Distributed representation of text

He He

New York University

September 22, 2020

3

5900

<ロト < 同ト < 三ト < 三ト

Logistics

Fix errors in HW1:

Question 2.2

 $\frac{d}{d\alpha} \log \sigma(\alpha)$

Question 2.5

 $p_N(w) \propto p_{unigram}^{\beta}(w)$

3

5900

<ロ> < 同> < 同> < 三> < 三>

Table of Contents

1. Review

2. Introduction

- 3. Vector space models
- 4. Word embeddings
- 5. Brown clusters

6. Neural networks and backpropogation

æ

SQ (~

<ロ> < □ > < □ > < □ > < □ > < □ >

Last week

Generative vs discriminative models for text classification

- ► (Multinomial) naive Bayes
 - Assumes conditional independence
 - Very efficient in practice (closed-form solution)
- Logistic regression
 - Works with all kinds of features
 - Wins with more data

Features for text

- BoW representation
- ▶ N-gram features (usually $n \leq 3$)

Control the complexity of the hypothesis class

- Feature selection
- Norm regularization
- Hyperparameter tuning on the validation set

He He (NYU)

CSCI-GA.2590

SAR

Evaluation

Macro vs micro average

3

SQ (~

Table of Contents

1. Review

2. Introduction

- 3. Vector space models
- 4. Word embeddings
- 5. Brown clusters

6. Neural networks and backpropogation

æ

SQ (~

<ロ> < □ > < □ > < □ > < □ > < □ >

Objective

Goal: come up a good representation of text

► What is a representation?

What is a good representation?

- improve task performance - proxy: d(\$(a), \$(b)) is small for sematorizedly similar oest a and b.

SQ Q

Distance functions

Let's check if BoW is a good representation.

Euclidean distance

For $a, b \in \mathbb{R}^d$,

$$d(a,b)=\sqrt{\sum_{i=1}^d (a_i-b_i)^2}$$
.

What if *b* repeats each sentence in *a* twice?

글 🕨 🖌 글 🕨

< <p>Image: Image: Imag

▲ 🗗 🕨

3

SQ (?

Distance functions

Let's check if BoW is a good representation.

Euclidean distance

For $a, b \in \mathbb{R}^d$,

$$d(a,b)=\sqrt{\sum_{i=1}^d (a_i-b_i)^2}$$
 .

What if b repeats each sentence in a twice?

Cosine similarity

For
$$a, b \in \mathbb{R}^d$$
,
 $sim(a, b) = \frac{a \cdot b}{\|a\| \|b\|} = \cos lpha$

Angle between two vectors

ᆿ▶ ◀ ᆿ▶

3

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Example: information retrieval

Given a set of documents and a query, use the BoW representation and cosine similarity to find the most relevant document.

What are potential problems?

3

SQ Q

3 🖌 🖌 3 🕨

< 47 ▶

Example: information retrieval

Given a set of documents and a query, use the BoW representation and cosine similarity to find the most relevant document.

Example:

Q: Who has watched Tenet?

She has just watched Joker.

Tenet was shown here last week.

SQ Q

-∢ ∃ ▶

TFIDF

Key idea: upweight words that carry more information about the document

Representation ϕ : document $\rightarrow \mathbb{R}^{|\mathcal{V}|}$

SQ Q

Table of Contents

1. Review

2. Introduction

3. Vector space models

4. Word embeddings

5. Brown clusters

6. Neural networks and backpropogation

3

SQ (~

< □ ▶ < 同 ▶

"You shall know a word by the company it keeps." (Firth, 1957)

Word guessing!

Everybody likes tezgüino.

Takeaway: the meaning of a word can be representated by its neighbors.

글 🕨 🖌 글 🕨

- 4 🗗 ▶

3

SQ Q

"You shall know a word by the company it keeps." (Firth, 1957)

Word guessing!

Everybody likes tezgüino.

We make tezgüino out of corn.

Takeaway: the meaning of a word can be representated by its neighbors.

3

SQ Q

- ∢ ⊒ →

< A

"You shall know a word by the company it keeps." (Firth, 1957)

Word guessing!

Everybody likes tezgüino.

We make tezgüino out of corn.

A bottle of tezgüino is on the table.

Takeaway: the meaning of a word can be representated by its neighbors.

▲ 글 ▶

3

SQ Q

"You shall know a word by the company it keeps." (Firth, 1957)

Word guessing!

Everybody likes tezgüino.

We make tezgüino out of corn.

A bottle of tezgüino is on the table.

Don't have tezgüino before you drive.

Takeaway: the meaning of a word can be representated by its neighbors.

