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At the MIT event, Altman was asked

, : : : : if training GPT-4 cost $100 million;
What's the capital city of California? he replied, “It's more than that.”

WIRED, April 17, 2023

Works quite well in practice
(with sufficient scale)
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More performant

ChatGPT

Tell me a bio of Sewon Min.

Sewon Min is a researcher in natural language processing (NLP) and machine
learning, particularly known for her work in question answering, retrieval-
augmented language models, and large-scale reasoning systems. She completed

her Ph.D. in Computer Science at UC Berkeley, advised by Dan Klein. After her
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More performant

(L) b D

Toronto is a vibrant and diverse city with many attractions
and activities to suit different tastes and preferences. Here
are some suggestions for creating an itinerary for exploring
Toronto over two days:

» Day 1: Start your day with a visit to the CN Tower, the
iconic landmark that offers panoramic views of the city
and beyond ' . You can also experience the thrill of
walking on the glass floor or the EdgeWalk, the world’s

highest hands-free walk g Next, head to the nearby St.
Lawrence Market, one of the wor
markets, where you can sample a variety of cuisines an

local specialties * . After lunch, take a stroll along Queen
West, a trendy neighborhood with eclectic shops,
galleries, cafes and street art * . In the evening, enjoy a
show at one of the many theaters or comedy clubs in the
Entertainment District, or catch a game at the
Scotiabank Arena if you're a sports fan.

* Day 2: Explore the history and culture of Toronto at the
Royal Ontario Museum, one of the largest and most
comprehensive museums in North America, featuring
exhibits on art, natural history, world cultures and more

* . Then, hop on a ferry to the Toronto Islands, a group
of\slands that offer a relaxing escape from the city, with

\]@pe this helps you

Learn more:

1.cntowerca 2. travel.usnews.com 3. bing.com

4.rom.on.ca 5. tripadvisor.com

v/ Long-tail knowledge

v/ Staying up-to-date

v Citation (for better
explainability and verification)
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Frontier models are already using retrieval as a key feature
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We can think of retrieval as an alternative way to use the data
(in addition to “training” on the data)
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Voldemort had raised his wand .. and a flash of

‘ B green
Mo asd Moo Danaley, of wanben fou, .. Avada red
T | Kedavra!” A jet ||l @J
”;i%%%%ﬁﬁ; \Retrleva‘ @ of green light .. \LM  memory [
%%%wzf%% I movement
which wade dnlle, e was a big bedy | [

1) Retrieval 2) Augmentation

3) Training

(At the end, different architectures beyond the two-stage pipeline)



https://arxiv.org/abs/1609.06490
https://arxiv.org/abs/1704.00051
https://arxiv.org/abs/1705.07267
https://arxiv.org/abs/1804.02559

A two-stage pipeline

Earlier work: Li et al. 2016, Chen et al. 2017, Gu et al 2017, Zhang et al. 2018

Voldemort had raised his wand .. and a flash of

! “Avada green
M and Wro. Dundley, of aumber foun,
e o 2 e Kedavra!” A jet red
et 1 b st st s of green light ..||| memory
; i ,,é " o W;; gm,a i movement [
which made dwlle, He wae a big, beoly a 3
o {
1) Retrieval 2) Augmentation

3) Training



https://arxiv.org/abs/1609.06490
https://arxiv.org/abs/1704.00051
https://arxiv.org/abs/1705.07267
https://arxiv.org/abs/1804.02559

A retrieval problem




A retrieval problem

(Passages in the datastore: <15 ***» <y




A retrieval problem

(Passages in the datastore: <1> ***» <N Input: x)




A retrieval problem

(Passages in the datastore: <1> ***» 4y 2 Input: x) —> < (1<i<N)




A retrieval problem

(Passages in the datastore: <1> ***» 4y 2 Input: x) —> < (1<i<N)

il

Can generalize to k passages
(usually £ < 100)




A neural retrieval problem

(Passages in the datastore: 1> ***» 4y 2 Input: x) —> {; (1<i<N)

“Siamese” network (Bromley et al. 1993, Chopra et al 2005, Yih et al 2011, Huang et al 2013)



A neural retrieval problem

(Passages in the datastore: <15 ***» 4y Input: x) —> < (1<i<N)

As Harry shouted, Vector Space

“Expelliarmus!”

Voldemort cried, -

“Avada Kedavra!” A




A neural retrieval problem

(Passages in the datastore: <15 ***» 4y Input: x) —> < (1<i<N)

As Harry shouted,
“Expelliarmus!”
Voldemort cried,

“Avada Kedavra!” A

Vector space

z. = Enc(z;) € R" (1 <i<N)




A neural retrieval problem
AN Input:X) —> {j (1<i<N)

(Passages in the datastore: <1

As Harry shouted,
“Expelliarmus!” = d
Voldemort cried, ncoder

“Avada Kedavra!” A O

just as a jet of ©
red light blasted = d |
from Harry’s — ncodaer
they met 1n midair

Vector space

e z =Enc(z) eR" 1<i<N)

How can a jet of
water be powerful
enough to cut
through steel?

Encoder




A neural retrieval problem

(Passages In the datastore: <1> ***> <N 9 ) —> {; (1<i<N)

As Harry shouted, Vector space

“Expelliarmus!”

Voldemort cried, Encoder PN PN 7. — EHC(Z-) — Rh (1 <1 <N)
“Avada Kedavra!” A O O ! :

just as a jet of © ®
red light blasted = d |
from Harry’s — ncodaer
they met 1n midair

How can a jet of
water be powerful
enough to cut
through steel?

