More generally, estimate unseen elements in the support of a distribution.

» Given frequencies of observed species, what's the probability of
encountering a new species?

» Given observed genetic variations from a certain population, what's
the probability of observing new mutations?

Key idea: reserve some probability mass for unseen words

4

.
/\;& W
\AM.,(,Q,QMV\)”‘O"\O{_S

He He (NYU) CSCI-GA.2590 September 29, 2020 18 /42




Add-a smoothing

vt ()

Original esti ,
riginal estimate I\J //) WM

Loyt (X)) + dl
N + o)V |

Smoothed estiamte:

Discounted counts:

I\ N ‘*dl'\f\

N
N V)

(/ﬁ/vwv*(’)() = (comt o))
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Add-one smoothing

How does smoothing change the estimate?

Example:
count(x) = 10, N = 100, |[V| = 1000

Original: 10/100 0.1 K(!\/‘
Smoothed: (10 + 1)/(100 + {OO ) z
Assigns too much probability mass to unseen words!

Tuning « on validation set helps but still not good enough for LM.
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Good-Turing smoothing

Key idea: use the validation set for estimation
n=A A v 0\&

F(mwr( Aytﬁ x)

Leave-one-out cross validation
Zedve-one-out |

7 2| = == L—\@ CK‘YBD(U{S)
\,2;:»\1/\ v
B )

YA
[Nt oxmfan | e

‘L C,ﬁ’va?l';(/x) (/e’tqug(%>
e
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Good-Turing smoothing

> Let@e the number of tokens that occur r times in the corpus

» How many held-out tokens are unseen during training? N '

L VA R v )

M (X)) =0 cLvy)=

» How many ‘held-out tokens are seen k times during training?

(RN

» What's the “correct” count of a word that occur k times in thmi
~out

corpus? %(% . %ﬁh\) N[Cﬂ v
)‘— f\} —_— %M‘d& et

> What s the probability of a word that occur k times in training?

3 _ (%) (esl) N
P R = M - M
Po = Tﬂ
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Kneser-Ney smoothing

Widely used for n-gram LMs.

|dea 1: absolute discounting.

held- oA

Countin 22M Words

Avg in Next 22M

Good-Turing c*

1 0.448 0.446
2 1.25 1.26
3 2.24 2.24
4 3.23 3.24

Figure: Good-Turing counts from Dan Klein's slides

Just subtract 0.75 or some constant.
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Kneser-Ney smoothing

Idea 2: consider word versatility rather than word counts.

Motivation:
count(San Francisco) = 100, count(Minneapolis) = 10

| recently visited ______.
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Kneser-Ney smoothing

Idea 2: consider word versatility rather than word counts.

Motivation:
count(San Francisco) = 100, count(Minneapolis) = 10

| recently visited ______.

Some words can only follow specific contexts, i.e. less versatile.

Continuation probability: how likely is w allowed in a context
Punigram(W) o >y count(w, w')

Peontinuation (W) o | {w’: count(w, w’) > 0} |

_ 7f bigram types ends with w
N # bigram types

Bw)
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Kneser-Ney smoothing

Combine the two ideas: 0 (‘}f
W‘””Z - v%aﬁlﬁa
A(Wlw/)_ ountww d’®> /( )
p — count( ) Pcontlnuatlon w

Wt despons ?M@rﬁﬁlay‘rf(nf\

» Works well for ASR and MT,

» Dominating n-gram model before neural LMs.
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Summary

Key ideas in n-gram language models:

Markov assumption:

» Trigram models are reasonable.
» ASR, MT often use 4- or 5-gram models.

Discounting / Smoothing:
» “Borrow” probability mass for unseen words

» Good-Turing smoothing, absolute discount

Dynamic context:
» Use more context if there is evidence
» Katz backoff, Kneser-Ney

See Chen and Goodman (1999) for more results.
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N-gram models by classification

Log-linear language model: 9""‘ Cﬁ( C) q WW

WMW‘(T
w0 Pl o0
Zwlehexp [0 - p(w/, )]
Feature templates: Fearuwre( /
T( (w-c) = W/ c[-1] — Dowvix =

Btw O = W, P ~ (w0
.
Tw, = W UAY 2] s ehe, o) =)

- b, LW O)
= 10w =brvwn, [ t4

(=

Learn by MLE and SGD.
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Feed-forward neural networks

