# Distributed representation of text 

He He

New York University

September 22, 2020

## Logistics

Fix errors in HW1:

- Question 2.2

$$
\frac{d}{d \alpha} \log \sigma(\alpha)
$$

- Question 2.5

$$
p_{N}(w) \propto p_{\text {unigram }}^{\beta}(w)
$$

## Table of Contents

\author{

1. Review
}

## 2. Introduction

3. Vector space models
4. Word embeddings
5. Brown clusters
6. Neural networks and backpropogation

## Last week

Generative vs discriminative models for text classification

- (Multinomial) naive Bayes
- Assumes conditional independence
- Very efficient in practice (closed-form solution)
- Logistic regression
- Works with all kinds of features
- Wins with more data

Features for text

- BoW representation
- $N$-gram features (usually $n \leq 3$ )

Control the complexity of the hypothesis class

- Feature selection
- Norm regularization
- Hyperparameter tuning on the validation set

Evaluation

- Accuracy

$$
\begin{array}{ll}
+1 & -1 \\
\text { total } 10 & 90 \\
\text { convert } 0 & 90
\end{array} \quad \text { auer }=\frac{90}{100}=0.9
$$

- Precision


Fl

$$
\frac{2 \text { precision } \times \text { recall }}{\text { pres }+ \text { recall }}
$$

false neg neg

Macro vs micro average

## Table of Contents

## 1. Review

2. Introduction
3. Vector space models
4. Word embeddings
5. Brown clusters
6. Neural networks and backpropogation

Objective

Goal: come up a good representation of text
What is a representation?
$-\phi=$ text $\rightarrow R^{d}$

- (learned) feature
- What is a good representation?
- improve task performance
- proxy: $d(\phi(a), \phi(b))$ is small for sematctically similar text $a$ and $b$.


## Distance functions

Let's check if BoW is a good representation.

## Euclidean distance

For $a, b \in \mathbb{R}^{d}$,

$$
d(a, b)=\sqrt{\sum_{i=1}^{d}\left(a_{i}-b_{i}\right)^{2}} .
$$

What if $b$ repeats each sentence in a twice?

## Distance functions

Let's check if BoW is a good representation.
Euclidean distance
For $a, b \in \mathbb{R}^{d}$,

$$
d(a, b)=\sqrt{\sum_{i=1}^{d}\left(a_{i}-b_{i}\right)^{2}} .
$$

What if $b$ repeats each sentence in a twice?
Cosine similarity
For $a, b \in \mathbb{R}^{d}$,

$$
\operatorname{sim}(a, b)=\frac{a \cdot b}{\|a\|\|b\|}=\cos \alpha
$$



Angle between two vectors

## Example: information retrieval

Given a set of documents and a query, use the BoW representation and cosine similarity to find the most relevant document.

What are potential problems?

## Example: information retrieval

Given a set of documents and a query, use the BoW representation and cosine similarity to find the most relevant document.

What are potential problems?

$$
\begin{aligned}
& \text { t are potential problems? } \\
& \text { - doesn't consider meaning (egg. sym nonyins) }
\end{aligned}
$$

Example:
Q: Who has watched Tenet?
She has just watched Joker.
Tenet was shown here last week.

## TFIDF

Key idea: upweight words that carry more information about the document
Representation $\phi$ : document $\rightarrow \mathbb{R}^{|\mathcal{V}|}$
TFIDF:

$$
\begin{aligned}
& \phi_{i}(d)=\underbrace{\operatorname{count}\left(\bar{w}_{i}, d\right)}_{\text {term frequency }} \times \underbrace{\log \frac{\# \text { documents }}{\# \text { documents containing } w_{i}}}_{\begin{array}{c}
\text { inverse document/frequency } \\
\text { (DF }
\end{array}} . \\
& \text { tion: } \\
& \\
& \\
& \operatorname{idf}(w, d)=\operatorname{PMI}(w ; d)=\log \frac{p(d \mid w)}{p(d)} . \frac{1}{7 \text { dor cont. } \omega} .
\end{aligned}
$$

## Table of Contents

## 1. Review

## 2. Introduction

3. Vector space models
4. Word embeddings
5. Brown clusters
6. Neural networks and backpropogation

## The distributional hypothesis

"You shall know a word by the company it keeps." (Firth, 1957)
Word guessing! Everybody likes tezgüino.