Encoder

Voldemort had raised his wand .. and a flash of



A neural retrieval problem

(Passages In the datastore: <1> ***> <N 9 ) —> {; (1<i<N)

As Harry shouted, Vector space

“Expelliarmus!”

Voldemort cried, Encoder PN PN 7. — EHC(Z-) — Rh (1 <1 <N)
“Avada Kedavra!” A O O ! :

just as a jet of © ®
red light blasted = d |
from Harry’s — ncodaer
they met 1n midair

How can a jet of
water be powerful
enough to cut
through steel?

Encoder

Encoder

Voldemort had raised his wand .. and a flash of



A neural retrieval problem

(Passages in the datastore: <15 ***» N9

As Harry shouted, Vector space

“Expelliarmus!”
Voldemort cried,
“Avada Kedavral!” A

Encoder

Just as a jet of
red light blasted
from Harry’s —
they met 1n midair

Encoder

) —> L (1<i<N)

z, = Enc(z) € R (1 <i<N)

T

sim(x, z;) = X ' Z;

How can a jet of
water be powerful
enough to cut
through steel?

Encoder

Encoder

Voldemort had raised his wand ..

and a flash of



A neural retrieval problem

(Passages in the datastore: <15 ***» AN 9 ) —> {; (1<i<N)

As Harry shouted, Vector space

“Expelliarmus!”

Voldemort cried, Encoder 7. = EHC(Z-) - Rh (1 <1 <N)
“Avada Kedavral!” A O . : :

just as a jet of ©
red light blasted = d |
from Harry’s — ncodaer
they met 1n midair

sim(x, z) = X'z,

How can a jet of
water be powerful
enough to cut
through steel?

Encoder

Encoder

Voldemort had raised his wand .. and a flash of



A neural retrieval problem

(Passages in the datastore: <15 ***» AN 9 ) —> {; (1<i<N)

As Harry shouted, Vector space

“Expelliarmus!”

Voldemort cried, Encoder PN 7. — EHC(Z-) & Rh (1 <1 <N)
“Avada Kedavral!” A O - : :

just as a jet of ©
red light blasted = d |
from Harry’s — ncodaer
they met 1n midair

sim(x, z) = X'z,

How can a jet of Fast nearest neighbor search

water be powerful Encoder (Arya et al. 1998, Dong et al. 2011,

tehnroouugghh tsoteceult(p Norouzi & Fleet 2013, Johnson et al. 2017)

Encoder

Voldemort had raised his wand .. and a flash of


https://www.cs.princeton.edu/cass/papers/www11.pdf
https://www.cs.toronto.edu/~fleet/research/Papers/ckmeans-CVPR13.pdf
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A neural retrieval problem:in 2019

No good recipe for training the encoder

® Required massive compute & labeled dataset

® Not much better than alternatives (e.qg. lexical-matching)

Only in 2020, neural retrieval began its era

® Advent of pre-trained encoders such as BERT

® Development of improved learning objectives (next slide)
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Yih et al., 2011, Henderson et al., 2017, Gillick et al., 2019
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X @ input z ™7 a positive passage to x (typically given)
. N . N
1 esnn(x,z ) N | esnn(x,z )
—108———— —log———n— ——
ZN esim(x,zi) N & esim(x,z+) 1 zn esnn(x,z,-—)
=1 =1

1) In-batch approximation Negatives in the batch

Yih et al., 2011, Henderson et al., 2017, Gillick et al., 2019



Contrastive learning

X @ input z ™7 a positive passage to x (typically given)
. N . N
1 esnn(x,z ) N | esnn(x,z )
— 10— S 10—
ZN esim(x,zi) ) & esim(x,z+) 1 zn esnn(x,z,-—)
=1 =1

1) In-batch approximation 2) Hard negatives in the batch

Passages that challenge the model,

typically obtained by passages with high lexical overlap
(Karpukhin et al. 2020)
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Retrieval vs. Parametric-only

2016-2019: Retrieval-based models/LLMs by detfault

(But mostly based on lexical matching retrieval)

February 2020: “Parametric-only LMs"” might be better?!

Roberts et al. “"How Much Knowledge Can You Pack into the Parameters ot a Language Model?”

April 2020: But now, neural retrieval is much better!

Karpukhin et al. “Dense Passage Retrieval for Open-Domain Question Answering”

Summer 2020: A NeurlPS 2020 Competition!
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Takeaway: The quality of retrieval-based LMs depends on the quality of retrieval
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Voldemort’s want just as a jet of

. red light ..

Retrieval results (ranked) +
Voldemort’s want Harry felt Greenback collapse
just as a jet of agalinst him .. a jet of

¢

red light ..

Voldemort cried,
“Avada Kedavra!” A
jet of green light

1ssued ..from ..

“"The Boy Who
Lived.” He saw the green
mouth move and a red
light

flash of green ..

water
enemy
liquid

Q: How do we use multiple passages?
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Results

Perplexity: The lower the better ® No Retrieval ® In-Context RALM (BM25)
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3.0

Varying sizes of LMs

Retrieval helps over all sizes of LMs

Graphs from Ram et al. 2023
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How to train it!

