Machine Learning Basics

He He

New York University

September 6, 2020

3

5900

Table of Contents

1. Generalization

2. Optimization

3. Loss functions

王

590

Rules vs data

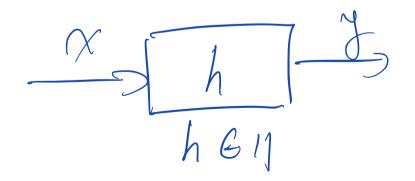
Example: spam filter

. . .

Rules

Contains "Viagra" Contains "Rolex" Subject line is all caps

Learning from data



< □ ▶

< 47 ▶

-

Э

JQ P

∃ →

Keys to success

Availability of large amounts of (annotated) data Scraping, crowdsourcing, expert annotation

Generalize to unseen samples Unknown data generating distribution: \mathcal{D} over $\mathcal{X} \times \mathcal{Y}$ $(x, y) \sim V$ min Ep [error(h)] 1 m samples $\begin{cases} x^{(i)} y^{(i)} \\ x^{(i)} y^{(i)} \\ x^{(i)} \\ x^{(i)} \end{cases}$ test se training set SQ Q September 6, 2020 4 / 16

Empirical risk minimization (ERM)

Minimize the average loss on the training set over \mathcal{H}_{\perp} min $\frac{1}{m} \sum_{i=1}^{m} boss(x^{ci}, y^{ci}, h)$ helf empirical risk $h(\chi^{(i)}) = \gamma^{(i)}$

SQA

- 4 目 ト 4 日 ト

Error decomposition

 $R(h) = E_D \left[\log_s (n_s, y, h) \right]$ $\hat{R}(h) = \frac{m}{m} \sum_{i=1}^{m} \log(\chi^{(i)}, y^{(i)}, h)$ optimal $h^* = \min_{L} R(h)$ $h_{4} = \min_{h \in H} R(h)$ optimal in H hm = min R(h) ERM sol. approximent $h_m - R(h^*) = R(h_m) - R(h_m) + R(h_m)$ estimation err. eners risk $\mathcal{O} \mathcal{Q} \mathcal{O}$ < □ > < @ > < Ξ >

Overfitting vs underfitting

Trade-off between complexity of \mathcal{H} (approximiation error) and estimation error \mathcal{H} over fitting \mathcal{H} over fitting \mathcal{H} with \mathcal{H} over fitting \mathcal{H}

Question for us: how to choose a good \mathcal{H} for certain domains

~ Q Q

Table of Contents

1. Generalization

2. Optimization

3. Loss functions

1

590

Overall picture

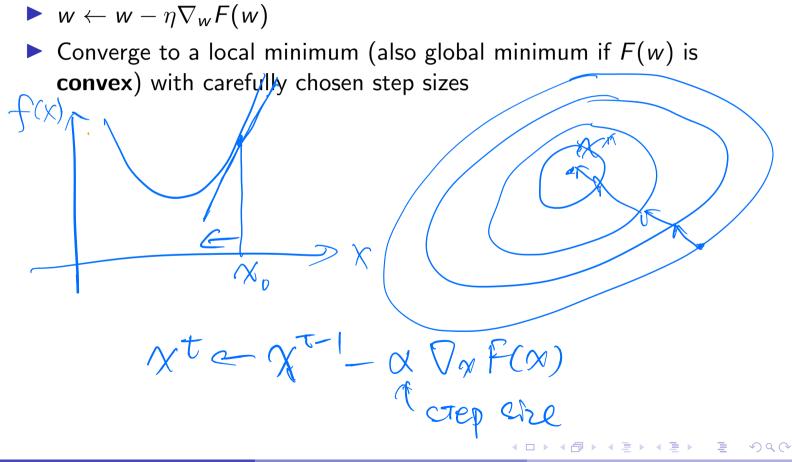
- 1. Obtain training data $D_{\text{train}} = \{(x^{(i)}, y^{(i)})\}_{i=1}^{n}$.
- 2. Choose a loss function L and a hypothesis class \mathcal{H} .
- 3. Learn a predictor by minimizing the empirical risk.

