Language Models

He He

New York University

September 29, 2020

1

イロト イポト イヨト イヨト

Table of Contents

1. Introduction

- 2. N-gram language models
- 3. Neural language models
- 4. Recurrent Neural Networks
- 5. Evaluation

æ

SQ (~

< □ > < □ > < □ > < □ > < □ > < □ > < □ >

Predict sequences

First part:

- Text representation ϕ : text $\rightarrow \mathbb{R}^d$
 - BoW representation
 - Distributed representation (word embeddings)
- Probabilistic models
 - Multinomial Naive Bayes
 - Logistic regression

Second part:

- Predict sequences
- Predict trees
- Inference algorithms

э.

SQ Q

< ∃ >

Language modeling

Motivation: pick the most probable sentence

Speech recognition

the *tail* of a dog the *tale* of a dog

It's not easy to *wreck a nice beach*. It's not easy to *recognize speech*. It's not easy to *wreck an ice beach*.

Machine translation

He sat on the *table*.

He sat on the *figure*.

Such a Europe would *the rejection of any* ethnic nationalism. Such a Europe would *mark the refusal of all* ethnic nationalism.

SQ Q

< ∃ ▶

Problem formulation

- Vocabulary: a *finite* set of symbols V, e.g. {fox, green, red, dreamed, jumped, a, the}
- Sentence: a *finite* sequence over the vocabulary $x_1x_2...x_n \in \mathcal{V}^n$ where $n \ge 0$ (empty sequence when n = 0)
- The set of all sentences: \mathcal{V}^*
- Goal: Assign a probability p(x) to all sentences $x \in \mathcal{V}^*$.

SQ Q

Problem formulation

- Vocabulary: a *finite* set of symbols V, e.g. {fox, green, red, dreamed, jumped, a, the}
- Sentence: a *finite* sequence over the vocabulary $x_1x_2...x_n \in \mathcal{V}^n$ where $n \ge 0$ (empty sequence when n = 0)
- \blacktriangleright The set of all sentences: \mathcal{V}^*
- Goal: Assign a probability p(x) to all sentences $x \in \mathcal{V}^*$.

Assign probabilities:

the fox jumped (0.0)the green fox dreamed (0.0)the green dreamed fox (0.00)dreamed red fox the (0.00)

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Table of Contents

1. Introduction

- 2. N-gram language models
- 3. Neural language models
- 4. Recurrent Neural Networks
- 5. Evaluation

æ

SQ (~

<ロ > < 同 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Learning a LM

• Given a corpus consisting of a set of sentences: $D = \{x^{(i)}\}_{i=1}^{N}$

Define

(Check that
$$\sum_{x \in \mathcal{V}} p_s(x) = 1.$$
)

ls p_s a good LM?

- estimation - zero prob. on unseen data / generalization

 $p_s(x) = \frac{\operatorname{count}(x)}{N}$.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Learning a LM

• Given a corpus consisting of a set of sentences: $D = \{x^{(i)}\}_{i=1}^N$

Define

$$p_s(x) = \frac{\operatorname{count}(x)}{N}$$

(Check that $\sum_{x \in \mathcal{V}^*} p_s(x) = 1.$)

ls p_s a good LM?

Need to reduce the number of model parameters.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□▶

Simplification 1: sentences to symbols

Decompose the joint probability using chain rule:

$$p(x) = p(x_1, \dots, x_n)$$

= $p(x_1)p(x_2 \mid x_1)p(x_3 \mid x_1, x_2) \dots p(x_n \mid x_1, \dots, x_{n-1})$
= $p(x_n) p(x_{n-1} \mid x_n) \dots p(x_n \mid x_{2} \dots x_{n-1})$
loft to right

Reduced number of outcomes: \mathcal{V}^* (sentences) to \mathcal{V} (symbols)

But there is still a large number of contexts!

SQ Q

< 17 ► <

Simplification 2: limited context

Reduce dependence on context by the Markov assumption:

First-order Markov model

$$p(x_i \mid x_1, \dots, x_{i-1}) = p(x_i \mid x_{i-1})$$

 $p(x) = \prod_{i=1}^n p(x_i \mid x_{i-1})$

- Number of contexts: $|\mathcal{V}|$
- ▶ Number of parameters: $|\mathcal{V}|^2$

Beginning of a sequence:

$$p(x_1 \mid x_{1-1}) = ?$$

Assume sequence starts with a special start symbol: $x_0 = *$.

SQ Q

< □ ▶ < □ ▶ <</p>

Model sequences of variable lengths

Sample a sequence from the first-order Markov model $p(x_i | x_{i-1})$:

* It is ...

When to stop?

500

< □ ▶ < 同 ▶

Model sequences of variable lengths

Sample a sequence from the first-order Markov model $p(x_i | x_{i-1})$:

When to stop?