Independent training Joint training Sequential training
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Sequential training: freeze LM, tune retrieval
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Shi et al. 2023. "REPLUG: Retrieval-Augmented Black-Box Language Models”
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Sequential training: freeze retrieval, tune LM
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Summary: Training

Independent training Joint training Sequential training

Retrieval Model

trained conditionally

Retrieval Model

trained in isolation Retrieval Model | M

trained in isolation
trained jointly or

trained in isolation trained in isolation
Retrieval Model
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LM

trained conditionally

Good enough if you want Principle way but still

minimal effort open question Good middle ground




Instruction-tuning/Post-training




Instruction-tuning/Post-training

Retriever Fine-tuning Retrieval-augmented Instruction Tuning
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A two-stage pipeline
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1) Retrieval:

Advances in neural retrieval played a vital role in the
success of retrieval-based LMs
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2) Augmentation:

Advances in LLMs enabled a very simple
augmentation recipe
(We'll talk about how we can do this better in Part 2)
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3) Training

Independent training, sequential training, and joint training,
with tradeoffs in simplicity and effectiveness
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Other architectures
beyond the two-stage pipeline!

(We'll only briefly review two ditferent architecture types!)



RET RO (Borgeaud et al. 2021)

Borgeaud et al. 2021. “Improving language models by retrieving from trillions of tokens”




RET RO (Borgeaud et al. 2021)

New Iransformers layers, designed to read many text blocks, frequently, more efficiently

Borgeaud et al. 2021. “Improving language models by retrieving from trillions of tokens”
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RET RO (Borgeaud et al. 2021)
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RET RO (Borgeaud et al. 2021)

x = World Cup 2022 was/the last with 32 teams,flbefore the increase to
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How to incorporate them into Transformers?

Borgeaud et al. 2021. “Improving language models by retrieving from trillions of tokens”
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Chunked Cross Attention (CCA)

Borgeaud et al. 2021. “Improving language models by retrieving from trillions of tokens”




Chunked Cross Attention

Outputs from the previous layer H
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Chunked Cross Attention

CA(H.*, E)

CA(H,", E,)

OQutputs from the previous layer H Inputs to the next layer

Borgeaud et al. 2021. “Improving language models by retrieving from trillions of tokens”
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Chunked Cross Attention
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Chunked Cross Attention
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\/ Cross-attention can be computed in parallel, and be re-used

Borgeaud et al. 2021. “Improving language models by retrieving from trillions of tokens”



Chunked Cross Attention
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Results

Perplexity: The lower the better

/.

Model Retrieval Set #Database tokens #Database keys  Valid Test
Adaptive Inputs (Baevski and Auli, 2019) - - - 17.96 18.65
SpaLM (Yogatama et al., 2021) Wikipedia 3B 3B 17.20 17.60
kNN-LM (Khandelwal et al., 2020) Wikipedia 3B 3B 16.06 16.12
Megatron (Shoeybi et al., 2019) - - - - 10.81
Baseline transformer (ours) - - - 21.53 22.96
kNN-LM (ours) Wikipedia 4B 4B 18.52 19.54
RETRO Wikipedia 4B 0.06B 18.46 18.97
RETRO C4 174B 29B 12.87 10.23
RETRO MassiveText (1%) 18B 0.8B 18.92 20.33
RETRO MassiveText (10%) 179B 4B 13.54 14.95
RETRO MassiveText (100%) 1792B 28B 3.21 3.92

Borgeaud et al. 2021. “Improving language models by retrieving from trillions of tokens”
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Significant improvements by retrieving from |.8 trillion tokens
(We’'ll talk more about the importance of the datastore size later)

Borgeaud et al. 2021.

“Improving language models by retrieving from trillions of tokens”
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KNN-LM

Test Context Target
X
Obama’s birthplace is ?

Khandelwal et al. 2020. "Generalization through Memorization: Nearest Neighbor Language Models"




KNN-LM
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Test Context Target || Representation softmax T
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Khandelwal et al. 2020. "Generalization through Memorization: Nearest Neighbor Language Models"
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ma w. rn in | Hawaii 2 B L R - y
Obama was bo awa AN native of Hawaii, ...

Obama is a native of | Hawaii

Test Context Target Representation
T q=f(z)

Obama’s birthplace is ? C’OQ.D

Khandelwal et al. 2020. "Generalization through Memorization: Nearest Neighbor Language Models"



KNN-LM

Training Contexts Targets || Representations

C; Uy ki = f(c;)
Obama was senator for | lllinois C"O‘D
Barack is married to | Michelle Ce00O

Obama was born in | Hawaii @0O00®

Obama is a native of | Hawaii @000
Test Context Target Representation
T q=f(z)
Obama’s birthplace is ? C’OQ.D

Khandelwal et al. 2020. "Generalization through Memorization: Nearest Neighbor Language Models"



KNN-LM

# of vectors = # of tokens in the corpus (>1B)

Training Contexts Targets || Representations
C; Uy ki = f(ci)

Obama was senator for | lllinois
~ Barack is married to | Michelle || A N

Test Context Target Representation
T q = f(z)

Obama’s birthplace is ? C‘QQ‘D

Khandelwal et al. 2020. "Generalization through Memorization: Nearest Neighbor Language Models"



Training Contexts ’ Targets ,’ Representations
Ci L U, | k=)
Obama was senator for} lllinois C“Q‘D
Barack is married to { Michelle | Ce00O)
Obama was born in § Hawaii @0O00®
Obama is a native of { Hawaii @000
Test Context Representation
T q=f(z)
Obama’s birthplace is ’ C.QQ‘D

KNN-LM

Which tokens in a datastore are close to the next token?

