Post-training of language models

He He

(?’ NEW YORK UNIVERSITY

March 12, 2025

1/46

Table of Contents

Introduction

2/46

Recap

® Pretraining allows the model to acquire many capabilities from vast data

® |Increasing compute (data + parameters) predictably improves performance
(held-out perplexity)

® How to use a pretrained model for downstream tasks?

3/46

Motivation

How do we tell the LM what we want to do?

Language L.ava2(708) e 2xA10080GB

What is the capital of Kenya?
What is the capital of Kenya? Kenya is a country in East Africa with coastline on the Indian Ocean. It encompasses savannah,
lakelands, the dramatic Great Rift Valley and mountain highlands.

4746

Motivation

How do we tell the LM what we want to do?

Language L.ava2(708) e 2xA10080GB

What is the capital of Kenya?

What is the capital of Kenya? Kenya is a country in East Africa with coastline on the Indian Ocean. It encompasses savannah,
lakelands, the dramatic Great Rift Valley and mountain highlands.

Language Lawma2(708) @ 2xA10080GB

A survey on prompting in large language models

Sun, Chengcheng, Zhu, Yuan, Wang, Zhen, Zhu, Xiang

arXiv.org Machine Learning May-28-2022

We conduct a comprehensive survey on prompting in large language models (LLMs) from a technical perspective. We first identify four
major types of prompting in LLMs: explicit, implicit, hybrid, and multi-task. We then summarize the different prompting methods under
each type. We also analyze the different types of prompting from three aspects: the language model, the prompting method, and the
downstream task. We find that the prompting methods can be categorized into three groups: input-based, output-based, and model-
based. We also summarize the commonalities and differences between prompting and the traditional downstream task. We then

discuss the potential advantages and limitations of prompting in LLMs. Finally, we provide a discussion on the future of prompting in
LLMs.

4746

Early prompting approaches

Main goal: adapt the task to a native language modeling task

Example:
® Sentiment classification: [movie review] This movie is [great/awful].
e Summarization: [document] TL;DR: [summary]

-~
O

“Y What are potential limitations?

5/46

In-context learning

How GPT-2 is evaluated on machine translation using GPT-2:
® Induce the task through a demonstration example:
translation ~ p(- | [french sentence] = [english sentence]; [french sentence] =)

® WMT-14 French-English test set: 11.5 BLEU (worse than unsupervised MT)

® But, there's only T0MB french data in the 40GB training datal

6/46

In-context learning

In-context demonstrations elicit target capabilities consistently on GPT-3:

Few-shot

In addition to the task description, the model sees a few
examples of the task. No gradient updates are performed.

Translate English to French: task description
sea otter => loutre de mer examples
peppermint => menthe poivrée

plush girafe => girafe peluche

cheese => prompt

This is surprising as this is not a native language model task!

Limitations: results can vary with the choice and order of examples [Zhao et al., 2021]

7746

https://arxiv.org/abs/2102.09690

Post-training

e Goal: elicit capabilities acquired during pretraining so that the model can be
used directly for downstream task, e.g.,
® A chat model that answers user queries
® Areasoning model that solves math problems
® A shopping assistant that answers questions about products

® Methods: update the model on some examples of the target task (often require
annotation)
® Supervised finetuning (SFT): input and gold output
® Reinforcement learning (RL): input and an output judge

8/46

Table of Contents

Supervised finetuning

9/46

Supervised finetuning

e Supervised learning on the target task
® |nput: prompt (e.g., instruction or
question)
® Qutput: gold response

¢ Key challenge: data collection
How to get the prompts and responses?

A promptis
sampled from our
prompt dataset.

A labeler
demonstrates the
desired output
behavior.

This datais used
to fine-tune GPT-3
with supervised
learning.

Explain the moon

landing to a 6 year old

\J

)

Z

Some people went
to the moon...

10/46

What kind of data do we need?

Idea 1: use existing NLP benchmarks

° Natural language inference:
Suppose "The banker contacted the professors and the athlete”, Can we infer that
“The banker contacted the professors”?

® Question answering:
Given the article "The Panthers finished the regular season [...]", what team did the
Panthers defeat?

e Sentiment analysis:
What's the rating of this review on a scale of 1 to 5: We came here on a Saturday
night and luckily it wasn’t as packed as | thought it would be [...]

11/46

What kind of data do we need?

Idea 1: use existing NLP benchmarks

° Natural language inference:
Suppose "The banker contacted the professors and the athlete”, Can we infer that
“The banker contacted the professors”?

® Question answering:
Given the article "The Panthers finished the regular season [...]", what team did the
Panthers defeat?

e Sentiment analysis:
What's the rating of this review on a scale of 1 to 5: We came here on a Saturday
night and luckily it wasn’t as packed as | thought it would be [...]

But this is not what we ask ChatGPT to do! distribution shift

11/46

What kind of data do we need?

® Problem: Gap between training and
test data

12/46

What kind of data do we need?

® Problem: Gap between training and
test data

e Straightforward solution: collect
training data that is similar to test
data
How do we know what test data is like?

12/46

What kind of data do we need?

® Problem: Gap between training and
test data

e Straightforward solution: collect
training data that is similar to test

data
How do we know what test data is like?