Assume that all sequences end with a stop symbol STOP, e.g.

p(the, fox, jumped, STOP)
= p(the | *)p(fox | the)p(jumped | fox)p(STOP | jumped)

LM with the STOP symbol:

• Vocabulary: STOP $\in \mathcal{V}$

▶ Sentence: $x_1x_2...x_n \in \mathcal{V}^n$ for $n \ge 1$ and $x_n = \text{STOP}$.

×1=STOP : empty sequence

He He (NYU)

SQ C

N-gram LM

Unigram language model:

$$p(x_1,\ldots,x_n)=\prod_{i=1}^n p(x_i)$$
.

• Bigram language model $(x_0 = *)$:

$$p(x_1,...,x_n) = \prod_{i=1}^n p(x_i \mid x_{i-1}).$$

▶ Trigram language model $(x_{-1} = *, x_0 = *)$:

$$p(x_1,...,x_n) = \prod_{i=1}^n p(x_i \mid x_{i-2}, x_{i-1}).$$

n-gram language model:

$$p(x_1, \dots, x_m) = \prod_{i=1}^{m} p(x_i \mid \underbrace{x_{i-n+1}, \dots, x_{i-1}}_{\text{previous } n-1 \text{ words}}).$$

$$(\text{SCI-GA.2590} \text{ September 29, 2020} 11/42)$$

Parameter estimation

• Data: a corpus
$$\left\{x^{(i)}
ight\}_{i=1}^{N}$$
 where $x \in \mathcal{V}_{\mathcal{P}}$.

▶ Model: bigram LM p(w | w') for $w, w' \in \mathcal{V}$.

$$p(w \mid w') = heta_{w \mid w'}$$

where
$$\sum_{w \in \mathcal{V}} p(w \mid w') = 1 \quad \forall w' \in \mathcal{V}.$$

MLE:
 $\max_{\substack{n \in \mathcal{V} \\ 0 \in \mathbb{N}^{|v| | \times |v|}}} \sum_{\substack{n \in \mathcal{V} \\ c = 1}} \sum_{\substack{j = 1 \\ j = 1}}^{n} \log p(x_j(x_{j-1})) + \sum_{\substack{n \in \mathcal{V} \\ j = 1}}^{n} \sum_{\substack{j = 1 \\ 0 \neq v_j \in \mathcal{V}}} \sum_{\substack{n \in \mathcal{V} \\ j = 1}}^{n} \sum_{\substack{n \in \mathcal{V} \\ j = 1}}^{n}$

 $\mathcal{A} \mathcal{A} \mathcal{A}$

MLE solution

Unigram LM

$$\hat{p}(x) = \frac{\operatorname{count}(w)}{\sum_{w \in \mathcal{V}} \operatorname{count}(w)}$$

Bigram LM

$$\hat{p}(w \mid w') = \frac{\operatorname{count}(w, w')}{\sum_{w \in \mathcal{V}} \operatorname{count}(w, w')} = \operatorname{count}(w)$$

► In general, for n-gram LM,

$$\hat{p}(w \mid c) = \frac{\operatorname{count}(w, c)}{\sum_{w \in \mathcal{V}} \operatorname{count}(w, c)}$$

where $c \in \mathcal{V}^{n-1}$.

500

Example

Training corpus

{The fox is red, The red fox jumped, I saw a red fox}

Collect counts

. . .

$$count(fox) = 3$$

 $count(red) = 3$
 $count(red, fox) = 2$

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Example

Training corpus

{The fox is red, The red fox jumped, I saw a red fox}

Collect counts

. . .

- count(fox) = 3
 count(red) = 3
 count(red, fox) = 2
- Parameter estimates
 - $\hat{p}(\mathsf{red} \mid \mathsf{fox}) = \hat{p}(\mathsf{saw} \mid \mathsf{i}) =$

• What is the probability of "I saw a brown fox jumped"? = 0

SQ (?

- 4 🗗 ▶

Real n-gram counts

э.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

< ロ > < 同 > < 三 > < 三 >

Summary

Language models: assign probabilities to sentences

N-gram language models:

- Assume each word only conditions on the previous n-1 words
- MLE estimate: counting n-grams in the training corpus

Problems with vanilla n-gram models:

- Estimate of probabilities involving rare n-grams is inaccurate
- Sentences containing unseen n-grams have zero probability

 $\land \land \land \land$

Backoff and interpolation

What context size should we use?

Backoff: Use higher-order models when we have enough evidence.