Khandelwal et al. 2020. "Generalization through Memorization: Nearest Neighbor Language Models"



KNN-LM

Training Contexts Targets ~ Representations
C; U; | '

Obama was senator for | lllinois
Barack is married to | Michelle
Obama was born in | Hawaii

Which tokens in a datastore are close to the next token?

Obama is a native of | Hawaii

Which vectors in a datastore are close to the vector we have?

Test Context Target ;‘ Representation "
T t = f(z) |

Obama’s birthplace is ? 5 @O00®

Khandelwal et al. 2020. "Generalization through Memorization: Nearest Neighbor Language Models"



KNN-LM

Training Contexts Targets || Representations Distances
C; U ki = f(c;) di = d(q, k;)
Obama was senator for | lllinois C‘.O‘D —> 4
Barack is married to | Michelle Ce00O) —*| 100
Obama was born in | Hawaii @O00® 5
Obama is a native of | Hawaii @000 > 3
A
Test Context Target Representation
T q=f(z)
Obama’s birthplace is ? C.OQ.D

Khandelwal et al. 2020. "Generalization through Memorization: Nearest Neighbor Language Models"



KNN-LM

Training Contexts Targets || Representations Distances Nearest k Normalization
C; Uy ki = f(c) d; = d(q, ki) p(k;) o exp(—d;)
Obama was senator for | llinois @00® ' Hawaii |3 |  Hawaii [0.7
Barack is married to | Michelle Ce00O) —*| 100 lllinois |4 [  lllinois |0.2
Obama was born in | Hawaii @O00® 5 * Hawaii |5 | Hawaii |0.1
Obama is a native of | Hawaii @000 > 3
A
Test Context Target Representation
T q=f(z)
Obama’s birthplace is ? C.OQ.D

Khandelwal et al. 2020. "Generalization through Memorization: Nearest Neighbor Language Models"



KNN-LM

Nearest k

Hawaii
lllinois
Hawaii

A @

' vy

Normalization
p(k;) o exp(—d;)

Training Contexts Targets || Representations Distances
C; U; ki = f(c;) di = d(q, k;)
Obama was senator for | lllinois C.‘O‘D —> 4
Barack is married to | Michelle Ce00O) —*| 100
Obama was born in | Hawaii @O00® 5
Obama is a native of | Hawaii @000 > 3
A
Test Context Target Representation
T q=f(z)
Obama’s birthplace is ? C.OQ.D

Khandelwal et al. 2020. "Generalization through Memorization: Nearest Neighbor Language Models"

Hawaii |0.7
lllinois [0.2
Hawaii | 0.1

— % Hawaii
74 lllinois

Nonparamatric softmax

Aggregation
PKNN(Y) = Z 1}/—‘1'57)“’1’)

0.8
0.2




KNN-LM

Nonparamatric softmax

Training Contexts Targets || Representations Distances Nearest k Normalization Aggregation
C; U ki = f(c;) d; = d(q, k;) p(k;) o< exp(—d;) PKNN(Y) = Z Ly=v;p(k;)
Obama was senator for | llinois @00® ' Hawaii |3 | Hawaii|0.7 |—%  Hawaii|0.8
Barack is married to | Michelle @QQ@ e 100 lllinois |4 | lllinois |0.2 74 lllinois | 0.2
Obama was born in | Hawaii @O00® 5 * Hawaii |5 | Hawaii |0.1 l
Obama is a native of | Hawail @000 > 3 Classification Interpolation
4 v (Y) p(y)=ApNN(Y)+(1=A)pLm(y)
Test Context Target Representation S Oﬁm ax )
'y Hawaii |0.2 Hawaii | 0.6
T q=f(z) e
— lllinois |0.2 > lllinois | 0.2
Obama’s birthplace is ? @O00® >

Pian—iv 1) = (1 = HP (v [ x) + AP n (Y | X)

Khandelwal et al. 2020. "Generalization through Memorization: Nearest Neighbor Language Models"



KNN-LM

Nonparamatric softmax

Training Contexts Targets || Representations Distances Nearest k Normalization Aggregation
C; Uy ki = f(c) d; = d(q, k;) p(k;) o< exp(—d;) PkNN(Y) = Z ly=v;p(ki)
Obama was senator for | llinois @00® ' Hawaii |3 | Hawaii|0.7 |—%  Hawaii|0.8
Barack is married to | Michelle @QQ@ e 100 lllinois |4 | lllinois |0.2 74 lllinois | 0.2
Obama was born in | Hawaii @O00® 5 * Hawaii |5 | Hawaii|0.1 l
Obama Is a native of | Hawaii @000 > 3 Classification Interpolation
4 | prLM(Y) p(y)=ApnN(y)+(1—A)pLm(y)
Test Context Target Representation Softmax )
_ i Hawaii [0.2 Hawaii | 0.6
T q=f(z) e
— lllinois [0.2 lllinois [ 0.2
Obama’s birthplace is ? @00®

PanoimO [ x) = (1 = /1 _ .‘ AP N (Y | X)

Khandelwal et al. 2020. "Generalization through Memorization: Nearest Neighbor Language Models"



KNN-LM

Nonparamatric softmax

Training Contexts Targets || Representations Distances Nearest k Normalization Aggregation
C; (%) ki = f(c) di = d(q, ki) p(k;) o< exp(—d;) PNN(Y) = f ly=v;p(ki)
Obama was senator for | llinois @00® ' Hawaii |3 |  Hawaii [0.7 Hawaii [0.8 | |
Barack is married to | Michelle @QQ@ — > 100 lllinois (4 [ lllinois (0.2 lllinois | 0.2 | |
Obama was born in | Hawaii @O00® 5 | Hawaii |5 —| Hawaii|0.1 .-
Obama is a native of | Hawaii @000 > 3 Classification Interpolation
| v (Y) p(y)=ApknN(y)+ (1= A)pLv(y)
Test Context Target Representation Softmax )
_ { Hawaii |0.2 Hawaii | 0.6
T q=f(z) o e
— lllinois (0.2 lllinois [ 0.2
Obama’s birthplace is ? @00®