Takeaway: the meaning of a word can be representated by its neighbors.

## The distributional hypothesis

"You shall know a word by the company it keeps." (Firth, 1957)
Word guessing!
Everybody likes tezgüino.
We make tezgüino out of corn.

Takeaway: the meaning of a word can be representated by its neighbors.

## The distributional hypothesis

"You shall know a word by the company it keeps." (Firth, 1957)
Word guessing!
Everybody likes tezgüino.
We make tezgüino out of corn.
A bottle of tezgüino is on the table.

Takeaway: the meaning of a word can be representated by its neighbors.

## The distributional hypothesis

"You shall know a word by the company it keeps." (Firth, 1957)
Word guessing!
Everybody likes tezgüino.
We make tezgüino out of corn.
A bottle of tezgüino is on the table.
Don't have tezgüino before you drive.
Takeaway: the meaning of a word can be representated by its neighbors.

Choose the context

Where does the neighbors come from? (What relations are we interested in?)

Construct a matrix where

- Row and columns represent two sets of objects (e.g. words)
- Each entry is the (adjusted) co-occurence counts of two objects

Example is rows

- words $\times$ documents
- word $\times$ word
- person $\times$ movie
- more $\times$ song



## Reweight counts

Upweight informative words
Pointwise mutual information (PMI)

$$
\operatorname{PMI}(x ; y)=\log \frac{p(x, y)}{p(x) p(y)}=\log \frac{p(x \mid y)}{p(x)}=\log \frac{p(y \mid x)}{p(y)}
$$

- Symmetric: $\operatorname{PMI}(x ; y)=\operatorname{PMI}(y ; x)$
- Range: $(-\infty, \min (-\log p(x),-\log p(y)))$

$$
p(x \mid y)=1 \text { or }
$$

$$
p(y \mid x)=1
$$

- Estimates:

$$
\begin{aligned}
\hat{p}(x \mid y) & =\frac{\operatorname{count}(x, y)}{\operatorname{count}(y)} \quad \hat{p}(x)=\frac{\operatorname{count}(x)}{\sum_{x^{\prime} \in \mathcal{X}} \operatorname{count}\left(x^{\prime}\right)} \\
& =\sum_{x} \operatorname{count}(x, y)
\end{aligned}
$$

- $\operatorname{PPMI}(x ; y) \stackrel{\text { def }}{=} \max (0, \operatorname{PMI}(x ; y))$


## Dimensionality reduction

Motivation: want a lower-dimensional, dense representation for efficiency Reall SVD: $\rightarrow$ word-dor matrix Recall SVD: given a $m \times n$ matrix $A_{m \times n}$, we can decompose it to

$$
U_{m \times m} \Sigma_{m \times n} V_{n \times n}^{T}
$$

where $U$ and $V$ are orthogonal matrices, and $\Sigma$ is a diagonal matrix.
Interpretation: consider the largest singular value $\sigma_{1}$,

$$
\begin{aligned}
& A=U \Sigma V^{\top} \\
& A V=U \Sigma V^{\top} V=U \Sigma \quad A v_{1}=\sigma_{1} u_{1}
\end{aligned}
$$

- $u_{1}$ is a vector in the column space of $A$
- $u_{1}$ is the direction where the column vectors vary the most

SVD for the word-document matrix "importame" of a

$u_{i}=\operatorname{doc}$ duter/comept

$$
u_{1}=\left[\begin{array}{ccc}
0 & -3 \\
a & 5 \\
0 & 6 \\
0 & 0 & 1 \\
0.00 & 1
\end{array}\right] \quad u_{2}=\left[\begin{array}{ccc}
0 & -0 & 1 \\
0 & -0 & -1 \\
0 & 0 & 1 \\
0 & - & 0 \\
0 & 6
\end{array}\right]
$$

$v_{i}=$ word clusters
$u_{i j}$ : connection between word and scientific doe cluster $i$

## Summary

## Vector space models

1. Design the matrix, e.g. word $\times$ document, people $\times$ movie.
2. Reweight the raw counts, e.g. TFIDF, PMI.
3. Reduce dimensionality by (truncated) SVD.
4. Use word/person/etc. vectors in downstream tasks.

