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Logistics

• HW4 will be released today.

• Final exam will be on May 9th, online.

• No lecture next week. Enjoy your spring break!

• The lecture after next week (April 2nd) will be online.
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Review: post-training of LM

• Motivation: adapt language models to downstream tasks

• Approach: prompting, in-context learning, supervised finetuning, reinforcement
learning

• Which of these require parameter updates?

• Model distillation/imitation: finetuning LM on instruction-response data
generated from a stronger post-trained LM

• Understanding what post-training does:

• Capabilities are mostly learned during pre-training
• Post-training elicits the target capability through specific prompts
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Review: reinforcement learning

• Setting: agent takes a sequence of actions and receives rewards along the way

• Goal: optimize the expected return

• Policy gradient methods:
• Trial: sample trajectories from the current policy
• Error: evaluate how good the policy is based on received returns
• Learn: update the policy using gradient of expected return wrt the policy

∇θJ(θ) ≈
N∑
i=1

(
T∑
t=1

∇θ log πθ(a
i
t | s it)

)(
T∑
t=1

r(s it , a
i
t)

)

• Challenge: gradient estimator has large variance
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Plan for today

• Finishing up RL basics: trust region methods

• Early application of RL to text generation

• RL from human feedback for post training LMs

• Simplified RLHF: direct preference optimization
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Stable policy update

• Small change in the parameter space can cause large change in the ”policy
space” (i.e. state and action distributions)

• Can we direclty enforce small change in the policy space?

• Distance between the previous policy πθold and the current policy πθ:

D̄KL(πθold , πθ) = Es∼πθold
KL (πθold(· | s)∥πθ(· | s))

• REINFORCE objective: at each step, obtain new θ by taking a small step along the
direction of the gradient

• Objective: at each step, obtain new θ by maximizing the expected return subject
to the constraint that D̄KL(πθold , πθ) is not greater than some threshold
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The new objective
• REINFORCE objective: at each step, obtain new θ by taking a small step along the

direction of the gradient

θ = θold + α∇θoldJ(θold)

• Objective: at each step, obtain new θ by maximizing the expected return subject
to the constraint that D̄KL(πθold , πθ) is not greater than some threshold

θ = argmax
θ

J(θ)

s.t. D̄KL(πθold , πθ) ≤ δ

• What is J(θ)?

J(θold, θ) = Es,a∼πθold

[
πθ(a|s)
πθold(a|s)

Aπθold (s, a)

]
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Proximal policy optimization
A more efficient version of trust-region policy optimization:

• Clip the importance weights to prevent large updates

JCLIP(θ) = Es,a∼πθold

[
min

(
r(θ)Aπθold (s, a), clip(r(θ), 1− ϵ, 1 + ϵ)Aπθold (s, a)

)]
where r(θ) = πθ(a|s)

πθold (a|s)

• Incorporate KL constraint into the objective

JKL(θ) = JCLIP(θ)− βDKL(πθold∥πθ)

• Stochastic update
θ ← θ + α∇θJ

KL(θ)
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Proximal Policy Optimization

Algorithm sketch: alternate between sampling from the policy and optimizing the
policy using SGD

for iteration=1,2,... do
1. Sample a batch of trajectaries from πθold

2. Estimate advantage Âπθold (s, a) from the trajectories

• Train a neural network to fit the value function (see GAE [Schulman et al.
2016])

3. Optimize JKL(θ) for K epochs with mini-batch SGD to get updated πθ

4. πθold ← πθ

10 / 41
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Summary

• REINFORCE: directly update the policy with estimated policy gradient

• Address large variance in the gradient estimator
• Estimate advantage (reward-to-go minus state value) instead of return
• Use a critic (another model) to estimate the value function

• Address stability issue in policy update
• Constrain KL divergence between previous and current policy
• Clip importance weight on state-action pairs
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RL in NLP

• Formulation: generating text (a sequence of tokens) can be considered a
sequential decision making problem

• Motivation: why use RL when we have supervised data?

• Alleviate exposure bias
• Optimize sequence level metrics
• Bootstrap to unlabeled data

• Challenges:
• Large exploration space
• Where does the reward come from?
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Example: RL for machine translation

• Motivation: optimize BLEU score directly

• Objective: find a policy that maximizes the expected BLEU score

max
∑

(x ,y)∼D

Eŷ∼pθ(·|x) [BLEU(ŷ , y)]

• Learning: REINFORCE
• In a nutshell, sample translation from the current model, score by BLEU, do

weighted gradient ascent.

• Need to use a baseline to reduce variance
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Example: RL for open-domain dialogue

What should be the reward?