Py [x) = (1 = /1 | , T /1( \ ”

Khandelwal et al. 2020. "Generalization through Memorization: Nearest Neighbor Language Models"



KNN-LM

Nonparamatric softmax

Training Contexts Targets || Representations Distances Nearest k Normalization Aggregation
C; Uy ki = f(c;) d; = d(q,k;) p(k;) o< exp(—d;) PKNN(Y) = f ly=v;p(k;)
Obama was senator for | llinois @00® ' Hawaii |3 |  Hawaii [0.7 Hawaii [0.8 | |
Barack is married to | Michelle @QQ@ — > 100 lllinois (4 [ lllinois (0.2 lllinois | 0.2 | |
Obama was born in | Hawaii @O00® 5 | Hawaii |5 —| Hawaii|0.1 .-
Obama is a native of | Hawaii @000 > 3 Classification Interpolation
| v (Y) p(y)=ApknN(y)+ (1= A)pLv(y)
Test Context Target Representation Softmax )
_ { Hawaii |0.2 Hawaii | 0.6
T q=f(z) o e
— lllinois (0.2 lllinois [ 0.2
Obama’s birthplace is ? @00®

Panog vy 1 x) = (1 — 71 ) A: hyperparameter

Khandelwal et al. 2020. "Generalization through Memorization: Nearest Neighbor Language Models"



Different architectures: Bigger context

e Different architectures were proposed to address certain limitations
of the two-stage pipeline, e.g., inefticiency, retrieval granularity,
retrieval frequency, etc.

® As it typically modifies the architecture of Transtormers, it requires
training an LM extensively.

®How to train them at scale remains an open question.

®[or this reason, today's most widely used retrieval-based LMs remain
to be the two stage pipeline approach.



More complex pipelines




More complex pipelines

Prompt How did US states get their names? Step 1: Retrieve on demand

Search Instruction: "D omains:
% —> US states got their names from a variety of sources. | Retrieve Q When you encounter unfamiliar knowledge,
you can perform web searches to help you ... EB Physics
Step 2: Generate segment in parallel o o o Ch emlstry
Original Question:
Prompt + @) Prompt + € Prompt + € Step 1: ... Step 2: ... Step 3: ... < % Biology
% J % J % J Question: carbon atoms count of Product 3 N; Math
Relevant { 1 1 of 50 state names - Texas is named Relevant { Cglifornia's name has its * r(; COde
come from persons. Supported . . . origins in a 16th-century novel '
after a Native American tribe. Las Sergas de Esplandian. - o Large Reasonlng Izl'_] ODQA
Step 3: Critique outputs and select best segment Start thinking. @ Model (e.g. o1) -
-l@mc) > @ mm > @ m stepn |
% —> [Reriove | —> Repeat.... US states got their names from a variety of sources. 11 of 50 Search.for T e Retrieved
states names are come from persons. 26 states are named helpful info Ci Do ts
. : S innamaldehyde cumen
after Native Americans, including Utah. on-demand. -
Step n+1 * iterable { ¥ *
. p ) . . ]
Asai at al. 2024. "Selt-RAG: Learning to Retrieve, Generate, and Qfet concise Trans-Ginnamaldehyde @[‘9
e s . 1 InNformation has the structure <+
Critique through Self-Reflection and confinue e cHeto () Reacondin.
coherent Documents
reasoning. Step n+2 *
Integrate helpful
Final Step * information into
the previous
Provide final Product 3 contains 11 reasoning chain.
answer. carbon atoms. (v')

Li et al. "Search-o1: Agentic Search-Enhanced

Large Reasoning Models"




More complex pipelines

Prompt How did US states get their names? Step 1: Retrieve on demand

. Search Instruction: 4 Domains:
! y omains:
% —> US states got their names from a variety of sources. | Retrieve Q When you encounter unfamiliar knowledge, .
o you can perform web searches to help you ... @ Physics
Step 2: Generate segment in parallel o o e Chemist ry
Original Question: .
Prompt + ) Prompt + @) Prompt + € Step 1: ... Step 2: ... Step 3: ... < % Biology
2 | 22 22 | Question: carbon atoms count of Product 3 A\ Math
o211 of 50 state names imelevant! Toxas is named Relevant | California's name has its * /) Code
come from persons. Supported : . . origins in a 16th-century novel
after a Native American tribe. Las Sergas de Esplandian. § partially o @ Large Reasoning @ ODQA
Step 3: Critique outputs and select best segment Start thinking. Model (e.g. 0o1) ~
-0 > 0 mmm > @ m stopn |
’ _ — . . US states got their names from a variety of sources. 11 of 50 Search for Retri d
—> | Retrieve | —> Repeat.... —> . Structure of trans- etneve
I states ngmes arg comg from. personsg% states are named helpful info Cinnamaldehyde Documents
after Native Americans, including Utah. on-demand.
Step n+1 * iterable O *
. " . . . _
Asai at al. 2024. “Selt-RAG: Learning to Retrieve, Generate, and Q?t cor:_cuse Trans-Cinnamaldehyde
L ' Information has the structure “—
ritique through Self-Reflection” - o
C 9 S S and continue CegHsCH=CHCHO. (V) Reason-in-
cohergnt Stop n+2 * Documents
5 . . . . reasoning.
Key ideas: Make it an agent system with functions such as ntegrate helbiul
Final Step * information into
the previous
Provide final Product 3 contains 11 reasoning chain.
answer. carbon atoms. (v')