SQ Q

- E - N

Choose the context

Where does the neighbors come from? (What relations are we interested in?)

Construct a matrix where

- Row and columns represent two sets of objects (e.g. words)
- Each entry is the (adjusted) co-occurence counts of two objects

Example: words × documents word × word person × monie note × song

di --- dm 1 10 -- 5 w, e -

SQ Q

Reweight counts

Upweight informative words

Pointwise mutual information (PMI)

$$\mathsf{PMI}(x;y) = \log \frac{p(x,y)}{p(x)p(y)} = \log \frac{p(x \mid y)}{p(x)} = \log \frac{p(y \mid x)}{p(y)}$$

Symmetric:
$$PMI(x; y) = PMI(y; x)$$

Range: $(-\infty, \min(-\log p(x), -\log p(y)))$
 $P(y|y) = 0$

Estimates:

$$\hat{p}(x \mid y) = \frac{\operatorname{count}(x, y)}{\operatorname{count}(y)} \quad \hat{p}(x) = \frac{\operatorname{count}(x)}{\sum_{x' \in \mathcal{X}} \operatorname{count}(x')}$$
$$= \sum_{x' \in \mathcal{X}} \operatorname{count}(x, y)$$
$$\operatorname{PPMI}(x; y) \stackrel{\text{def}}{=} \max(0, \operatorname{PMI}(x; y))$$

3

SQ (~

Dimensionality reduction

Motivation: want a lower-dimensional, dense representation for efficiency Recall **SVD**: given a $m \times n$ matrix $A_{m \times n}$, we can decompose it to

$$U_{m\times m} \Sigma_{m\times n} V_{n\times n}^{T} ,$$

where U and V are orthogonal matrices, and Σ is a diagonal matrix.

Interpretation: consider the largest singular value σ_1 , $A = U \ge V^T$ $Av_1 = \sigma_1 u_1$. $Av_1 = \sigma_1 u_1$.

 \blacktriangleright u_1 is a vector in the column space of A

 \blacktriangleright u_1 is the direction where the column vectors vary the most

SQA

3

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

< ロ > < 団 > < 臣 > < 臣 > -

Summary

Vector space models

- 1. Design the matrix, e.g. word \times document, people \times movie.
- 2. Reweight the raw counts, e.g. TFIDF, PMI.
- 3. Reduce dimensionality by (truncated) SVD.
- 4. Use word/person/etc. vectors in downstream tasks.

Key idea:

- Represent an object by its connection to other objects in the data.
- For NLP, the word meaning can be represented by the context it occurs in.

- B

SQ Q

3 K (3 K

Table of Contents

- 1. Review
- 2. Introduction
- 3. Vector space models
- 4. Word embeddings
- 5. Brown clusters
- 6. Neural networks and backpropogation

< □ ▶ < 同 ▶

3

SQ (~

Learning word embeddings

Goal: map each word to a vector in \mathbb{R}^d such that *similar* words also have *similar* word vectors.

Can we formalize this as a prediction problem?

- Needs to be self-supervised since our data is unlabeled.
- Low error \implies similar words have similar representations.

Intuition: word guessing

- Predict a word based on its context
- Predict the context given a word

SQ Q

The skip-gram model

Task: given a word, predict its neighboring words within a window

The quick brown fox jumps over the lazy dog
Assume conditional independence of the context words:

$$p(w_{i-k}, \dots, w_{i-1}, w_{i+1}, \dots, w_{i+k} \mid w_i) = \prod_{\substack{j=i-k \\ j \neq i}}^{i+k} p(w_j \mid w_i)$$

How to model $p(w_j | w_i)$?

SQ (?

The skip-gram model

Use logistic regression

$$\phi: w \mapsto A_{d \times |\mathcal{V}|} \phi_{\text{BoW}}(w)$$

- In practice, ϕ is implemented as a dictionary
- Learn parameters by MLE and SGD (is the objective convex?)
- ϕ_{wrd} is taken as the word embedding

He He (NYU)

CSCI-GA.2590

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 少々⊙

The continuous bag-of-words model

Task: given the context, predict the word in the middle

Similary, we can use logistic regression for the prediction

$$p(w_i | w_{i-k}, ..., w_{i-1}, w_{i+1}, ..., w_{i+k})$$

How to represent the context (input feature)?

