
A Retrieval-based Language Model at Scale

Sewon Min
sewonmin.com

http://sewonmin.com


Today’s LLM

Trillions of tokens

Mr. and Mrs. Dursley, of number four, Privet Drive, were 
proud to say that they were perfectly normal, thank you 
very much. They were the last people you'd expect to be 
involved in anything strange or mysterious, because they just 
didn't hold with such nonsense. Mr. Dursley was the 
director of a firm called Grunnings, which made drills. He 
was a big, beefy man with hardly any neck, although he 
did have a very large mustache. Mrs. Dursley was thin 
and blonde and had nearly twice the usual amount of …



Today’s LLM

Trillions of tokens

Mr. and Mrs. Dursley, of number four, Privet Drive, were 
proud to say that they were perfectly normal, thank you 
very much. They were the last people you'd expect to be 
involved in anything strange or mysterious, because they just 
didn't hold with such nonsense. Mr. Dursley was the 
director of a firm called Grunnings, which made drills. He 
was a big, beefy man with hardly any neck, although he 
did have a very large mustache. Mrs. Dursley was thin 
and blonde and had nearly twice the usual amount of …

10+ billion parameters

    .



Today’s LLM

The capital city of California is

Sacramento 
San Francisco 

Los Angelos 
San Diego 

… 

    .

Billions—trillions of words

Mr. and Mrs. Dursley, of number four, Privet Drive, were 
proud to say that they were perfectly normal, thank you 
very much. They were the last people you'd expect to be 
involved in anything strange or mysterious, because they just 
didn't hold with such nonsense. Mr. Dursley was the 
director of a firm called Grunnings, which made drills. He 
was a big, beefy man with hardly any neck, although he 
did have a very large mustache. Mrs. Dursley was thin 
and blonde and had nearly twice the usual amount of …



Today’s LLM

The capital city of California is

Sacramento 
San Francisco 

Los Angelos 
San Diego 

… 

    .

Billions—trillions of words

Mr. and Mrs. Dursley, of number four, Privet Drive, were 
proud to say that they were perfectly normal, thank you 
very much. They were the last people you'd expect to be 
involved in anything strange or mysterious, because they just 
didn't hold with such nonsense. Mr. Dursley was the 
director of a firm called Grunnings, which made drills. He 
was a big, beefy man with hardly any neck, although he 
did have a very large mustache. Mrs. Dursley was thin 
and blonde and had nearly twice the usual amount of …



Today’s LLM

    .



Today’s LLM

    .

What’s the capital city of California?

Sacramento



Today’s LLM

    .

What’s the capital city of California?

Sacramento

Works quite well in practice 
(with sufficient scale)



Today’s LLM

    .

What’s the capital city of California?

Sacramento

Works quite well in practice 
(with sufficient scale)

At the MIT event, Altman was asked  
if training GPT-4 cost $100 million; 
he replied, “It’s more than that.”

WIRED, April 17, 2023

January 18, 2024

$24 
billion 



Today’s LLM

    .

What’s the capital city of California?

Sacramento

Should remember 
every detail from 

the data

Works quite well in practice 
(with sufficient scale)

At the MIT event, Altman was asked  
if training GPT-4 cost $100 million; 
he replied, “It’s more than that.”

WIRED, April 17, 2023

January 18, 2024

$24 
billion 



Today’s LLM

[Without web browsing]

incorrect



Today’s LLM

Expensive, still fail to remember 
details, fail to stay up-to-date

[Without web browsing]

incorrect



Mr. and Mrs. Dursley, of number four, Privet Drive, were 
proud to say that they were perfectly normal, thank you 
very much. They were the last people you'd expect to be 
involved in anything strange or mysterious, because they just 
didn't hold with such nonsense. Mr. Dursley was the director 
of a firm called Grunnings, which made drills. He was a 
big, beefy man with hardly any neck, although he did have 
a very large mustache. Mrs. Dursley was thin and blonde 
and had nearly twice the usual amount of …

Keep the data!

data kept!    .



Mr. and Mrs. Dursley, of number four, Privet Drive, were 
proud to say that they were perfectly normal, thank you 
very much. They were the last people you'd expect to be 
involved in anything strange or mysterious, because they just 
didn't hold with such nonsense. Mr. Dursley was the director 
of a firm called Grunnings, which made drills. He was a 
big, beefy man with hardly any neck, although he did have 
a very large mustache. Mrs. Dursley was thin and blonde 
and had nearly twice the usual amount of …

Keep the data!

Voldemort had raised his wand … and a flash of

data kept!    .



Mr. and Mrs. Dursley, of number four, Privet Drive, were 
proud to say that they were perfectly normal, thank you 
very much. They were the last people you'd expect to be 
involved in anything strange or mysterious, because they just 
didn't hold with such nonsense. Mr. Dursley was the director 
of a firm called Grunnings, which made drills. He was a 
big, beefy man with hardly any neck, although he did have 
a very large mustache. Mrs. Dursley was thin and blonde 
and had nearly twice the usual amount of …

Keep the data!

Voldemort had raised his wand … and a flash of

…“Avada Kedavra!” 
A jet of green 

light issued from 
     Locate    .



Mr. and Mrs. Dursley, of number four, Privet Drive, were 
proud to say that they were perfectly normal, thank you 
very much. They were the last people you'd expect to be 
involved in anything strange or mysterious, because they just 
didn't hold with such nonsense. Mr. Dursley was the director 
of a firm called Grunnings, which made drills. He was a 
big, beefy man with hardly any neck, although he did have 
a very large mustache. Mrs. Dursley was thin and blonde 
and had nearly twice the usual amount of …

Keep the data!