Key idea in neural nets: feature/representation learning

Building blocks:

» Input layer: raw features (no learnable parameters)

» Hidden layer: perceptron + nonlinear activation function

» Output layer: linear (+ transformation, e.g. softmax)
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Feed-forward neural language models

Encode the (fixed-length) context using feed-forward NN:

[softmaX(Wox + b)] classification

J(Wy@ “merge” '\/\J 2| OC( +\N7'7* /YV.Q w%(%}

/\2/6\\9_—1 [1; 2; @3] concatenation
(: l_',] [ Wiz | | Wigx | | ngx] dense embedding
[ [¢one hot<$>| ¢one-hot(36)| ¢one_hot($)| one-hot embedding

\/\/"

(‘f' [ Th—1 ] [ Tp—2 ] [ Tk—3 ] input words

the  [rowp ”Cepg
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Computation graphs

Function as a node that takes in inputs and produces outputs.

» Typical computation graph:

a—(q )—L

K R’

He He (NYU) CSCI-GA.2590
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; 0
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Compose multiple functions
Compose two functions g : RP 2 R" and f : R" — ]R’"

C=deyp@=fam) %U\)r

=L

» How does change in a; affect ¢;7 gc( Q Q a‘g

» Visualize chain rule:

}
» Sum changes induced on all paths-from a; to c;. 03
» Changes on one path is the product of changes on each edge.

8C, Z 8c, abk

Daj “Oby Daj’
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Computation graph example JZ "
= I

2 W R . 2W = = = = T 9Dace




Backpropogation

Backpropogation = chain rule + dynamic programming on a computation
graph

Forward pass

» Topological order: every node appears before its children

» For each node, compute the output given the input (from its parents).

a ’ b=fi(a) c=fi(b)"
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Backpropogation

Backward pass

» Reverse topological order: every node appear after its children

» For each node, compute the partial derivative of its output w.r.t. its
input, multiplied by the partial derivative from its children (chain
rule).

j§)
A
@
N
o
I
h
—~
jA§]
¥
@
0
h
—~
o
N
A
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Summary

Neural networks
» Automatically learn the features
» Optimize by SGD (implemented by back-propogation)

» Non-convex, may not reach a global minimum

Feed-forward neural language models
» Use fixed-size context (similar to n-gram models)

» Represent context by feed-forward neural networks

He He (NYU) CSCI-GA.2590

September 29, 2020 36 /42



Table of Contents

4. Recurrent Neural Networks

He He (NYU)

CSCI-GA.2590




Recurrent neural networks

How much context is needed?

o lwent Fo

Idea: compute context representation recurrently

he = o( Wpphe—1 + Winxe +bp) .
N—— ——

previous state

)

Whohl

)

Whth

new input

()

Whohs

Winh Winh Winh Winh
1 ] hhl[ hy ] th[ hs ] hhil3

Winxy

)
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Backpropogation through time
90 _82 2% 8 Ik

Exercise: compute gzt IW T 24dx ¥ ohe 3\/\)

‘“ o]
hy = o( Whphi—1 + Winxe +bp) . "T
v M = {

previous state new input

$1 = f(he)

Problem:

» Gradient involves repeated multiplication of Wy,
» Gradient will vanish / explode

K
< QAQ'
Quick fixes:

» Truncate after k steps (i.e. detach in the backward pass)
» Gradient clipping
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Gated recurrent neural networks

Long-short term memory (LSTM)

» Memory cell: decide when to “memorize” or “forget” a state

CO:‘J [0/'j
o0& Ct = It © Ct + O

update with new memory  reset old memory

¢t = tanh(Wiexy + Whehe—1 + be) .
» Input gate and forget gate

iy = sigmoid( Wyixt + Whihi—1 + b;) ,
fr = sigmoid(WXth + Whrhi_1 + bf) :

» Hidden state

ht = 0+ ® Ct , where
Ot = Singid(WXOXt + Whoht—l + bo) .
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Perplexity

What is the loss function for learning language models?
Held-out likelihood on test data D:

D]

(D) =" "log pa(xi | x1:i-1) »
i=1

Perplexity:

D dat,
PPL(D)=@. g ML s on Teat S

mode(
= —Ex~p log po(x).

» Interpretation: a model of perplexity k predicts the next word by
throwing a fair k-sided die.

b
» Cross entropy: H(p, py)
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