Key idea:

- Represent an object by its connection to other objects in the data.
- For NLP, the word meaning can be represented by the context it occurs in.


## Table of Contents

## 1. Review

## 2. Introduction

3. Vector space models
4. Word embeddings
5. Brown clusters
6. Neural networks and backpropogation

## Learning word embeddings

Goal: map each word to a vector in $\mathbb{R}^{d}$ such that similar words also have similar word vectors.

Can we formalize this as a prediction problem?

- Needs to be self-supervised since our data is unlabeled.
- Low error $\Longrightarrow$ similar words have simliar representations.

Intuition: word guessing

- Predict a word based on its context
- Predict the context given a word


## The skip-gram model

Task: given a word, predict its neighboring words within a window


Assume conditional independence of the context words:

$$
\underset{p\left(w_{i-k}, \ldots, w_{i-1}, w_{i+1}, \ldots, w_{i+k} \mid w_{i}\right)}{\text { quicks }}=\prod_{\substack{j=i-k \\ j \neq i}}^{i+k} p\left(w_{j} \mid w_{i}\right)
$$

How to model $p\left(w_{j} \mid w_{i}\right)$ ?

The skip-gram model
Use logistic regression

$$
\begin{aligned}
& \text { gression } \\
& \begin{aligned}
& p\left(w_{j} \mid w_{i}\right)=\frac{\exp \left[\theta_{w_{j}} \cdot \phi\left(w_{i}\right)\right]}{\sum_{w \in \mathcal{V}} \exp \left[\theta_{w} \cdot \phi\left(w_{i}\right)\right]} \text { input features } \\
&>\text { vector presentation of }
\end{aligned} \\
& \\
& =\frac{\exp \left[\phi_{c t x}\left(w_{j}\right) \cdot \phi_{w r d} \widehat{\left.\left.w_{i}\right)\right]}\right. \text { vector repres. }}{} \text { of } w_{i}
\end{aligned}
$$

Sone hot (w)

$$
\phi: w \mapsto A_{d \times|\mathcal{V}|} \phi_{\mathrm{BoW}}(w)
$$

- In practice, $\phi$ is implemented as a dictionary
- Learn parameters by MLE and SGD (is the objective convex?)
- $\phi_{\text {word }}$ is taken as the word embedding


## The continuous bag-of-words model

Task: given the context, predict the word in the middle


Similary, we can use logistic regression for the prediction

$$
\begin{gathered}
p\left(w_{i} \mid w_{i-k}, \ldots, w_{i-1}, w_{i+1}, \ldots, w_{i+k}\right) \\
\text { input }
\end{gathered}
$$

How to represent the context (input feature)?

## The continuous bag-of-words model

$$
\begin{aligned}
c & =w_{i-k}, \ldots, w_{i-1}, w_{i+1}, \ldots, w_{i+k} \\
p\left(w_{i} \mid c\right) & =\frac{\exp \left[\theta_{w_{i}} \cdot \phi_{\mathrm{BoW}}(c)\right]}{\sum_{w \in \mathcal{V}} \exp \left[\theta_{w} \cdot \phi_{\mathrm{Bow}}(c)\right]} \\
& =\frac{\exp \left[\phi_{\mathrm{wrd}}\left(w_{i}\right) \cdot \sum_{w^{\prime} \in c} \phi_{\mathrm{ctx}}\left(w^{\prime}\right)\right]}{\sum_{w \in \mathcal{V}} \exp \left[\phi_{\mathrm{wrd}}(w) \cdot \sum_{w^{\prime} \in c} \phi_{\mathrm{ctx}}\left(w^{\prime}\right)\right]}
\end{aligned}
$$

- Implementation is similar to the skip-gram model.