Voldemort had raised his wand … and a flash of

…“Avada Kedavra!” 
A jet of green 

light issued from 
     Locate

       Reason

    .



Mr. and Mrs. Dursley, of number four, Privet Drive, were 
proud to say that they were perfectly normal, thank you 
very much. They were the last people you'd expect to be 
involved in anything strange or mysterious, because they just 
didn't hold with such nonsense. Mr. Dursley was the director 
of a firm called Grunnings, which made drills. He was a 
big, beefy man with hardly any neck, although he did have 
a very large mustache. Mrs. Dursley was thin and blonde 
and had nearly twice the usual amount of …

Keep the data!

Voldemort had raised his wand … and a flash of

green 
red 

light 
memory 

movement 
… 

…“Avada Kedavra!” 
A jet of green 

light issued from 
     Locate

       Reason

    .



Mr. and Mrs. Dursley, of number four, Privet Drive, were 
proud to say that they were perfectly normal, thank you 
very much. They were the last people you'd expect to be 
involved in anything strange or mysterious, because they just 
didn't hold with such nonsense. Mr. Dursley was the director 
of a firm called Grunnings, which made drills. He was a 
big, beefy man with hardly any neck, although he did have 
a very large mustache. Mrs. Dursley was thin and blonde 
and had nearly twice the usual amount of …

Keep the data!

Voldemort had raised his wand … and a flash of

green 
red 

light 
memory 

movement 
… 

…“Avada Kedavra!” 
A jet of green 

light issued from 
     Locate

       Reason

    .

No need to remember every detail



Mr. and Mrs. Dursley, of number four, Privet Drive, were 
proud to say that they were perfectly normal, thank you 
very much. They were the last people you'd expect to be 
involved in anything strange or mysterious, because they just 
didn't hold with such nonsense. Mr. Dursley was the director 
of a firm called Grunnings, which made drills. He was a 
big, beefy man with hardly any neck, although he did have 
a very large mustache. Mrs. Dursley was thin and blonde 
and had nearly twice the usual amount of …

A retrieval-based LM

Voldemort had raised his wand … and a flash of

green 
red 

light 
memory 

movement 
… 

data kept!    .

No need to remember every detail



Mr. and Mrs. Dursley, of number four, Privet Drive, were 
proud to say that they were perfectly normal, thank you 
very much. They were the last people you'd expect to be 
involved in anything strange or mysterious, because they just 
didn't hold with such nonsense. Mr. Dursley was the director 
of a firm called Grunnings, which made drills. He was a 
big, beefy man with hardly any neck, although he did have 
a very large mustache. Mrs. Dursley was thin and blonde 
and had nearly twice the usual amount of …

Datastore    .

No need to remember every detail

Voldemort had raised his wand … and a flash of

green 
red 

light 
memory 

movement 
… 

    .

A retrieval-based LM



Mr. and Mrs. Dursley, of number four, Privet Drive, were 
proud to say that they were perfectly normal, thank you 
very much. They were the last people you'd expect to be 
involved in anything strange or mysterious, because they just 
didn't hold with such nonsense. Mr. Dursley was the director 
of a firm called Grunnings, which made drills. He was a 
big, beefy man with hardly any neck, although he did have 
a very large mustache. Mrs. Dursley was thin and blonde 
and had nearly twice the usual amount of …

Datastore    .

No need to remember every detail, can grow & seamlessly update

A retrieval-based LM



Mr. and Mrs. Dursley, of number four, Privet Drive, were 
proud to say that they were perfectly normal, thank you 
very much. They were the last people you'd expect to be 
involved in anything strange or mysterious, because they just 
didn't hold with such nonsense. Mr. Dursley was the director 
of a firm called Grunnings, which made drills. He was a 
big, beefy man with hardly any neck, although he did have 
a very large mustache. Mrs. Dursley was thin and blonde 
and had nearly twice the usual amount of …

Datastore    .

No need to remember every detail, can grow & seamlessly update

A retrieval-based LM



Mr. and Mrs. Dursley, of number four, Privet Drive, were 
proud to say that they were perfectly normal, thank you 
very much. They were the last people you'd expect to be 
involved in anything strange or mysterious, because they just 
didn't hold with such nonsense. Mr. Dursley was the director 
of a firm called Grunnings, which made drills. He was a 
big, beefy man with hardly any neck, although he did have 
a very large mustache. Mrs. Dursley was thin and blonde 
and had nearly twice the usual amount of …

Datastore    .

No need to remember every detail, can grow & seamlessly update

A retrieval-based LM



Mr. and Mrs. Dursley, of number four, Privet Drive, were 
proud to say that they were perfectly normal, thank you 
very much. They were the last people you'd expect to be 
involved in anything strange or mysterious, because they just 
didn't hold with such nonsense. Mr. Dursley was the director 
of a firm called Grunnings, which made drills. He was a 
big, beefy man with hardly any neck, although he did have 
a very large mustache. Mrs. Dursley was thin and blonde 
and had nearly twice the usual amount of …

Datastore    .