Stupid backoff:

$$\hat{sp}(x_i \mid x_{i-n+1:i-1}) = \begin{cases} \frac{\text{count}(x_{i-n+1:i})}{\text{count}(x_{i-n+1:i-1})} & \text{if } \text{count}(x_{i-n+1:i}) > 0\\ \lambda \hat{p}(x_i \mid x_{i-n+2:i-1}) & \text{otherwise} \end{cases}$$

Interpolation: mixture of n-gram models

$$p(x_i \mid x_{i-2}, x_{i-1}) = \lambda_1 p(x_i \mid x_{i-2}, x_{i-1}) + \lambda_2 p(x_i \mid x_{i-1}) + \lambda_3 p(x_i)$$

where $\lambda_1 + \lambda_2 + \lambda_3 = 1$.

- ► λ can depend on context. $\lambda_1 (\chi_{\dot{c}-2}, \chi_{\dot{c}-1}), \lambda_2 (\chi_{\dot{c}-c})$
- Tune λ 's on the validation set.

He He (NYU)

Image: Image:

- E

SQ (V

Smoothing

How to estimate frequencies of unseen words?

More generally, estimate unseen elements in the support of a distribution.

- Given frequencies of observed species, what's the probability of encountering a new species?
- Given observed genetic variations from a certain population, what's the probability of observing new mutations?

Key idea: reserve some probability mass for unseen words

Add- α smoothing

Add-one smoothing

How does smoothing change the estimate?

Example:

count(x) = 10,
$$N = 100, |\mathcal{V}| = 1000$$

Original: $10/100 \neq 0.1$
Smoothed: $(10 + 1)/(100 + 1000) \approx 0.01$

Assigns too much probability mass to unseen words!

Tuning α on validation set helps but still not good enough for LM.

< <p>Image: Image: Imag

- 4 🗗 ▶

- **B**

SQ (~

Good-Turing smoothing

3

 $\mathcal{A} \mathcal{A} \mathcal{A}$

글 🕨 🖌 글 🕨

▲ 🗗 🕨

< □ ▶

Good-Turing smoothing

Widely used for n-gram LMs.

Idea 1: absolute discounting.

reld-out		
Count in 22M Words	Avg in Next 22M	Good-Turing c*
1	0.448	0.446
2	1.25	1.26
3	2.24	2.24
4	3.23	3.24

Figure: Good-Turing counts from Dan Klein's slides

Just subtract 0.75 or some constant.

< ∃ >

1

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Idea 2: consider word versatility rather than word counts.

Motivation:

count(San Francisco) = 100, count(Minneapolis) = 10
I recently visited _____.

Idea 2: consider word versatility rather than word counts.

Motivation:

count(San Francisco) = 100, count(Minneapolis) = 10
I recently visited _____.

Some words can only follow specific contexts, i.e. less versatile.

Continuation probability: how likely is *w* allowed in a context $p_{unigram}(w) \propto \sum_{w' \in \mathcal{V}} count(w, w')$ $p_{continuation}(w) \propto |\{w': count(w, w') > 0\}|$

$$\beta(w) = rac{\# \text{ bigram types ends with } w}{\# \text{ bigram types}}$$

◆□▶ ◆□▶ ▲三▶ ▲三▶ 三 ���

- Works well for ASR and MT.
- Dominating n-gram model before neural LMs.

SQ Q

Summary

Key ideas in n-gram language models:

Markov assumption:

- Trigram models are reasonable.
- ► ASR, MT often use 4- or 5-gram models.

Discounting / Smoothing:

- "Borrow" probability mass for unseen words
- Good-Turing smoothing, absolute discount

Dynamic context:

- Use more context if there is evidence
- Katz backoff, Kneser-Ney

See Chen and Goodman (1999) for more results.

▲ ■ ▶ ■

Table of Contents

1. Introduction

- 2. N-gram language models
- 3. Neural language models
- 4. Recurrent Neural Networks
- 5. Evaluation

3

SQ (~

N-gram models by classification

Log-linear language model:

e model:

$$\begin{aligned}
\varphi' &= \varphi(c) &= \varphi$$

ſ .

$$T_{1}(w,c) = w, c[-1]$$

$$T_{2}(w,c) = w, POS(c[-1])$$

$$T_{1}(w,c) = w, c[-1], c[-2]$$

$$=$$

Learn by MLE and SGD.

Features: - Dota : The brown fox jupe. $-\phi_{(w,c)}$ = 1 (w= the, c[-1] = *) $\phi_2(w,c)$ = 1(w=brown, cf-if the

Feed-forward neural networks

Key idea in neural nets: feature/representation learning

Building blocks:

- Input layer: raw features (no learnable parameters)
- Hidden layer: perceptron + nonlinear activation function
- Output layer: linear (+ transformation, e.g. softmax)

 $\neg \land \land \land$

Image: Image:

Feed-forward neural language models

Encode the (fixed-length) context using feed-forward NN:

Computation graphs

Function as a node that takes in inputs and produces outputs.