Li et al. "Search-o1: Agentic Search-Enhanced

Large Reasoning Models"



More complex pipelines

Prompt How did US states get their names? Step 1: Retrieve on demand

J
% —> US states got their names from a variety of sources. | Retrieve q

Step 2: Generate segment in parallel

Prompt + o Prompt + o

52 22 =4

Relevant | 1 of 50 state names . Relevant
Irrelevant § Texas is named

California's name has its
origins in a 16th-century novel
Las Sergas de Esplandian. § partially

. Su rted . . .
come from persons e after a Native American tribe.

Step 3: Critique outputs and select best segment

N s _ US states got their names from a variety of sources. 11 of 50
-2 } Retmcvoj — Repeat____ —
S states names are come from persons. 26 states are named
after Native Americans, including Utah.

Asai at al. 2024. “Selt-RAG: Learning to Retrieve, Generate, and
Critique through Self-Reflection”

Key ideas: Make it an agent system with functions such as
1. Deciding when to use retrieval

Search Instruction:

When you encounter unfamiliar knowledge,
you can perform web searches to help you ...

Original Question:

(

Domains:

Step 1: ... Step 2: ... Step 3: ... = C@ Biology
Question: carbon atoms count of Product 3 BE Math
* I) Code
1)
Start thinkin @ Large Reasoning [z} ODQA
g- Model (e.g. 01) ~
Step n *

ﬁelarfc:\.fofr Structure of trans- Retrieved

SRl o Cinnamaldehyde Documents
on-demand.

Step n+1 * iterable O

Get concise Trans-Cinnamaldehyde

+
B

informatipn has the structure i
and continue C¢H:CH=CHCHO. (v) Reason-in-
cohergnt Stop 2 Documents
reasoning. epn *
Integrate helpful
Final Step * information into
. the previous
Provide final Product 3 contains 11 reasoning chain.
answer. carbon atoms. (v')

Li et al. "Search-o1: Agentic Search-Enhanced

Large Reasoning Models"



More complex pipelines

Prompt How did US states get their names? Step 1: Retrieve on demand

J
% —> US states got their names from a variety of sources. | Retrieve q

Step 2: Generate segment in parallel

Prompt + o Prompt + o

52 22 =4

Relevant | 1 of 50 state names . Relevant
Irrelevant § Texas is named

California's name has its
origins in a 16th-century novel
Las Sergas de Esplandian. § partially

. Su rted . . .
come from persons e after a Native American tribe.

Step 3: Critique outputs and select best segment

N s _ US states got their names from a variety of sources. 11 of 50
-2 } Retmcvoj — Repeat____ —
S states names are come from persons. 26 states are named
after Native Americans, including Utah.

Asai at al. 2024. “Selt-RAG: Learning to Retrieve, Generate, and
Critique through Self-Reflection”

Key ideas: Make it an agent system with functions such as
1. Deciding when to use retrieval
2. Generating a retrieval query

Search Instruction:

When you encounter unfamiliar knowledge,
you can perform web searches to help you ...

Original Question:

(

Domains:

Step 1: ... Step 2: ... Step 3: ... = C@ Biology
Question: carbon atoms count of Product 3 BE Math
* I) Code
1)
Start thinkin @ Large Reasoning [z} ODQA
g- Model (e.g. 01) ~
Step n *

ﬁelarfc:\.fofr Structure of trans- Retrieved

SRl o Cinnamaldehyde Documents
on-demand.

Step n+1 * iterable O

Get concise Trans-Cinnamaldehyde

+
B

informatipn has the structure i
and continue C¢H:CH=CHCHO. (v) Reason-in-
cohergnt Stop 2 Documents
reasoning. epn *
Integrate helpful
Final Step * information into
. the previous
Provide final Product 3 contains 11 reasoning chain.
answer. carbon atoms. (v')

Li et al. "Search-o1: Agentic Search-Enhanced

Large Reasoning Models"



More complex pipelines

Prompt How did US states get their names? Step 1: Retrieve on demand .
L Search Instruction: 4 D .
) ' - omains:
% —> US states got their names from a variety of sources. | Retrieve | q When you encounter unfamiliar knowledge, _
o you can perform web searches to help you ... @ Physics
Step 2: Generate segment in parallel o o o Chemi stry
Original Question:
Prompt + ) Prompt + ) Prompt + € Step 1: ... Step 2: ... Step 3: ... < ‘%3' Biology
% | @ ] % ! Question: carbon atoms count of Product 3 BE Math
o211 of 50 state names R oo is named Relevant | Cglifornia's name has its * | Code
come from persons. Supported : . . origins in a 16th-century novel
after a Native American tribe. Las Sergas de Esplandian. | partially o Large Reasoning E]'_] ODQA
Step 3: Critique outputs and select best segment Start thinking. @ Model (e.g. 0o1) ~
(o) > @ umm > o mm stepn |
3 I v T ___ US states got their names from a variety of sources. 11 of 50 Search for Retrieved
% > | Fjirf:ij — Repeat.... ~ states ngmes arg comg from. personsg% states are named helpful info SCt:':rC:taunl;ea I(()jfetr:)a(g:' — Docum\énts
after Native Americans, including Utah. on-demand.
Step n+1 * iterable O *
. . . . . .
Asai at al. 2024. “Selt-RAG: Learning to Retrieve, Generate, and Q?t cor:gse Trans-Cinnamaldehyde @[;
.. . iInrmormation
ritique through Self-Reflection” - LI -
C q g S and continue CgH;CH=CHCHO. (V") Reason-in-
cohergnt Step +2 * Documents
s . . . . reasoning.
Key ideas: Make it an agent system with functions such as tegrate helpful
. d . h . | Final Step * information into
1. Deciding when to use retrieva the previous
. ] Provide final Product 3 contains 11 reasoning chain.
2. Generating a retrieval query answer. carbon atoms. (+/)

