
Language Models

He He

New York University

September 29, 2020

He He (NYU) CSCI-GA.2590 September 29, 2020 1 / 42

Table of Contents

1. Introduction

2. N-gram language models

3. Neural language models

4. Recurrent Neural Networks

5. Evaluation

He He (NYU) CSCI-GA.2590 September 29, 2020 2 / 42

Predict sequences

First part:

I Text representation � : text ! Rd

I BoW representation
I Distributed representation (word embeddings)

I Probabilistic models
I Multinomial Naive Bayes
I Logistic regression

Second part:

I Predict sequences

I Predict trees

I Inference algorithms

He He (NYU) CSCI-GA.2590 September 29, 2020 3 / 42

Language modeling

Motivation: pick the most probable sentence

I Speech recognition

the tail of a dog
the tale of a dog

It’s not easy to wreck a nice beach.
It’s not easy to recognize speech.
It’s not easy to wreck an ice beach.

I Machine translation

He sat on the table.
He sat on the figure.

Such a Europe would the rejection of any ethnic nationalism.
Such a Europe would mark the refusal of all ethnic nationalism.

He He (NYU) CSCI-GA.2590 September 29, 2020 4 / 42

Problem formulation

I Vocabulary: a finite set of symbols V, e.g.
{fox, green, red, dreamed, jumped, a, the}

I Sentence: a finite sequence over the vocabulary x1x2 . . . xn 2 Vn

where n � 0 (empty sequence when n = 0)

I The set of all sentences: V⇤

I Goal: Assign a probability p(x) to all sentences x 2 V⇤.

Assign probabilities:

the fox jumped

the green fox dreamed

the green dreamed fox

dreamed red fox the

He He (NYU) CSCI-GA.2590 September 29, 2020 5 / 42

Problem formulation

I Vocabulary: a finite set of symbols V, e.g.
{fox, green, red, dreamed, jumped, a, the}

I Sentence: a finite sequence over the vocabulary x1x2 . . . xn 2 Vn

where n � 0 (empty sequence when n = 0)

I The set of all sentences: V⇤

I Goal: Assign a probability p(x) to all sentences x 2 V⇤.

Assign probabilities:

the fox jumped

the green fox dreamed

the green dreamed fox

dreamed red fox the

He He (NYU) CSCI-GA.2590 September 29, 2020 5 / 42

Table of Contents

1. Introduction

2. N-gram language models

3. Neural language models

4. Recurrent Neural Networks

5. Evaluation

He He (NYU) CSCI-GA.2590 September 29, 2020 6 / 42

Learning a LM

I Given a corpus consisting of a set of sentences: D =
�
x
(i)
 N
i=1

I Define

ps(x) =
count(x)

N
.

(Check that
P

x2V⇤ ps(x) = 1.)

I Is ps a good LM?

Need to reduce the number of model parameters.

He He (NYU) CSCI-GA.2590 September 29, 2020 7 / 42

Learning a LM

I Given a corpus consisting of a set of sentences: D =
�
x
(i)
 N
i=1

I Define

ps(x) =
count(x)

N
.

(Check that
P

x2V⇤ ps(x) = 1.)

I Is ps a good LM?

Need to reduce the number of model parameters.

He He (NYU) CSCI-GA.2590 September 29, 2020 7 / 42

Simplification 1: sentences to symbols

Decompose the joint probability using chain rule:

p(x) = p(x1, . . . , xn)

= p(x1)p(x2 | x1)p(x3 | x1, x2) . . . p(xn | x1, . . . , xn�1)

Reduced number of outcomes: V⇤ (sentences) to V (symbols)

But there is still a large number of contexts!

He He (NYU) CSCI-GA.2590 September 29, 2020 8 / 42

Simplification 2: limited context

Reduce dependence on context by the Markov assumption:

I First-order Markov model

p(xi | x1, . . . , xi�1) = p(xi | xi�1)

p(x) =
nY

i=1

p(xi | xi�1)

I Number of contexts: |V|
I Number of parameters: |V|2

Beginning of a sequence:

p(x1 | x1�1) =?

Assume sequence starts with a special start symbol: x0 = ⇤.

He He (NYU) CSCI-GA.2590 September 29, 2020 9 / 42

Model sequences of variable lengths

Sample a sequence from the first-order Markov model p(xi | xi�1):

When to stop?

Assume that all sequences end with a stop symbol STOP, e.g.

p(the, fox, jumped, STOP)

= p(the | ⇤)p(fox | the)p(jumped | fox)p(STOP | jumped)

LM with the STOP symbol:

I Vocabulary: STOP 2 V
I Sentence: x1x2 . . . xn 2 Vn for n � 1 and xn = STOP.

