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Rules vs data

Example: spam filter

I Rules

Contains “Viagra”
Contains “Rolex”
Subject line is all caps
...

I Learning from data
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Keys to success

I Availability of large amounts of (annotated) data

Scraping, crowdsourcing, expert annotation

I Generalize to unseen samples

Unknown data generating distribution: D over X ⇥ Y
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Empirical risk minimization (ERM)

Minimize the average loss on the training set over H
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Error decomposition
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Overfitting vs underfitting

Trade-o↵ between complexity of H (approximiation error) and estimation
error

Question for us: how to choose a good H for certain domains
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Overall picture

1. Obtain training data Dtrain =
�
(x (i), y (i))

 n
i=1

.

2. Choose a loss function L and a hypothesis class H.

3. Learn a predictor by minimizing the empirical risk.
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Gradient descent

I w  w � ⌘rwF (w)

I Converge to a local minimum (also global minimum if F (w) is
convex) with carefully chosen step sizes
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Stochastic gradient descent

I Gradient descent (GD)

w  w � ⌘rw

nX

i=1

L(x (i), y (i), fw )

| {z }
training loss

I Stochastic gradient descent (SGD)

For each (x , y) 2 Dtrain :

w  w � ⌘rw L(x , y , fw )| {z }
example loss
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GD vs SGD

Figure: Minimize 1.25(x + 6)2 + (y � 8)2

(Figure from “Understanding Machine Learning: From Theory to Algorithms”.)
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Stochastic gradient descent

I Each update is e�cient in both time and space

I Can be slow to converge

I Popular in large-scale ML, including non-convex problems

I In practice,

Randomly sample examples.
Fixed or diminishing step sizes, e.g. 1/t, 1/

p
t.

Stop when objective does not improve.
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Convex optimization (unconstrained)

I A function f : Rd
! R is convex if for all x , y 2 Rd and ✓ 2 [0, 1] we

have
f (✓x + (1� ✓)y)  ✓f (x) + (1� ✓)f (y) .

I f is concave if �f is convex.

I Locally optimal points are also globally optimal.

I For unconstrained problems, x is optimal i↵ rf (x) = 0.
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Zero-one loss
I Settings

Binary classification: y 2 {+1,�1}.
Scorer fw : X ! R parametrized by w 2 Rd .
Output prediction: sign(fw (x)).

I Zero-one (0-1) loss

L(x , y , fw ) = I [yfw (x)  0]
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Hinge loss

L(x , y , fw ) = max(1� yfw (x), 0)

Subgradient:
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Logistic loss

L(x , y , fw ) = log(1 + e�yfw (x))
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Summary

I Bias-complexity trade-o↵: choose hypothesis class based on prior
knowledge

I Learning algorithm: empirical risk minimization

I Optimization: stochastic gradient descent
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