## Properties of word embeddings

- Find synonyms
- Solve word analogy problems

$$
\begin{aligned}
& \text { man : woman :: king : queen } \\
& \phi_{\text {wrd }}(\operatorname{man})-\phi_{\text {wrd }}(\text { woman }) \approx \phi_{\text {wrd }}(\text { king })-\phi_{\text {wrd }}(\text { queen })
\end{aligned}
$$

man : woman :: king : ?

$$
\arg \max _{w \in \mathcal{V}} \operatorname{sim}\left(-\phi_{\mathrm{wrd}}(\operatorname{man})+\phi_{\mathrm{wrd}}(\text { woman })+\phi_{\mathrm{wrd}}(\text { king }), w\right)
$$

[demo]

## Comparison

vector space models
matrix factorization
fast to train
interpretable
nents
word embeddings
prediction problem
slow (with large corpus) but more flexible compo- hard to interprete but has intriguing properties

Both uses the distributional hypothesis.

## Summary

Key idea: formalize word representation learning as a self-supervised prediction problem

Prediction problems:

- CBOW: Predict word from context
- Skip-gram: Predict context from words
- Other possibilities:
- Predict $\log \hat{p}$ (word | context), e.g. GloVe
- Contextual word embeddings

Similar ideas can be used to learn embeddings of other objects, e.g. image, product etc.


## Table of Contents

## 1. Review

## 2. Introduction

3. Vector space models
4. Word embeddings
5. Brown clusters
6. Neural networks and backpropogation

Brown clustering

Developed at IBM by Peter Brown et al. in early 90s.
Idea: hierarchically clustering words (initially used for language modeling)


$$
\text { dog: }[\text { pets, cnanals, animals }]=[0,0,0]
$$

## Example clusters



Bottom-up (agglomerative) clustering


At each step, merge arg max $\operatorname{sim}\left(c_{1}, c_{2}\right)$

$$
c_{1} \cdot c_{2}
$$

where
$c_{1}, c_{2} \in$ root nodes

$$
\operatorname{sim}\left(c_{1}, c_{2}\right)=\sum_{w_{1} \in C_{1}} \sum_{w_{2} \in c_{2}} s\left(w_{p M I}, w_{2}\right) \hat{p}\left(w_{1}, w_{2}\right)
$$

## Summary

Brown clustering

1. Obtain initial word representation
2. Defind distance function between two clusters
3. Run heirarchical clustering
4. Use the (binary) "path" to a word as additional features in downstream tasks

## Evaluate word vectors

## Intrinsic evaluation

- Evaluate on the proxy task (related to the learning objective)
- Word similarity/analogy datasets
- Human evaluation of word clusters


## Extrinsic evaluation

- Evaluate on the real/downstream task we care about
- Use word vectors as features in NER, parsing etc.


## Table of Contents

## 1. Review

2. Introduction
3. Vector space models
4. Word embeddings
5. Brown clusters
6. Neural networks and backpropogation

## Feature learning

Linear predictor with handcrafted features: $f(x)=w \cdot \phi(x)$.
Can we learn intermediate features?
Example:

- Predict popularity of restaurants.
- Raw input: \#dishes, price, wine option, zip code, \#seats, size
- Decompose into subproblems:
$h_{1}([\#$ dishes, price, wine option $])=$ food quality
$h_{2}([$ zip code $])=$ walkable
$h_{3}([\#$ seats, size $])=$ nosie


## Learning intermediate features



Neural networks

Key idea: automatically learn the intermediate features.
Feature engineering: Manually specify $\phi(x)$ based on domain knowledge and learn the weights:

$$
f(x)=w^{\top} \phi(x) . \quad f(x)=\left(g \circ h^{L} \circ h^{H-1} \cdots o h\right)(x)
$$

Feature learning: Automatically learn both the features ( $K$ hidden units) and the weights:

$$
h(x)=\left[h_{1}(x), \ldots, h_{k}(x)\right], \quad f(x)=w^{\top} h(x)
$$

Parametrize $h: x \mapsto \underset{\uparrow}{\mapsto} \frac{\sigma\left(v_{i}^{\top} x\right)}{}$.

$$
\sum_{i} w_{i} \sigma\left(v_{i}^{\top} x_{z}\right.
$$

activation function, tanh, Relu max $(0, x)$