He He (NYU) CSCI-GA.2590 September 29, 2020 10 / 42

Model sequences of variable lengths

Sample a sequence from the first-order Markov model p(xi | xi�1):

When to stop?

Assume that all sequences end with a stop symbol STOP, e.g.

p(the, fox, jumped, STOP)

= p(the | ⇤)p(fox | the)p(jumped | fox)p(STOP | jumped)

LM with the STOP symbol:

I Vocabulary: STOP 2 V
I Sentence: x1x2 . . . xn 2 Vn for n � 1 and xn = STOP.

He He (NYU) CSCI-GA.2590 September 29, 2020 10 / 42

N-gram LM
I Unigram language model:

p(x1, . . . , xn) =
nY

i=1

p(xi) .

I Bigram language model (x0 = ⇤):

p(x1, . . . , xn) =
nY

i=1

p(xi | xi�1) .

I Trigram language model (x�1 = ⇤, x0 = ⇤):

p(x1, . . . , xn) =
nY

i=1

p(xi | xi�2, xi�1) .

I n-gram language model:

p(x1, . . . , xm) =
mY

i=1

p(xi | xi�n+1, . . . , xi�1| {z }
previous n � 1 words

) .

He He (NYU) CSCI-GA.2590 September 29, 2020 11 / 42

Parameter estimation

I Data: a corpus
�
x
(i)
 N
i=1

where x 2 Vn.

I Model: bigram LM p(w | w 0) for w ,w 0 2 V.

p(w | w 0) = ✓w |w 0

where
P

w2V p(w | w 0) = 1 8w 0 2 V.

MLE:

He He (NYU) CSCI-GA.2590 September 29, 2020 12 / 42

MLE solution

I Unigram LM

p̂(x) =
count(w)P

w2V count(w)

I Bigram LM

p̂(w | w 0) =
count(w ,w 0)P

w2V count(w ,w 0)

I In general, for n-gram LM,

p̂(w | c) = count(w , c)P
w2V count(w , c)

where c 2 Vn�1.

He He (NYU) CSCI-GA.2590 September 29, 2020 13 / 42

Example

I Training corpus

{The fox is red,The red fox jumped, I saw a red fox}
I Collect counts

count(fox) = 3
count(red) = 3
count(red, fox) = 2
. . .

I Parameter estimates

p̂(red | fox) =
p̂(saw | i) =

I What is the probability of “I saw a brown fox jumped”?

He He (NYU) CSCI-GA.2590 September 29, 2020 14 / 42

Example

I Training corpus

{The fox is red,The red fox jumped, I saw a red fox}
I Collect counts

count(fox) = 3
count(red) = 3
count(red, fox) = 2
. . .

I Parameter estimates

p̂(red | fox) =
p̂(saw | i) =

I What is the probability of “I saw a brown fox jumped”?

He He (NYU) CSCI-GA.2590 September 29, 2020 14 / 42

Real n-gram counts

Google Books n-gram counts

E�cient implementation

I Memory, inference speed

I Context encodings, tries, caching, ...

I kenlm (https://github.com/kpu/kenlm)

He He (NYU) CSCI-GA.2590 September 29, 2020 15 / 42

Summary

Language models: assign probabilities to sentences

N-gram language models:

I Assume each word only conditions on the previous n � 1 words

I MLE estimate: counting n-grams in the training corpus

Problems with vanilla n-gram models:

I Estimate of probabilities involving rare n-grams is inaccurate

I Sentences containing unseen n-grams have zero probability

He He (NYU) CSCI-GA.2590 September 29, 2020 16 / 42

Backo↵ and interpolation
What context size should we use?

Backo↵: Use higher-order models when we have enough evidence.

I Stupid backo↵:

p̂(xi | xi�n+1:i�1) =

(
count(xi�n+1:i)

count(xi�n+1:i�1)
if count(xi�n+1:i) > 0

�p̂(xi | xi�n+2:i�1) otherwise

Interpolation: mixture of n-gram models

p(xi | xi�2, xi�1) = �1p(xi | xi�2, xi�1) + �2p(xi | xi�1) + �3p(xi)

where �1 + �2 + �3 = 1.

I � can depend on context.

I Tune �’s on the validation set.

He He (NYU) CSCI-GA.2590 September 29, 2020 17 / 42

Smoothing

How to estimate frequencies of unseen words?

More generally, estimate unseen elements in the support of a distribution.

I Given frequencies of observed species, what’s the probability of
encountering a new species?