3. Reranking/adaptive adoption—use only relevant

) Li et al. "Search-o1: Agentic Search-Enhanced
retrieved passages

Large Reasoning Models"



More complex pipelines

Prompt How did US states get their names? Step 1: Retrieve on demand

(
% —> US states got their names from a variety of sources. | Retrieve j q

Step 2: Generate segment in parallel

Prompt + o Prompt + o

% ._ @ A %l

Relevant | 1 of 50 state names . Relevant
Irrelevant § Texas is named

California's name has its
origins in a 16th-century novel
Las Sergas de Esplandian. § partially

. Su rted . . .
come from persons e after a Native American tribe.

Step 3: Critique outputs and select best segment

¥ P US states got their names from a variety of sources. 11 of 50
— etrieve — —
L Repeat.... states names are come from persons. 26 states are named
after Native Americans, including Utah.

Asai at al. 2024. “Selt-RAG: Learning to Retrieve, Generate, and
Critique through Self-Reflection”

Key ideas: Make it an agent system with functions such as
1. Deciding when to use retrieval
2. Generating a retrieval query

3. Reranking/adaptive adoption—use only relevant
retrieved passages

4. Rewriting—make passages more comprehensible &
include relevant info only

Search Instruction:

When you encounter unfamiliar knowledge,
you can perform web searches to help you ...

Original Question:
Step 1: ... Step 2: ... Step 3: ...
Question: carbon atoms count of Product 3

}

o Large Reasonin
Start thinking. Q Mfde| (e.g. o1)g
Step n *
ﬁela;crl]'f(;r Structure of trans-
elpful info Cinnamaldehyde
on-demand.

Step n+1 * iterable O

Get concise Trans-Cinnamaldehyde

informatipn has the structure
and continue C¢H:CH=CHCHO. (v)
coherent
reasoning. Step n+2 *

Final Step *
Provide final Product 3 contains 11
answer. carbon atoms. (v')

Li et al. "Search-o1: Agentic Search-Enhanced

Large Reasoning Models"

r

Domains:

Retrieved
Documents

+
B

Reason-in-
Documents

Integrate helpful
information into

the previous

reasoning chain.
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Today’s Lecture

. . ® Retrieval
Part 1. Basics of retrieval-based LMs '

(35min)

® Augmentation

® Training of retrieval-based LMs

® Scalable Pre-training with Retrieval

Part 2. Recent research on scaling
retrieval-based LMs (35min)

® 5Scaling a Datastore

® Datastore for Responsible Data Use

Open Problems (10min)
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Is scaling important?
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How to scale?
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Scaling in retrieval-based LMs?

green
o T Dot o sl o “Avada Kedavra!” A

o bty ot ik . Retrieval @) jet of green light LM @) red

wuch, ey were the last people qoud,

et i fo it . by S 1ssued from .. memory
or  awyotencous, bGecawe they Fudt  didut F

told, weth ouch wsmoense. Mr. Duroley wae =

the dowecton of a fowm called, Guumaiuge, L™

which wmade drille, Fe was a big, beefy F‘— mOvement

Larger Larger LM!
retriever!

Ni et al. "Large Dual Encoders Are Generalizable Retrievers” and other work
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Motivation

green
red =

memory [
movement |

(New to LMs)

Can we pre-train LMs to make better use of retrieval?
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Pre-training w/ retrieval

Voldemort had raised his “Avada Kedavra!” A Just as a jet of

et of green light red light blasted
wand and a flash of ' ] v 3 2

1ssued from .. from Harry’'s ..

Apply loss here

'iwand and a flash of green i




Pre-training w/ retrieval

Voldemort had raised his “Avada Kedavra!” A just as a jet of
d d flash of jet of green light red light blasted
wand and a flash o

1ssued from .. from Harry’'s ..

.. Kadavra!” green light .. a jet of red light .. wand and a flash of green |
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. “Avada Kedavral!” A just as a jet of red
Voldemort had raised , jet of green light light blasted from
his wand and a flash of Retrieval 1ssued from .. Harry’'s ..
ﬁ/

One of the three

Unforgivable Curses “Avada Kedavra!” A the curse caused
! ! . . jet of green light instantaneous and
wizarding law, Avada Retrieval i1ssued from .. palinless death
/
| | I don't think “Avada Kedavra!” A
red light 1ssued from , Expelliarmus is jet of green light
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1) LM conditions on a set of 2) Each document appears
relevant documents exactly once
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1) LM conditions on a set of 2) Each document appears
relevant documents exactly once
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Pre-training with retrieval: Summary

® Key idea: Pre-train an LM with retrieval

® Naive approaches do not work due to efficiency or duplication issues
— casted it to a document ordering problem