Comparing with the referece (e.g., BLEU) is not appropriate for open-ended tasks.

Example of reward engineering [Li et al., 2016]:

• Avoid dull responses:

− log pMLE (dull response | context)

• Don’t repeat previous turns:

−cosine similarity(h(curr turn), h(prev turn))

15 / 41
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Interpolating with the MLE objective

• Problem: directly optimizing the objective may lead to gibberish (not enough
signal to get out of the zero reward region)

• Solution:
• Initialize pθ with the MLE trained policy
• Interpolate with the MLE objective

max
∑

(x ,y)∼D

Eŷ∼pθ(·|x) [BLEU(ŷ , y)] + αlog pθ(x | y)
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Summary so far

• Advantage of RL: flexible formulation, directly optimizing what we want

• Challenges in practice:
• Instability: many details need to be right to get it work
• Reward engineering: quantify what we want may not be easy

• Overall, only marginal improvement over MLE / supervised learning in NLG

• But, we see promising results when scaling up the policy and the reward model.
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RLHF in a nutshell
Challenge in NLG: no good reward function

Key idea: learn reward functions from human feedback
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Collect human feedback

In general, we want to know if an output is of high quality or not.

But there are many details to take care of.

• What kind of feedback/annotation to obtain?
• Absolute score (e.g., Likert scale ratings) of each output
• Comparison of two outputs

• Where do we get data for annotation?

• How to standardize annotation / improve inter-annotator agreement?

Why would there be disagreement?
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Collection comparison data
Optional: read individual outputs first

21 / 41



Collection comparison data
Rank two or multiple responses
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Where to get the input/output for annotation?

• Input:
• Existing dataset
• Data from API
• Written by annotators (i.e. chat with the model)

• Outputs:
• Sampled from the same model
• Sampled from different models (e.g., current model, initial model, other

baselines, references)

• Key things:
• Input should cover the tasks of interest
• Outputs should be sufficiently diverse and contain ‘hard negatives’
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Practices that improve annotator agreement

In general, a very involved process:

• Know your tasks well

• Onboarding and training annotators

• Measuring annotator-research and inter-annotator agreement

• Providing periodical feedback to annotators
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Learning preferences
Formulation:
• Input: prompt x ∈ X , responses yw , . . . , yK (yi ∈ Y )
• Output: pairwise rankings of responses given the prompt
• Goal: learn a reward model r : X × Y → R

Modeling:
• How to parameterize r? A neural network (e.g., Transformer)

Learning:
• Model p(output | input) using r and do MLE
• We assume the pairwise ranking follows the Bradley-Terry-Luce model:

pθ(yw ≻ yl | x) =
exp(rθ(x , yw ))

exp(rθ(x , yw )) + exp(rθ(x , yl))
=

1

1 + exp(−(rθ(x , yw )− rθ(x , yl)))
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RLHF: Putting everything together

• Start with a initial model

• How to ensure the initial model is reasonable?

• Collect human feedback on the model outputs and train a reward model

• Is the reward model robust?

• Optimize the expected return using PPO

• Does the reward robustly represent what we want?
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Supervised finetuning

How to ensure the initial model is reasonable?

Supervised finetuning:

• Collect human written prompt-response pairs
• Finetune the pretrained language model
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Robustness of the reward model
Problem:
• The reward model is trained on limited data
• It is “tested” on model generations during RL
• There might be a distribution shift

28 / 41



Robustness of the reward model
Problem: reward model is not accurate on OOD data

Solution:
1. Use larger models, e.g., intialize RM using the supervised model

Figure: [Gao et al. 2022]
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Robustness of the reward model

Problem: reward model is not accurate on OOD data

Solution:
1. Periodically update the RM

1.1 Train RM; train policy
1.2 Sample responses from the current policy (which shoudl contain bad

outputs with high rewards)
1.3 Collect human preference annotation
1.4 Mix new preference data with existing data
1.5 Go to step 1
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Robustness of reward optimization
What happens when the reward improves but actual preference drops?