No need to remember every detail, can grow & seamlessly update

A retrieval-based LM



Mr. and Mrs. Dursley, of number four, Privet Drive, were 
proud to say that they were perfectly normal, thank you 
very much. They were the last people you'd expect to be 
involved in anything strange or mysterious, because they just 
didn't hold with such nonsense. Mr. Dursley was the director 
of a firm called Grunnings, which made drills. He was a 
big, beefy man with hardly any neck, although he did have 
a very large mustache. Mrs. Dursley was thin and blonde 
and had nearly twice the usual amount of …

Datastore    .

No need to remember every detail, can grow & seamlessly update

A retrieval-based LM



Mr. and Mrs. Dursley, of number four, Privet Drive, were 
proud to say that they were perfectly normal, thank you 
very much. They were the last people you'd expect to be 
involved in anything strange or mysterious, because they just 
didn't hold with such nonsense. Mr. Dursley was the director 
of a firm called Grunnings, which made drills. He was a 
big, beefy man with hardly any neck, although he did have 
a very large mustache. Mrs. Dursley was thin and blonde 
and had nearly twice the usual amount of …

Datastore

Biden suspended his 
campaign and endorsed 
Harris for president.

    .

No need to remember every detail, can grow & seamlessly update

A retrieval-based LM



Mr. and Mrs. Dursley, of number four, Privet Drive, were 
proud to say that they were perfectly normal, thank you 
very much. They were the last people you'd expect to be 
involved in anything strange or mysterious, because they just 
didn't hold with such nonsense. Mr. Dursley was the director 
of a firm called Grunnings, which made drills. He was a 
big, beefy man with hardly any neck, although he did have 
a very large mustache. Mrs. Dursley was thin and blonde 
and had nearly twice the usual amount of …

Datastore

Biden suspended his 
campaign and endorsed 
Harris for president.

    .

No need to remember every detail, can grow & seamlessly update

A retrieval-based LM



Retrieval-based LMs: Why?



Retrieval-based LMs: Why?
More performant

Long-tail knowledge

Staying up-to-date

[Without web browsing]
incorrect



Retrieval-based LMs: Why?
More performant

Long-tail knowledge

Staying up-to-date

[With web browsing]



Retrieval-based LMs: Why?
More performant

Long-tail knowledge

Staying up-to-date

[With web browsing]



Retrieval-based LMs: Why?
More performant

Long-tail knowledge

Staying up-to-date

Citation (for better 
explainability and verification)



Retrieval-based LMs: Why?
More performant

Long-tail knowledge

Staying up-to-date

Citation (for better 
explainability and verification)

Frontier models are already using retrieval as a key feature



Retrieval-based LMs: Why?
More performant More flexibility

Mr. and Mrs. 
Dursley , of 
number four, 

Mr. and Mrs. 
Dursley , of 
number four, 

Mr. and Mrs. 
Dursley , of 
number four, 

Mr. and Mrs. 
Dursley , of 
number four, 

    .

(Proprietary, private, or copyrighted data)



Retrieval-based LMs: Why?
More performant More flexibility

Mr. and Mrs. 
Dursley , of 
number four, 

Mr. and Mrs. 
Dursley , of 
number four, 

Mr. and Mrs. 
Dursley , of 
number four, 

Mr. and Mrs. 
Dursley , of 
number four, 

    .

Flexibility to be added or 
removed later (for free)

(Proprietary, private, or copyrighted data)



Retrieval-based LMs: Why?
More performant More flexibility

Mr. and Mrs. 
Dursley , of 
number four, 

Mr. and Mrs. 
Dursley , of 
number four, 

Mr. and Mrs. 
Dursley , of 
number four, 

Mr. and Mrs. 
Dursley , of 
number four, 

    .

Flexibility to be added or 
removed later (for free)

Flexibility to be hosted 
remotely

(Proprietary, private, or copyrighted data)



Retrieval-based LMs: Why?
More performant More flexibility

Mr. and Mrs. 
Dursley , of 
number four, 

Mr. and Mrs. 
Dursley , of 
number four, 

Mr. and Mrs. 
Dursley , of 
number four, 

Mr. and Mrs. 
Dursley , of 
number four, 

    .

Flexibility to be added or 
removed later (for free)

Flexibility to be hosted 
remotely

Attribution & credit 
assignment

(Proprietary, private, or copyrighted data)



Retrieval-based LMs: Why?
More performant More flexibility

Mr. and Mrs. 
Dursley , of 
number four, 

Mr. and Mrs. 
Dursley , of 
number four, 

Mr. and Mrs. 
Dursley , of 
number four, 

Mr. and Mrs. 
Dursley , of 
number four, 

    .

Flexibility to be added or 
removed later (for free)

Flexibility to be hosted 
remotely

Attribution & credit 
assignment

We can think of retrieval as an alternative way to use the data 
(in addition to “training” on the data)

(Proprietary, private, or copyrighted data)



Today’s Lecture

Part 1. Basics of retrieval-based LMs 
(35min)

Part 2. Recent research on scaling 
retrieval-based LMs (35min)

• Retrieval 

• Augmentation 

• Training of retrieval-based LMs

• Scalable Pre-training with Retrieval 

• Scaling a Datastore 

• Datastore for Responsible Data Use

Open Problems (10min)



Today’s Lecture

Part 1. Basics of retrieval-based LMs 
(35min)

Part 2. Recent research on scaling 
retrieval-based LMs (35min)

• Retrieval 

• Augmentation 

• Training of retrieval-based LMs

• Scalable Pre-training with Retrieval 

• Scaling a Datastore 

• Datastore for Responsible Data Use

Open Problems (10min)