I Given observed genetic variations from a certain population, what’s
the probability of observing new mutations?

Key idea: reserve some probability mass for unseen words

He He (NYU) CSCI-GA.2590 September 29, 2020 18 / 42

Add-↵ smoothing

Original estimate:

Smoothed estiamte:

Discounted counts:

He He (NYU) CSCI-GA.2590 September 29, 2020 19 / 42

Add-one smoothing

How does smoothing change the estimate?

Example:

count(x) = 10,N = 100, |V| = 1000

Original: 10/100 = 0.1

Smoothed: (10 + 1)/(100 + 1000) ⇡ 0.01

Assigns too much probability mass to unseen words!

Tuning ↵ on validation set helps but still not good enough for LM.

He He (NYU) CSCI-GA.2590 September 29, 2020 20 / 42

Good-Turing smoothing

Key idea: use the validation set for estimation

Leave-one-out cross validation

He He (NYU) CSCI-GA.2590 September 29, 2020 21 / 42

Good-Turing smoothing

I Let Nr be the number of tokens that occur r times in the corpus

I How many held-out tokens are unseen during training?

I How many held-out tokens are seen k times during training?

I What’s the “correct” count of a word that occur k times in the
corpus?

I What’s the probability of a word that occur k times in training?

He He (NYU) CSCI-GA.2590 September 29, 2020 22 / 42

Kneser-Ney smoothing

Widely used for n-gram LMs.

Idea 1: absolute discounting.

Figure: Good-Turing counts from Dan Klein’s slides

Just subtract 0.75 or some constant.

He He (NYU) CSCI-GA.2590 September 29, 2020 23 / 42

Kneser-Ney smoothing

Idea 2: consider word versatility rather than word counts.

Motivation:

count(San Francisco) = 100, count(Minneapolis) = 10

I recently visited .

Some words can only follow specific contexts, i.e. less versatile.

Continuation probability: how likely is w allowed in a context

punigram(w) /
P

w 02V count(w ,w 0)

pcontinuation(w) / | {w 0 : count(w ,w 0) > 0} |

�(w) =
bigram types ends with w

bigram types

He He (NYU) CSCI-GA.2590 September 29, 2020 24 / 42

Kneser-Ney smoothing

Idea 2: consider word versatility rather than word counts.

Motivation:

count(San Francisco) = 100, count(Minneapolis) = 10

I recently visited .

Some words can only follow specific contexts, i.e. less versatile.

Continuation probability: how likely is w allowed in a context

punigram(w) /
P

w 02V count(w ,w 0)

pcontinuation(w) / | {w 0 : count(w ,w 0) > 0} |

�(w) =
bigram types ends with w

bigram types

He He (NYU) CSCI-GA.2590 September 29, 2020 24 / 42

Kneser-Ney smoothing

Combine the two ideas:

p̂(w | w 0) =
count(w ,w 0)� d

count(w’)
+ �(w 0)pcontinuation(w)

I Works well for ASR and MT.

I Dominating n-gram model before neural LMs.

He He (NYU) CSCI-GA.2590 September 29, 2020 25 / 42

Summary

Key ideas in n-gram language models:

Markov assumption:

I Trigram models are reasonable.

I ASR, MT often use 4- or 5-gram models.

Discounting / Smoothing:

I “Borrow” probability mass for unseen words

I Good-Turing smoothing, absolute discount

Dynamic context:

I Use more context if there is evidence

I Katz backo↵, Kneser-Ney

See Chen and Goodman (1999) for more results.

He He (NYU) CSCI-GA.2590 September 29, 2020 26 / 42

Table of Contents

1. Introduction

2. N-gram language models

3. Neural language models

4. Recurrent Neural Networks

5. Evaluation

He He (NYU) CSCI-GA.2590 September 29, 2020 27 / 42

N-gram models by classification

Log-linear language model:

p(w | c) = exp [✓ · �(w , c)]P
w 02V exp [✓ · �(w 0, c)]

Feature templates:

Learn by MLE and SGD.

He He (NYU) CSCI-GA.2590 September 29, 2020 28 / 42

Feed-forward neural networks

Key idea in neural nets: feature/representation learning

Building blocks:

I Input layer: raw features (no learnable parameters)

I Hidden layer: perceptron + nonlinear activation function

I Output layer: linear (+ transformation, e.g. softmax)

He He (NYU) CSCI-GA.2590 September 29, 2020 29 / 42

Feed-forward neural language models

Encode the (fixed-length) context using feed-forward NN:

xk�1

�one-hot(x)

W11x

xk�2

�one-hot(x)

W12x

xk�3

�one-hot(x)

W13x

[x1; x2; x3]

�(W2x + b)

softmax(Wox + b)

input words

one-hot embedding

dense embedding

concatenation

“merge”

classification

He He (NYU) CSCI-GA.2590 September 29, 2020 30 / 42

Computation graphs

Function as a node that takes in inputs and produces outputs.