-∢ ⊒ ▶

Image: Image:

3

SQ Q

The continuous bag-of-words model

$$c = w_{i-k}, \dots, w_{i-1}, w_{i+1}, \dots, w_{i+k}$$

$$p(w_i \mid c) = \frac{\exp\left[\theta_{w_i} \cdot \phi_{BoW}(c)\right]}{\sum_{w \in \mathcal{V}} \exp\left[\theta_w \cdot \phi_{BoW}(c)\right]}$$

$$\exp\left[\phi_{wrd}(w_i) \cdot \sum_{w' \in c} \phi_{ctx}(w')\right]$$

$$= \frac{\exp\left[\phi_{\mathsf{wrd}}(w_i) \cdot \sum_{w' \in c} \phi_{\mathsf{ctx}}(w')\right]}{\sum_{w \in \mathcal{V}} \exp\left[\phi_{\mathsf{wrd}}(w) \cdot \sum_{w' \in c} \phi_{\mathsf{ctx}}(w')\right]}$$

Implementation is similar to the skip-gram model.

He He (NYU)

CSCI-GA.2590

SQ (~

Properties of word embeddings

Find synonyms

Solve word analogy problems man : woman :: king : queen $\phi_{wrd}(man) - \phi_{wrd}(woman) \approx \phi_{wrd}(king) - \phi_{wrd}(queen)$

```
man : woman :: king : ?
arg max<sub>w \in V</sub> sim(-\phi_{wrd}(man) + \phi_{wrd}(woman) + \phi_{wrd}(king), w)
```

[demo]

Image: Image:

Comparison

-

vector space models		word embeddings
matrix factorization fast to train		prediction problem slow (with large corpus) but more flexible
interpretable nents	compo-	hard to interprete but has intriguing proper- ties

Both uses the distributional hypothesis.

(中)

1

Summary

Key idea: formalize word representation learning as a self-supervised prediction problem

Prediction problems:

- CBOW: Predict word from context
- Skip-gram: Predict context from words
- Other possibilities:
 - ▶ Predict log $\hat{p}(word | context)$, e.g. GloVe
 - Contextual word embeddings

Similar ideas can be used to learn embeddings of other objects, e.g.

image, product etc.

He He (NYU)

SQ Q

Table of Contents

- 1. Review
- 2. Introduction
- 3. Vector space models
- 4. Word embeddings
- 5. Brown clusters

6. Neural networks and backpropogation

3

SQ (~

Developed at IBM by Peter Brown et al. in early 90s.

Example clusters

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● 三 のへで

3

 $\mathcal{A} \mathcal{A} \mathcal{A}$

< ロ > < 同 > < 三 > < 三 > 、

Summary

Brown clustering

- 1. Obtain initial word representation
- 2. Defind distance function between two clusters
- 3. Run heirarchical clustering
- 4. Use the (binary) "path" to a word as additional features in downstream tasks

글 🕨 🖌 글 🕨

< A

< □ ▶

3

SQ (~

Evaluate word vectors

Intrinsic evaluation

- Evaluate on the proxy task (related to the learning objective)
- Word similarity/analogy datasets
- Human evaluation of word clusters

Extrinsic evaluation

- Evaluate on the real/downstream task we care about
- Use word vectors as features in NER, parsing etc.

< ∃ >

- B

SQ Q

Table of Contents

- 1. Review
- 2. Introduction
- 3. Vector space models
- 4. Word embeddings
- 5. Brown clusters

6. Neural networks and backpropogation

4 E > 4 E >

< <p>Image: Image: Imag

- 4 🗗 ▶

3

SQ (~

Feature learning

Linear predictor with handcrafted features: $f(x) = w \cdot \phi(x)$.

Can we learn intermediate features?

Example:

- Predict popularity of restaurants.
- ► Raw input: #dishes, price, wine option, zip code, #seats, size

Decompose into subproblems:

 $h_1([\#dishes, price, wine option]) = food quality$

 $h_2([zip code]) = walkable$

```
h<sub>3</sub>([#seats, size]) = nosie
```

◆□▶ ◆□▶ ▲三▶ ▲三▶ 三 ���

Learning intermediate features

Neural networks

Key idea: automatically learn the intermediate features.

Feature engineering: Manually specify $\phi(x)$ based on domain knowledge and learn the weights:

Feature learning: Automatically learn both the features (K hidden units) and the weights: output helder

$$h(x) = [h_1(x), \dots, h_{\mathcal{K}}(x)], \quad f(x) = w^{\mathcal{T}} h(x)$$
Parametrize $h: x \mapsto \sigma(v; {}^{\mathcal{T}}x).$

$$f_{\mathcal{K}}(v; {}^{\mathcal{T}}x).$$

$$f_{\mathcal{K}}(v; {}^{\mathcal{K}}x).$$

SQ Q