A two-stage pipeline

Mr. and Mrs. Dursley, of number four, 
Privet Drive, were proud to say that they 
were perfectly normal, thank you very 
much. They were the last people you'd 
expect to be involved in anything strange 
or mysterious, because they just didn't 
hold with such nonsense. Mr. Dursley was 
the director of a firm called Grunnings, 
which made drills. He was a big, beefy 

Voldemort had raised his wand … and a flash of



A two-stage pipeline

Mr. and Mrs. Dursley, of number four, 
Privet Drive, were proud to say that they 
were perfectly normal, thank you very 
much. They were the last people you'd 
expect to be involved in anything strange 
or mysterious, because they just didn't 
hold with such nonsense. Mr. Dursley was 
the director of a firm called Grunnings, 
which made drills. He was a big, beefy 

Voldemort had raised his wand … and a flash of

 Retrieval    
…“Avada 

Kedavra!” A jet 
of green light …



A two-stage pipeline

Mr. and Mrs. Dursley, of number four, 
Privet Drive, were proud to say that they 
were perfectly normal, thank you very 
much. They were the last people you'd 
expect to be involved in anything strange 
or mysterious, because they just didn't 
hold with such nonsense. Mr. Dursley was 
the director of a firm called Grunnings, 
which made drills. He was a big, beefy 

Voldemort had raised his wand … and a flash of

 Retrieval    
…“Avada 

Kedavra!” A jet 
of green light …

green 
red 

memory 
movement

LM     .



A two-stage pipeline

Mr. and Mrs. Dursley, of number four, 
Privet Drive, were proud to say that they 
were perfectly normal, thank you very 
much. They were the last people you'd 
expect to be involved in anything strange 
or mysterious, because they just didn't 
hold with such nonsense. Mr. Dursley was 
the director of a firm called Grunnings, 
which made drills. He was a big, beefy 

Voldemort had raised his wand … and a flash of

 Retrieval    
…“Avada 

Kedavra!” A jet 
of green light …

green 
red 

memory 
movement

LM     .

1) Retrieval



A two-stage pipeline

Mr. and Mrs. Dursley, of number four, 
Privet Drive, were proud to say that they 
were perfectly normal, thank you very 
much. They were the last people you'd 
expect to be involved in anything strange 
or mysterious, because they just didn't 
hold with such nonsense. Mr. Dursley was 
the director of a firm called Grunnings, 
which made drills. He was a big, beefy 

Voldemort had raised his wand … and a flash of

 Retrieval    
…“Avada 

Kedavra!” A jet 
of green light …

green 
red 

memory 
movement

LM     .

1) Retrieval 2) Augmentation



A two-stage pipeline

Mr. and Mrs. Dursley, of number four, 
Privet Drive, were proud to say that they 
were perfectly normal, thank you very 
much. They were the last people you'd 
expect to be involved in anything strange 
or mysterious, because they just didn't 
hold with such nonsense. Mr. Dursley was 
the director of a firm called Grunnings, 
which made drills. He was a big, beefy 

Voldemort had raised his wand … and a flash of

 Retrieval    
…“Avada 

Kedavra!” A jet 
of green light …

green 
red 

memory 
movement

LM     .

1) Retrieval 2) Augmentation

3) Training



A two-stage pipeline

Mr. and Mrs. Dursley, of number four, 
Privet Drive, were proud to say that they 
were perfectly normal, thank you very 
much. They were the last people you'd 
expect to be involved in anything strange 
or mysterious, because they just didn't 
hold with such nonsense. Mr. Dursley was 
the director of a firm called Grunnings, 
which made drills. He was a big, beefy 

Voldemort had raised his wand … and a flash of

 Retrieval    
…“Avada 

Kedavra!” A jet 
of green light …

green 
red 

memory 
movement

LM     .

1) Retrieval 2) Augmentation

3) Training

(At the end, different architectures beyond the two-stage pipeline)



A two-stage pipeline

Mr. and Mrs. Dursley, of number four, 
Privet Drive, were proud to say that they 
were perfectly normal, thank you very 
much. They were the last people you'd 
expect to be involved in anything strange 
or mysterious, because they just didn't 
hold with such nonsense. Mr. Dursley was 
the director of a firm called Grunnings, 
which made drills. He was a big, beefy 

Voldemort had raised his wand … and a flash of

 Retrieval    
…“Avada 

Kedavra!” A jet 
of green light …

green 
red 

memory 
movement

LM     .

1) Retrieval 2) Augmentation

Earlier work: Li et al. 2016, Chen et al. 2017, Gu et al 2017, Zhang et al. 2018 

3) Training

(At the end, different architectures beyond the two-stage pipeline)

https://arxiv.org/abs/1609.06490
https://arxiv.org/abs/1704.00051
https://arxiv.org/abs/1705.07267
https://arxiv.org/abs/1804.02559


A two-stage pipeline

Mr. and Mrs. Dursley, of number four, 
Privet Drive, were proud to say that they 
were perfectly normal, thank you very 
much. They were the last people you'd 
expect to be involved in anything strange 
or mysterious, because they just didn't 
hold with such nonsense. Mr. Dursley was 
the director of a firm called Grunnings, 
which made drills. He was a big, beefy 

Voldemort had raised his wand … and a flash of

 Retrieval    
…“Avada 

Kedavra!” A jet 
of green light …

green 
red 

memory 
movement

LM     .