<ロ > < 同 > < 同 > < 三 > < 三 >

- **B**

SQ Q

Gradient descent



Stochastic gradient descent

• Gradient descent (GD) $w \leftarrow w - \eta \nabla_w \sum_{i=1}^{n} L(x^{(i)}, y^{(i)}, f_w)$ training loss

Stochastic gradient descent (SGD)

For each
$$(x, y) \in D_{train}$$
 :
 $w \leftarrow w - \eta \nabla_w \underbrace{L(x, y, f_w)}_{example \ loss}$

He He (NYU)

CSCI-GA.2590

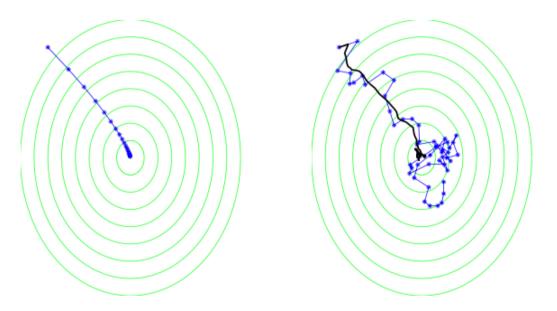
3

 $\mathcal{A} \mathcal{A} \mathcal{A}$

3 N (3 N

GD vs SGD

Figure: Minimize $1.25(x+6)^2 + (y-8)^2$



(Figure from "Understanding Machine Learning: From Theory to Algorithms".)

He He (NYU)

CSCI-GA.2590

◆□▶ ◆□▶ ◆ 三▶ ◆ 三 - つへで

Stochastic gradient descent

Each update is efficient in both time and space

- Can be slow to converge
- Popular in large-scale ML, including non-convex problems
- In practice,

Randomly sample examples. Fixed or diminishing step sizes, e.g. 1/t, $1/\sqrt{t}$. Stop when objective does not improve.

- I I I

< 4 P ►

- B

SQ (V

Convex optimization (unconstrained)

▶ A function $f : \mathbb{R}^d \to \mathbb{R}$ is convex if for all $x, y \in \mathbb{R}^d$ and $\theta \in [0, 1]$ we have

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$
.

- f is concave if -f is convex.
 f''(A) ≥ D " curvature"
 Locally optimal points are also globally optimal.
- For unconstrained problems, x is optimal iff $\nabla f(x) = 0$.

SQ Q

▲ 글 ▶

Table of Contents

1. Generalization

2. Optimization

3. Loss functions

王

5900

Zero-one loss

Settings

Binary classification: $y \in \{+1, -1\}$. Scorer $f_w : \mathcal{X} \to \mathbb{R}$ parametrized by $w \in \mathbb{R}^d$. Output prediction: $sign(f_w(x))$.

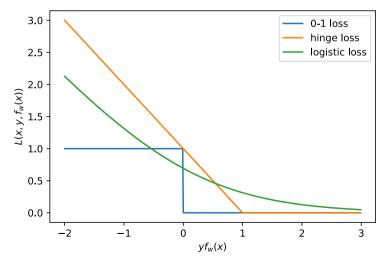
Zero-one (0-1) loss

$$I\left(\operatorname{sign}(f_w(x)) = \mathcal{Y}\right)$$

$$L(x, y, f_w) = \mathbb{I}\left[yf_w(x) \le 0\right]$$
(functional) margin

< □ ▶

▲ 🗗 🕨



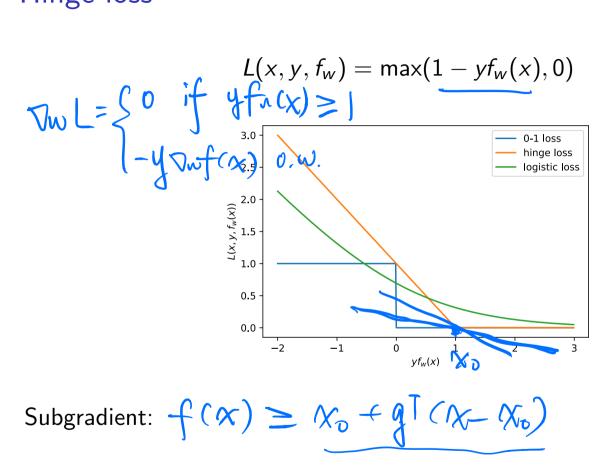
3

SQ (?

·∢ ∃ →

∃ ▶

Hinge loss

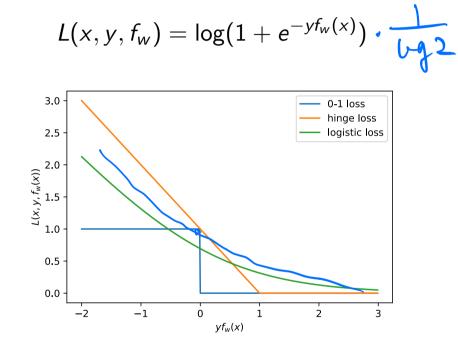


3

 $\mathcal{A} \mathcal{A} \mathcal{A}$

< ロ > < 同 > < 三 > < 三 >

Logistic loss



September 13, 2020 18 / 19

æ

5900

<ロト < 団 > < 巨 > < 巨 >

Summary

- Bias-complexity trade-off: choose hypothesis class based on prior knowledge
- Learning algorithm: empirical risk minimization
- Optimization: stochastic gradient descent

- ₹ ₹ >

< <p>Image: Image: Imag

< A >

э.

SQ (~