Typical computation graph: $a \xrightarrow{g} \qquad b$ $\mathcal{R}^{\rho} \qquad \mathcal{R}^{n}$ Broken out into components:

< 🗆 🕨

< A

э.

E.

SQ (~

Compose multiple functions

Compose two functions $g : \mathbb{R}^p \to \mathbb{R}^n$ and $f : \mathbb{R}^n \to \mathbb{R}^m$. $C = f \circ g(\overline{a}) = f(g(\overline{a}))$ ceRm beR" aeR How does change in a_j affect c_i? Visualize chain rule: Sum changes induced on all paths from a_j to c_i . Changes on one path is the product of changes on each edge.

$$\frac{\partial c_i}{\partial a_j} = \sum_{k=1}^n \frac{\partial c_i}{\partial b_k} \frac{\partial b_k}{\partial a_j}.$$

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Backpropogation

 $\label{eq:Backpropogation} \mbox{Backpropogation} = \mbox{chain rule} + \mbox{dynamic programming on a computation} \\ \mbox{graph}$

Forward pass

- **Topological order**: every node appears before its children
- For each node, compute the output given the input (from its parents).

SQ (2)

Backpropogation

Backward pass

- Reverse topological order: every node appear after its children
- For each node, compute the partial derivative of its output w.r.t. its input, multiplied by the partial derivative from its children (chain rule).

SQ Q

B b

Summary

Neural networks

- Automatically learn the features
- Optimize by SGD (implemented by back-propogation)
- Non-convex, may not reach a global minimum

Feed-forward neural language models

- Use fixed-size context (similar to n-gram models)
- Represent context by feed-forward neural networks

< ∃ ▶

3

SQ Q

Table of Contents

1. Introduction

- 2. N-gram language models
- 3. Neural language models
- 4. Recurrent Neural Networks

5. Evaluation

3

SQ (~

イロト イポト イヨト イヨト

Recurrent neural networks

How much context is needed?

... I went ____0_____

Idea: compute context representation recurrently

$$h_t = \sigma(\underbrace{W_{hh}h_{t-1}}_{} + \underbrace{W_{ih}x_t}_{} + b_h).$$

previous state

te new input

CSCI-GA.2590

3

SQ (~

Backpropogation through time

Exercise: compute
$$\frac{\partial h_t}{\partial h_i}$$
 $\frac{\partial \ell}{\partial W} = \frac{\partial \ell}{\partial y_t} \frac{\partial y_t}{\partial f} \frac{\partial f_t}{\partial h_t} \frac{\partial h_t}{\partial W}$
 $h_t = \sigma(\underbrace{W_{hh}h_{t-1}}_{\text{previous state}} + \underbrace{W_{ih}x_t}_{\text{new input}} + b_h) \cdot \underbrace{\sum_{i=1}^{t} \frac{\partial h_i}{\partial h_i}}_{i=1}$

Problem:

- Gradient involves repeated multiplication of $W_{hh} = Q \bigwedge^{k} Q^{T}$
- Gradient will vanish / explode

Quick fixes:

- Truncate after k steps (i.e. detach in the backward pass)
- Gradient clipping

SQ (V

- 4 🗗 ▶

Gated recurrent neural networks

Long-short term memory (LSTM)

Memory cell: decide when to "memorize" or "forget" a state

$$c_t = \underbrace{\begin{bmatrix} 0 & i \end{bmatrix}}_{\substack{i_t \odot \tilde{c}_t}}_{\text{update with new memory}} + \underbrace{\begin{bmatrix} 0 & i \end{bmatrix}}_{\text{reset old memory}}_{\text{reset old memory}}$$
$$\tilde{c}_t = \tanh(W_{xc}x_t + W_{hc}h_{t-1} + b_c).$$

Input gate and forget gate

$$egin{aligned} &i_t = \mathsf{sigmoid}(W_{xi}x_t + W_{hi}h_{t-1} + b_i) \ , \ &f_t = \mathsf{sigmoid}(W_{xf}x_t + W_{hf}h_{t-1} + b_f) \ . \end{aligned}$$

Hidden state

$$h_t = o_t \odot c_t$$
, where
 $o_t = \operatorname{sigmoid}(W_{xo}x_t + W_{ho}h_{t-1} + b_o)$

Table of Contents

1. Introduction

- 2. N-gram language models
- 3. Neural language models
- 4. Recurrent Neural Networks

5. Evaluation

э.

SQ (~

Perplexity

What is the loss function for learning language models?

Held-out likelihood on test data D:

$$\ell(D) = \sum_{i=1}^{|D|} \log p_{\theta}(x_i \mid x_{1:i-1}) ,$$

throwing a fair k-sided die.

SQ Q