Earlier work: Li et al. 2016, Chen et al. 2017, Gu et al 2017, Zhang et al. 2018 

1) Retrieval 2) Augmentation

3) Training

https://arxiv.org/abs/1609.06490
https://arxiv.org/abs/1704.00051
https://arxiv.org/abs/1705.07267
https://arxiv.org/abs/1804.02559


A retrieval problem



A retrieval problem
z1, ⋯, zNPassages in the datastore:(



A retrieval problem
Input: ), xz1, ⋯, zNPassages in the datastore:(



A retrieval problem
Input: ), xz1, ⋯, zNPassages in the datastore:( zi (1 ≤ i ≤ N)→



A retrieval problem
Input: ), xz1, ⋯, zNPassages in the datastore:( zi (1 ≤ i ≤ N)→

Can generalize to  passages 
(usually )

k
k ≤ 100



A neural retrieval problem
Input: xz1, ⋯, zNPassages in the datastore: zi (1 ≤ i ≤ N)( ) →,

“Siamese” network (Bromley et al. 1993, Chopra et al 2005, Yih et al 2011, Huang et al 2013)



A neural retrieval problem
Input: xz1, ⋯, zNPassages in the datastore: zi (1 ≤ i ≤ N)( ) →,

Encoder
Vector spaceAs Harry shouted, 

“Expelliarmus!” 
Voldemort cried, 

“Avada Kedavra!” A 



A neural retrieval problem
Input: xz1, ⋯, zNPassages in the datastore: zi (1 ≤ i ≤ N)( ) →,

Encoder
Vector spaceAs Harry shouted, 

“Expelliarmus!” 
Voldemort cried, 

“Avada Kedavra!” A 
zi = Enc(zi) ∈ ℝh (1 ≤ i ≤ N)



A neural retrieval problem
Input: xz1, ⋯, zNPassages in the datastore: zi (1 ≤ i ≤ N)( ) →,

Encoder
Vector spaceAs Harry shouted, 

“Expelliarmus!” 
Voldemort cried, 

“Avada Kedavra!” A 

Encoder

Encoder

How can a jet of 
water be powerful 

enough to cut 
through steel? 

just as a jet of 
red light blasted 
from Harry’s — 

they met in midair 

zi = Enc(zi) ∈ ℝh (1 ≤ i ≤ N)



A neural retrieval problem
Input: xz1, ⋯, zNPassages in the datastore: zi (1 ≤ i ≤ N)( ) →,

Encoder
Vector spaceAs Harry shouted, 

“Expelliarmus!” 
Voldemort cried, 

“Avada Kedavra!” A 

Voldemort had raised his wand … and a flash of

Encoder

Encoder

How can a jet of 
water be powerful 

enough to cut 
through steel? 

just as a jet of 
red light blasted 
from Harry’s — 

they met in midair 

zi = Enc(zi) ∈ ℝh (1 ≤ i ≤ N)



A neural retrieval problem
Input: xz1, ⋯, zNPassages in the datastore: zi (1 ≤ i ≤ N)( ) →,

Encoder
Vector spaceAs Harry shouted, 

“Expelliarmus!” 
Voldemort cried, 

“Avada Kedavra!” A 

Voldemort had raised his wand … and a flash of

Encoder

Encoder

Encoder

How can a jet of 
water be powerful 

enough to cut 
through steel? 

just as a jet of 
red light blasted 
from Harry’s — 

they met in midair 

x = Enc(x) ∈ ℝh

zi = Enc(zi) ∈ ℝh (1 ≤ i ≤ N)



As Harry shouted, 
“Expelliarmus!” 
Voldemort cried, 

“Avada Kedavra!” A 

A neural retrieval problem
Input: xz1, ⋯, zNPassages in the datastore: zi (1 ≤ i ≤ N)( ) →,

Encoder
Vector space

Encoder

Encoder

How can a jet of 
water be powerful 

enough to cut 
through steel? 

just as a jet of 
red light blasted 
from Harry’s — 

they met in midair 
sim(x, zi) = x⊤zi

Encoder

x = Enc(x) ∈ ℝh

zi = Enc(zi) ∈ ℝh (1 ≤ i ≤ N)

Voldemort had raised his wand … and a flash of



As Harry shouted, 
“Expelliarmus!” 
Voldemort cried, 

“Avada Kedavra!” A 

As Harry shouted, 
“Expelliarmus!” 
Voldemort cried, 

“Avada Kedavra!” A 

A neural retrieval problem
Input: xz1, ⋯, zNPassages in the datastore: zi (1 ≤ i ≤ N)( ) →,

Encoder
Vector space

Encoder

Encoder

How can a jet of 
water be powerful 

enough to cut 
through steel? 

just as a jet of 
red light blasted 
from Harry’s — 

they met in midair 
sim(x, zi) = x⊤zi

Encoder

x = Enc(x) ∈ ℝh

zi = Enc(zi) ∈ ℝh (1 ≤ i ≤ N)

Voldemort had raised his wand … and a flash of



As Harry shouted, 
“Expelliarmus!” 
Voldemort cried, 

“Avada Kedavra!” A 

As Harry shouted, 
“Expelliarmus!” 
Voldemort cried, 

“Avada Kedavra!” A 

A neural retrieval problem
Input: xz1, ⋯, zNPassages in the datastore: zi (1 ≤ i ≤ N)( ) →,

Encoder
Vector space

Encoder

Encoder

How can a jet of 
water be powerful 

enough to cut 
through steel? 