® +10.5% improvements in downstream tasks w/ retrieval on average

® (Not in this talk) Larger improvements (+15.9%) when retrieval results
do not support answering the query
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The law of scaling

Parameter Training X Data StO re
SlZe

LM capapilities = 505 x5

“A small LM + a large datastore >> a large LM?"
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Datastores in the literature

Reference # tokens Data source

DPR (Karpukhin et al. 2020) <5B
ATLAS (Izcard et al. 2023) <5B
REALM (Gun et al. 2020) <5B
RALM (RAm et al. 2023) <5B
Self-RAG (Asai et al. 2024) <5B
REPLUG (Shi et al. 2023) 478
RA-DIT (Lin et al. 2024) /9B
SPHERE (Piktus et al. 2022) 90B
RETRO (Borgeaud et al. 2022) 1.7T

MassiveDS (Shao et al.
2024)

14T

Wikipedia
Wikipedia
Wikipedia

Wikipedia
Wikipedia

The Pile

Wikipedia + Common Crawl

CC Net

Massive Text

Common Crawl (83%),
Academic papers, Code,
Encyclopedia, Books,
Math, Biomedical, etc

Open sourced?
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Datastores in the literature

Reference # tokens Data source Open sourced?
DPR (Karpukhin et al. 2020) <5B Wikipedia O
ATLAS (Izcard et al. 2023) <5B Wikipedia X
REALM (Gun et al. 2020) <5B Wikipedia X
RALM (RAm et al. 2023) <5B Wikipedia O
Self-RAG (Asai et al. 2024) <5B Wikipedia O
REPLUG (Shi et al. 2023) 47B The Pile O
RA-DIT (Lin et al. 2024) /9B Wikipedia + Common Crawl X
SPHERE (Piktus et al. 2022) 90B CC Net O
RETRO (Borgeaud et al. 2022) 1.7T Massive Text X
: Common Crawl (83%),
MassiveDS (Shao et al. 141  Academic papers, Code, o

2024) ' Encyclopedia, .Books,
Math, Biomedical, etc

(Lots of challenges in systems and algorithms — skipping here)
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(a) RedPajama (b) S20RC
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of tokens in a datastore (billions)

(Note: Llama-2 and Lllama-3 are not comparable in PPLI)
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Results: Downstream tasks
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Where to use compute — for # parameters, training data, or datastore?

f ! \

1B and /B Checkpoints Datastores with
trained on varying varying sizes
sizes of data
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@ Overview Documentation API reference Examples Playground

Playground

Mr and Mrs Dursley, of number four, Privet Drive, were proud to
say that they were perfectly normal, thank you very much. They
were the last people you'd expect to be involved in anything
strange or mysterious, because they just didn't hold with such
nonsense.

Mr Dursley was the director of a firm called Grunnings, which
made drills. He was a big, beefy man with hardly any neck,
although he did have a very large moustache. Mrs Dursley was
thin and blonde and had nearly twice the usual amount of neck,
which came in very useful as she spent so much of her time craning
over garden fences, spying on the neighbours. The Dursleys had a
small son called Dudley and in their opinion there was no finer
boy anywhere.

The Dursleys had everything they wanted,
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Problem: Risk

n | want my books to be | got a lawsuit for copyright @

.I . excluded. infringement from NYT.

n | want to get credited whenever | got a lawsuit for violating | &
~  the model uses my articles. DMCA (for removing CMI). i

® Re-train the model every time removal of data is needed — expensive

® Filter out any risky data and train on permissive data only — impractical
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Exhibit 1.1 FIRSTBANK
CORPORATION (a

Voldemort cried,

Michigan corporation) 'Avada Kedavra!' A
33,000 Shares of Fixed jet of green light
Rate Cumulative i1ssued from
Perpetual Preferred Voldemort's wand
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B

Seattle
From Wikipedia, the free
encyclopedia.

Seattle (/si'&tol/ @ see-
AT-al) 1s a seaport city on

the West Coast of the -

Sewon Min

Address:
123 45th Ave

Phone:

123-450-"7390| ="
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Exhibit 1.1 FIRSTBANK
CORPORATION (a
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Q2: Alternative ways to incorporate datastore?
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Q2: Alternative ways to incorporate datastore?
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Open questions (3/3)

Q3: How to optimize retrieval-based LMs (with systems point of view)?

v Lots of work on optimizing retrieval (kNN)

v/ Lots ot work on optimizing LLM inference

\/(Relatively recent) Work on optimizing LLM
inference with function calling, where retrieval is
one of the functions

? Very little work that optimizes LMs with retrieval
as a first class citizen (rather than a black box)

An LLM Compiler for Parallel Function Calling

Sehoon Kim *! Suhong Moon *! Ryan Tabrizi! Nicholas Lee! Michael W. Mahoney ! 23

——

ASYNCHRONOUS LLM FUNCTION CALLING

In Gim' Seung-seob Lee' Lin Zhong'

—

INFERCEPT: Efficient Intercept Support for
Augmented Large Language Model Inference

Reyna Abhyankar “! Zijian He ™!

Fast Inference for Augmented Large Language Models
Rana Shahout, Cong Liang§, Shiji Xin', Qianru Lao',

Yong Cui 3 Minlan Yu', Michael Mitzenmacher’

Harvard University ', Tsinghua University

Vikranth Srivatsa' Hao Zhang'! Yiying Zhang '

—



Thank you for listening!

ﬂ sewonmin.com B sewonm@berkeley.edu

Please leave feedback at: tinyurl.com/sewonm-talk
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