Goodhart’s law: When a measure becomes a target, it ceases to be a good measure.
30 / 41



Robustness of reward optimization
Solutions:

1. Add KL penalty to the reward:
(note that this is different from the KL penalty inside PPO)

J(θ) = Ex∼D
[
Ey∼πθ(·|x) [rϕ(x , y)]− βKL (πθ(· | x)∥π0(· | x))

]

= Ex∼D

[
Ey∼πθ(·|x) [rϕ(x , y)]− βEy∼πθ(·|x)

[
log

πθ(y | x)
π0(y | x)

]]
= Ex∼D,y∼πθ

[
rϕ(x , y)− β log

πθ(y | x)
π0(y | x)

]
= Ex∼D,y∼πθ

[Rϕ(x , y)]

Rewarding trajectories that have high probability under π0.
2. Early stop based on KL distance.
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(note that this is different from the KL penalty inside PPO)

J(θ) = Ex∼D
[
Ey∼πθ(·|x) [rϕ(x , y)]− βKL (πθ(· | x)∥π0(· | x))

]
= Ex∼D

[
Ey∼πθ(·|x) [rϕ(x , y)]− βEy∼πθ(·|x)

[
log

πθ(y | x)
π0(y | x)

]]
= Ex∼D,y∼πθ

[
rϕ(x , y)− β log

πθ(y | x)
π0(y | x)

]
= Ex∼D,y∼πθ

[Rϕ(x , y)]

Rewarding trajectories that have high probability under π0.
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RLHF: Putting everything together

• Start with a pretrained language model

• SFT model: Finetune it on supervised data

• Collect human feedback on prompts and model outputs and train a reward
model

• RL model: Optimize the reward on a set of prompts using PPO while monitoring
KL distance between the RL model and the SFT model
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Alternatives to RLHF

RLHF is a complicated process. What are simpler alternatives / baselines?

• SFT. Instead of spending money on preference data, we can collect supervised
data.

• Best-of-n. Use the reward model to rerank outputs.

• Expert iteration. Get best-of-n outputs, do SFT on it, and repeat.

• Other simpler RL algorithms.
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Comparison of different approaches
[Dubois et al. 2023]

PPO is much better than SFT using roughly the same amount of data.
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Comparison of different approaches
[Dubois et al. 2023]

Best-of-n has competitive performance. (What’s a disadvantage of this method?)
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Comparison of different approaches
[Dubois et al. 2023]

SFT performance saturate quickly with additional data.
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Motivation

• RLHF is difficult to get right (reward model, optimization stability, multiple
moving pieces)

• Can we directly learn a policy from the preference data? (i.e. no reward model
and no RL optimization)
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Set up

• We have pairwise preference data (x , yw , yl) (assuming yw is preferred over yl )

• Can we learn a policy πθ that maximizes p(yw ≻ yl)?

• Recall: how do we model the probability?

p(yw ≻ yl | x) =
1

1 + exp(−(r(x , yw )− r(x , yl)))

• Problem: the probability does not depend on the policy
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Observation
• RL objective:

J(θ)= Ex∼D,y∼πθ

[
r(x , y)− β log

πθ(y | x)
π0(y | x)

]

• It’s easy to show that the optimal policy under this objective is

π∗(y | x) = 1

Z (x)
exp

[
1

β
r(x , y)

]

• Exercise: show that the solution is the same as minKL (πθ∥π∗)
• Why don’t we directly use this optimal policy?

• This allows us to relate the reward and the policy

• Therefore we can represent the reward using the policy in the objective

r∗(x , y) = β log
π∗(y | x)
π0(y | x)

+ β logZ (x)
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New objective
• MLE objective on the preference dataset:

min−E(x ,yw ,yl )∼D log pθ(yw ≻ yl | x) = −E(x ,yw ,yl )∼D

[
1

1 + exp(−(rθ(x , yw )− rθ(x , yl)))

]

• Representing rθ(x , y) using πθ(y | x)

rθ(x , y) = β log
πθ(y | x)
π0(y | x)

+ β logZ (x)

Note that the objective only depends on the difference between the two rewards

• we get the DPO objective (σ is the logistic function)

min−E(x ,yw ,yl )∼D log σ

(
β log

πθ(yw | x)
π0(yw | x)

− β log
πθ(yl | x)
π0(yl | x)

)
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What does DPO do?

∇θLDPO(θ) = −β E(x ,yw ,yl )∼D [p̂θ(yl ≻ yw ) (∇θ log π(yw | x)−∇θ log π(yl | x))] ,

where

p̂θ(yl ≻ yw ) = σ

(
β log

πθ(yl | x)
π0(yl | x)

− β log
πθ(yw | x)
π0(yw | x)

)

• Increases the likelihood of the preferred response and decreases the likelihood
of dispreferred response
• Large weight on the update if prediction is wrong

40 / 41



Summary

• RL had limited improvement over supervised learning in NLG on small models.

• Scaling helps boost performance of RL: large base model + large reward model

• But RL is still a complicated process in practice, and there are research towards
simplifying the process (e.g., DPO).

• Key challenge:
• Reward hacking / over-optimization
• Unreliable human annotation
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