just as a jet of 
red light blasted 
from Harry’s — 

they met in midair 

Fast nearest neighbor search 
(Arya et al. 1998, Dong et al. 2011, 

Norouzi & Fleet 2013, Johnson et al. 2017)

sim(x, zi) = x⊤zi

Encoder

x = Enc(x) ∈ ℝh

zi = Enc(zi) ∈ ℝh (1 ≤ i ≤ N)

Voldemort had raised his wand … and a flash of

https://www.cs.princeton.edu/cass/papers/www11.pdf
https://www.cs.toronto.edu/~fleet/research/Papers/ckmeans-CVPR13.pdf
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No good recipe for training the encoder 
• Required massive compute & labeled dataset 

• Not much better than alternatives (e.g. lexical-matching)

Only in 2020, neural retrieval began its era 
• Advent of pre-trained encoders such as BERT 

• Development of improved learning objectives (next slide)

A neural retrieval problem: in 2019
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Contrastive learning
 inputx : : a positive passage to z+ x

≈
1) In-batch approximation

Yih et al., 2011, Henderson et al., 2017, Gillick et al., 2019

(typically given)
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−log
esim(x,z+)

esim(x,z+) + ∑n
i=1 esim(x,z−

i )



Contrastive learning
 inputx : : a positive passage to z+ x
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Contrastive learning
 inputx : : a positive passage to z+ x

−log
esim(x,z+)

∑N
i=1 esim(x,zi)

2) Hard negatives in the batch

Passages that challenge the model, 
typically obtained by passages with high lexical overlap 

(Karpukhin et al. 2020)

≈
1) In-batch approximation

−log
esim(x,z+)

esim(x,z+) + ∑n
i=1 esim(x,z−

i )

(typically given)
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Retrieval vs. Parametric-only

2016–2019: Retrieval-based models/LMs by default 
                                 (But mostly based on lexical matching retrieval)

February 2020: “Parametric-only LMs” might be better?! 
                       Roberts et al. “How Much Knowledge Can You Pack into the Parameters of a Language Model?”

Summer 2020: A NeurIPS 2020 Competition!

April 2020: But now, neural retrieval is much better! 
                       Karpukhin et al. “Dense Passage Retrieval for Open-Domain Question Answering”
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Natural Questions 
(6-month time shift)

Natural Questions

Before competition After competition
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)

42% 
improvement

Takeaway: The quality of retrieval-based LMs depends on the quality of retrieval
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Q: How do we use multiple passages?
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Results

Graphs from Ram et al. 2023

Retrieval helps over all sizes of LMs

Perplexity: The lower the better

Varying sizes of LMs
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Summary: Training
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minimal effort

Principle way but still 
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trained in isolation
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Instruction-tuning/Post-training

Lin et al. 2023. RA-DIT: Retrieval-Augmented Dual Instruction Tuning 
Wang et al. 2024. InstructRetro: Instruction Tuning post Retrieval-Augmented Pretraining



A two-stage pipeline
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1) Retrieval 2) Augmentation

3) Training
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1) Retrieval: 
Advances in neural retrieval played a vital role in the 

success of retrieval-based LMs
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2) Augmentation: 
Advances in LLMs enabled a very simple 

augmentation recipe 
(We’ll talk about how we can do this better in Part 2)
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3) Training 
Independent training, sequential training, and joint training, 

with tradeoffs in simplicity and effectiveness
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Other architectures
beyond the two-stage pipeline?
(We’ll only briefly review two different architecture types!)
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New Transformers layers, designed to read many text blocks, frequently, more efficiently
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How to incorporate them into Transformers?

Borgeaud et al. 2021. “Improving language models by retrieving from trillions of tokens”
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RETRO Transformers
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Outputs from the previous layer
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Chunked Cross Attention

Outputs from the previous layer Inputs to the next layer

Cross-attention can be computed in parallel, and be re-used

If  you generated until here

You get this

and go through this

Borgeaud et al. 2021. “Improving language models by retrieving from trillions of tokens”



Chunked Cross Attention

Outputs from the previous layer Inputs to the next layer

This part can be re-used

If  you generated until here

Cross-attention can be computed in parallel, and be re-used
Borgeaud et al. 2021. “Improving language models by retrieving from trillions of tokens”
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kNN-LM
# of vectors = # of tokens in the corpus (>1B)
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Which tokens in a datastore are close to the next token?
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kNN-LM

Which tokens in a datastore are close to the next token?

Which vectors in a datastore are close to the vector we have?

=

Khandelwal et al. 2020. "Generalization through Memorization: Nearest Neighbor Language Models"
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kNN-LM
Nonparamatric softmax
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PkNN−LM(y |x) = (1 − λ)PLM(y |x) + λPkNN(y |x)

Nonparamatric softmax

softmax
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kNN-LM

PkNN−LM(y |x) = (1 − λ)PLM(y |x) + λPkNN(y |x) : hyperparameterλ

Nonparamatric softmax

softmax

Khandelwal et al. 2020. "Generalization through Memorization: Nearest Neighbor Language Models"



Different architectures: Bigger context

•Different architectures were proposed to address certain limitations 
of the two-stage pipeline, e.g., inefficiency, retrieval granularity, 
retrieval frequency, etc. 

•As it typically modifies the architecture of Transformers, it requires 
training an LM extensively. 

•How to train them at scale remains an open question. 