I Typical computation graph: I Broken out into components:

He He (NYU) CSCI-GA.2590 September 29, 2020 31 / 42

Compose multiple functions
Compose two functions g : Rp ! Rn and f : Rn ! Rm.

I How does change in aj a↵ect ci?

I Visualize chain rule:
I Sum changes induced on all paths from aj to ci .
I Changes on one path is the product of changes on each edge.

@ci
@aj

=
nX

k=1

@ci
@bk

@bk
@aj

.

He He (NYU) CSCI-GA.2590 September 29, 2020 32 / 42

Computation graph example

He He (NYU) CSCI-GA.2590 September 29, 2020 33 / 42

Backpropogation

Backpropogation = chain rule + dynamic programming on a computation
graph

Forward pass

I Topological order: every node appears before its children

I For each node, compute the output given the input (from its parents).

. . . fi fj . . .

a b = fi (a) c = fj(b)

He He (NYU) CSCI-GA.2590 September 29, 2020 34 / 42

Backpropogation

Backward pass

I Reverse topological order: every node appear after its children

I For each node, compute the partial derivative of its output w.r.t. its
input, multiplied by the partial derivative from its children (chain
rule).

. . . fi fj . . .

a b = fi (a) c = fj(b)

gi = gj · @b
@a = @J

@a gj =
@J
@b

He He (NYU) CSCI-GA.2590 September 29, 2020 35 / 42

Summary

Neural networks

I Automatically learn the features

I Optimize by SGD (implemented by back-propogation)

I Non-convex, may not reach a global minimum

Feed-forward neural language models

I Use fixed-size context (similar to n-gram models)

I Represent context by feed-forward neural networks

He He (NYU) CSCI-GA.2590 September 29, 2020 36 / 42

Table of Contents

1. Introduction

2. N-gram language models

3. Neural language models

4. Recurrent Neural Networks

5. Evaluation

He He (NYU) CSCI-GA.2590 September 29, 2020 37 / 42

Recurrent neural networks

How much context is needed?
... I went

Idea: compute context representation recurrently

ht = �(Whhht�1| {z }
previous state

+ Wihxt| {z }
new input

+bh) .

h0 h1

x1

o1

Wihx1

Whoh1

h2

x2

o2

Wihx2

Whoh2

h3

x3

o3

Wihx3

Whoh3

. . .Whhh0 Whhh1 Whhh2 Whhh3

He He (NYU) CSCI-GA.2590 September 29, 2020 38 / 42

Backpropogation through time

Exercise: compute @ht
@hi

ht = �(Whhht�1| {z }
previous state

+ Wihxt| {z }
new input

+bh) .

Problem:

I Gradient involves repeated multiplication of Whh

I Gradient will vanish / explode

Quick fixes:

I Truncate after k steps (i.e. detach in the backward pass)

I Gradient clipping

He He (NYU) CSCI-GA.2590 September 29, 2020 39 / 42

Gated recurrent neural networks

Long-short term memory (LSTM)

I Memory cell: decide when to “memorize” or “forget” a state

ct = it � c̃t| {z }
update with new memory

+ ft � ct�1| {z }
reset old memory

c̃t = tanh(Wxcxt +Whcht�1 + bc) .

I Input gate and forget gate

it = sigmoid(Wxixt +Whiht�1 + bi) ,

ft = sigmoid(Wxf xt +Whf ht�1 + bf) .

I Hidden state

ht = ot � ct , where

ot = sigmoid(Wxoxt +Whoht�1 + bo) .

He He (NYU) CSCI-GA.2590 September 29, 2020 40 / 42

Table of Contents

1. Introduction

2. N-gram language models

3. Neural language models

4. Recurrent Neural Networks

5. Evaluation

He He (NYU) CSCI-GA.2590 September 29, 2020 41 / 42

Perplexity

What is the loss function for learning language models?

Held-out likelihood on test data D:

`(D) =

|D|X

i=1

log p✓(xi | x1:i�1) ,

Perplexity:

PPL(D) = 2�
`(D)

|D| .

I Cross entropy: H(p, p✓) = �Ex⇠p log p✓(x).

I Interpretation: a model of perplexity k predicts the next word by
throwing a fair k-sided die.

He He (NYU) CSCI-GA.2590 September 29, 2020 42 / 42