•For this reason, today’s most widely used retrieval-based LMs remain 
to be the two stage pipeline approach.
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More complex pipelines

Asai at al. 2024. “Self-RAG: Learning to Retrieve, Generate, and 
Critique through Self-Reflection”

Li et al. "Search-o1: Agentic Search-Enhanced 
Large Reasoning Models"

Key ideas: Make it an agent system with functions such as
1. Deciding when to use retrieval
2. Generating a retrieval query
3. Reranking/adaptive adoption—use only relevant 

retrieved passages
4. Rewriting—make passages more comprehensible & 

include relevant info only
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Larger         
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Larger LM!

Ni et al. "Large Dual Encoders Are Generalizable Retrievers” and other work
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(New to LMs)

Can we pre-train LMs to make better use of retrieval?



Pre-training w/ retrieval

Doc 0

Voldemort had raised his 
wand and a flash of Retrieval



Pre-training w/ retrieval

Doc 0

Voldemort had raised his 
wand and a flash of

Doc 3Doc 5

just as a jet of 
red light blasted 
from Harry’s …

“Avada Kedavra!” A 
jet of green light 

issued from …Retrieval



Pre-training w/ retrieval

LM     .

… his wand and a flash of… as a jet of red light …“Avada Kadavra!” … green …

Doc 5 Doc 3 Doc 0

wand and a flash of green

Doc 0

Voldemort had raised his 
wand and a flash of

Doc 3Doc 5

just as a jet of 
red light blasted 
from Harry’s …

“Avada Kedavra!” A 
jet of green light 

issued from …Retrieval



Pre-training w/ retrieval

LM     .

… his wand and a flash of… as a jet of red light …“Avada Kadavra!” … green …

Doc 5 Doc 3 Doc 0

wand and a flash of green

Apply loss here

Doc 0

Voldemort had raised his 
wand and a flash of

Doc 3Doc 5

just as a jet of 
red light blasted 
from Harry’s …

“Avada Kedavra!” A 
jet of green light 

issued from …Retrieval



Pre-training w/ retrieval

LM     .

… his wand and a flash of… as a jet of red light …“Avada Kadavra!” … green …

Doc 5 Doc 3 Doc 0

wand and a flash of green

Apply loss here
… Kadavra!” green light … a jet of red light … 

Doc 3Doc 5Doc 0

just as a jet of 
red light blasted 
from Harry’s …

Voldemort had raised his 
wand and a flash of

“Avada Kedavra!” A 
jet of green light 

issued from …Retrieval



Pre-training w/ retrieval: Duplication problem



Pre-training w/ retrieval: Duplication problem

Doc 0

Voldemort had raised 
his wand and a flash of

Doc 1

One of the three 
Unforgivable Curses … 
wizarding law, Avada 

Doc 2

red light issued from 
Harry’s wand …



Pre-training w/ retrieval: Duplication problem

Doc 0

Voldemort had raised 
his wand and a flash of

Doc 1

One of the three 
Unforgivable Curses … 
wizarding law, Avada 

Doc 2

red light issued from 
Harry’s wand …

Retrieval

Retrieval

Retrieval



Pre-training w/ retrieval: Duplication problem

Doc 0

Voldemort had raised 
his wand and a flash of

Doc 1

One of the three 
Unforgivable Curses … 
wizarding law, Avada 

Doc 2

red light issued from 
Harry’s wand …

Doc 3Doc 5

just as a jet of red 
light blasted from 

Harry’s …

“Avada Kedavra!” A 
jet of green light 

issued from …

Doc 9Doc 5

the curse caused 
instantaneous and 
painless death

“Avada Kedavra!” A 
jet of green light 

issued from …

Doc 5Doc 7

“Avada Kedavra!” A 
jet of green light 

issued from …

I don't think 
Expelliarmus is 

exactly going to …

Retrieval

Retrieval

Retrieval



Pre-training w/ retrieval: Duplication problem

Doc 0

Voldemort had raised 
his wand and a flash of

Doc 1

One of the three 
Unforgivable Curses … 
wizarding law, Avada 

Doc 2

red light issued from 
Harry’s wand …

Doc 3Doc 5

just as a jet of red 
light blasted from 

Harry’s …

“Avada Kedavra!” A 
jet of green light 

issued from …

Doc 9Doc 5

the curse caused 
instantaneous and 
painless death

“Avada Kedavra!” A 
jet of green light 

issued from …

Doc 5Doc 7

“Avada Kedavra!” A 
jet of green light 

issued from …

I don't think 
Expelliarmus is 

exactly going to …

Retrieval

Retrieval

Retrieval

1) LM conditions on a set of 
relevant documents

2) Each document appears 
exactly once



Pre-training w/ retrieval: Proposal
Document ordering problem



Pre-training w/ retrieval: Proposal

Doc 0 Doc 1

Doc 2

Doc 4

Doc 3

Doc 5

Pre-training corpus

Document ordering problem



Pre-training w/ retrieval: Proposal

Doc 0 Doc 1

Doc 2

Doc 4

Doc 3

Doc 5

Pre-training corpus

Doc 0 Doc 9

Doc 1 Doc 3

Doc 5

Doc 7

*i and j are connected if 
i is included in top-10 retrieval results for j or 

j is included in top-10 retrieval results for i

Document ordering problem



Pre-training w/ retrieval: Proposal

Doc 0 Doc 9 Doc 1 Doc 3 Doc 5 Doc 7 …

Doc 0 Doc 1

Doc 2

Doc 4

Doc 3

Doc 5

Pre-training corpus

Doc 0 Doc 9

Doc 1 Doc 3

Doc 5

Doc 7

*I and j are connected if 
i is included in top-10 retrieval results for j or 

j is included in top-10 retrieval results for i

Document ordering problem



Pre-training w/ retrieval: Proposal

Doc 0 Doc 9 Doc 1 Doc 3 Doc 5 Doc 7 …

Doc 0 Doc 1

Doc 2

Doc 4

Doc 3

Doc 5

Pre-training corpus

Doc 0 Doc 9

Doc 1 Doc 3

Doc 5

Doc 7

*I and j are connected if 
i is included in top-10 retrieval results for j or 

j is included in top-10 retrieval results for i

Document ordering problem



Pre-training w/ retrieval: Proposal

… his wand and a flash of… as a jet of red light …“Avada Kadavra!” … green …

Doc 1 Doc 3 Doc 5

Doc 0 Doc 9 Doc 1 Doc 3 Doc 5 Doc 7 …



Pre-training w/ retrieval: Proposal

… his wand and a flash of… as a jet of red light …“Avada Kadavra!” … green …

Doc 1 Doc 3 Doc 5

LM     .

wand and a flash of green… Kadavra!” green light … a jet of red light … 

Doc 0 Doc 9 Doc 1 Doc 3 Doc 5 Doc 7 …



Pre-training w/ retrieval: Proposal

… his wand and a flash of… as a jet of red light …“Avada Kadavra!” … green …

Doc 1 Doc 3 Doc 5

Apply loss here

LM     .

wand and a flash of green… Kadavra!” green light … a jet of red light … 

Doc 0 Doc 9 Doc 1 Doc 3 Doc 5 Doc 7 …



Pre-training w/ retrieval: Proposal

… his wand and a flash of… as a jet of red light …“Avada Kadavra!” … green …

Doc 1 Doc 3 Doc 5

Apply loss here

LM     .

wand and a flash of green… Kadavra!” green light … a jet of red light … 

Doc 0 Doc 9 Doc 1 Doc 3 Doc 5 Doc 7 …

1) LM conditions on a set of 
relevant documents

2) Each document appears 
exactly once



Results: Open-domain QA

Datasets: NQ, TriviaQA

Regular LM 
(w/o retrieval)

Standard 
(w/ retrieval)

Ours with repetition 
(w/ retrieval)

Ours 
(w/ retrieval)

Results with a 7B model trained on 300B tokens from Common Crawl



Results: Open-domain QA

Regular LM 
(w/o retrieval)

Regular LM 
(w/ retrieval)

Ours with repetition 
(w/ retrieval)

Ours 
(w/ retrieval)

Datasets: NQ, TriviaQAResults with a 7B model trained on 300B tokens from Common Crawl



Results: Open-domain QA

Ours with repetition 
(w/ retrieval)

Ours 
(w/ retrieval)

Datasets: NQ, TriviaQAResults with a 7B model trained on 300B tokens from Common Crawl

Regular LM 
(w/o retrieval)

Regular LM 
(w/ retrieval)



Results: Open-domain QA

Ours with repetition 
(w/ retrieval)

Ours 
(w/ retrieval)

Datasets: NQ, TriviaQAResults with a 7B model trained on 300B tokens from Common Crawl

Regular LM 
(w/o retrieval)

Regular LM 
(w/ retrieval)



Pre-training with retrieval: Summary



Pre-training with retrieval: Summary

• Key idea: Pre-train an LM with retrieval



Pre-training with retrieval: Summary

• Key idea: Pre-train an LM with retrieval

• Naive approaches do not work due to efficiency or duplication issues 
 casted it to a document ordering problem→



Pre-training with retrieval: Summary

• Key idea: Pre-train an LM with retrieval

• Naive approaches do not work due to efficiency or duplication issues 
 casted it to a document ordering problem→

• +10.5% improvements in downstream tasks w/ retrieval on average



Pre-training with retrieval: Summary

• Key idea: Pre-train an LM with retrieval

• Naive approaches do not work due to efficiency or duplication issues 
 casted it to a document ordering problem→

• +10.5% improvements in downstream tasks w/ retrieval on average

• (Not in this talk) Larger improvements (+15.9%) when retrieval results 
do not support answering the query
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“A small LM + a large datastore >> a large LM?”
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Reference # tokens Data source Open sourced?
DPR (Karpukhin et al. 2020) <5B Wikipedia O

ATLAS (Izcard et al. 2023) <5B Wikipedia X

REALM (Gun et al. 2020) <5B Wikipedia X
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2024)
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(Lots of challenges in systems and algorithms — skipping here)
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Checkpoints 
trained on varying 

sizes of data

1B and 7B Datastores with 
varying sizes
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Training FLOPs (including training parameters + constructing a datastore)

OLMo 1B OLMo 7B
Pareto optimal w/ retrieval Pareto optimal w/o retrieval

Gap is larger as training FLOPs scale Smaller gaps (retrieval is still better)
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Problem: Risk

• Re-train the model every time removal of data is needed  expensive 

• Filter out any risky data and train on permissive data only  impractical
→
→

I want my books to be 
excluded.

I want to get credited whenever 
the model uses my articles.

I got a lawsuit for copyright 
infringement from NYT.

I got a lawsuit for violating 
DMCA (for removing CMI).
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