® Get some pilot data
which requires a working-ish model
first!

12/46

What kind of data do we need?

® Problem: Gap between training and
test data

e Straightforward solution: collect
training data that is similar to test
data &
How do we know what test data is like?

training data annotation raw data

. -

® Get some pilot data g
which requires a working-ish model

first!

12/46

Data distribution from early OpenAl API

Table 1: Distribution of use
case categories from our API
prompt dataset.

Use-case (%)
Generation 45.6%
Open QA 12.4%
Brainstorming 11.2%
Chat 8.4%
Rewrite 6.6%
Summarization 4.2%
Classification 3.5%
Other 3.5%
Closed QA 2.6%
Extract 1.9%

Table 2: Illustrative prompts from our API prompt dataset. These
are fictional examples inspired by real usage—see more examples

in Appendix/A.2.1

Use-case Prompt

Brainstorming List five ideas for how to regain enthusiasm for my
career

Generation ‘Write a short story where a bear goes to the beach,
makes friends with a seal, and then returns home.

Rewrite This is the summary of a Broadway play:
{summary }

na

This is the outline of the commercial for that play:

Figure: [Ouyang et al., 2022]

13/46

https://arxiv.org/pdf/2203.02155.pdf

Data distribution from early OpenAl API

Table 1: Distribution of use
case categories from our API
prompt dataset.

Use-case (%)
Generation 45.6%
Open QA 12.4%
Brainstorming 11.2%
Chat 8.4%
Rewrite 6.6%
Summarization 4.2%
Classification 3.5%
Other 3.5%
Closed QA 2.6%
Extract 1.9%

What if you're not at OpenAl?

Table 2: Illustrative prompts from our API prompt dataset. These
are fictional examples inspired by real usage—see more examples

in Appendix/A.2.1

Use-case Prompt

Brainstorming List five ideas for how to regain enthusiasm for my
career

Generation ‘Write a short story where a bear goes to the beach,
makes friends with a seal, and then returns home.

Rewrite This is the summary of a Broadway play:
{summary }

na

This is the outline of the commercial for that play:

Figure: [Ouyang et al., 2022]

13/46

https://arxiv.org/pdf/2203.02155.pdf

Synthetic data

Use off-the-shelf LMs to generate prompts and responses:

175 seed tasks with
1 instruction and
1 instance per task

B

Step 4: Filtering

. . . Step 2: Classification
Task Pool . Step 1: Instruction Generation . Task Identification
/ LM
\'/ Instruction : Give me a quote from a LM
famous person on this topic.

Step 3: Instance Generation

Yes
Instruction : Find out if the given text is in favor of or against abortion.

Class Label: Pro-abortion

Input: Text: I believe that women should have the right to choose whether or not

they want to have an abortion. Output-first

Instruction : Give me a quote from a famous person on this topic. | No

Input: Topic: The importance of being honest.

Output: "Honesty is the first chapter in the book of wisdom." - Thomas Jefferson Input-first

Figure: Self-instruct [Wang et al., 2023]

LM

14/46

https://arxiv.org/pdf/2212.10560

The Alpaca model

e November 30, 2022: ChatGPT released

15/46

The Alpaca model

e November 30, 2022: ChatGPT released

® February 24, 2023: LLaMA released (open-weight pretrained model)

15/46

The Alpaca model

® November 30, 2022: ChatGPT released
® February 24, 2023: LLaMA released (open-weight pretrained model)

® March 13, 2023: Alpaca released (open-source ChatGPT like model)

® 175 seed instruction from Self-Instruct
® 52K prompt-response pair from text-davinci-003 (j$500)
® Supervised finetuning from LLaMA-7B (j$100)

15/46

The Alpaca model

November 30, 2022: ChatGPT released

® February 24, 2023: LLaMA released (open-weight pretrained model)

March 13, 2023: Alpaca released (open-source ChatGPT like model)

® 175 seed instruction from Self-Instruct
® 52K prompt-response pair from text-davinci-003 (j$500)
® Supervised finetuning from LLaMA-7B (j$100)

® |mpact:
® Provides an open-source ChatGPT like model for research
® Many later open-source models adopt this distillation approach

15/46

How good are distilled models?

Crowdworker Evaluation

80 35 Natural Questions 3-Shot 80 Crowdworker Evaluation
R N N R N T R R B
— 30
60 60
9 5 9
a4 g .22
= < =
% a0 == LLaMA-13B 30 % 40 == LLaMA-13B
= «@- Imitation Model (13B) £ s =@- Imitation Model
[e] § 8]
" i
A 20 ® ~ 20
= = ChatGPT
10 == LLaMA-13B
Q = —————— e «@= Imitation Model (13B) (e —————————————
5
25 50 75 100 125 150 25 50 s 100 125 150 2 4 6 8 10 12
Amount of Imitation Data (Millions of Tokens) Amount of Imitation Data (Millions of Tokens) Number of Model Parameters (Billions)

Figure: The False Promise of Imitating Proprietary LLMs [Gudibande et al., 2023]

® Increasing the amount of synthetic data doesn't keep increasing performance
e Distillation can hurt performance on tasks out of the SFT data
® Further performance gain comes from stronger pretrained models

16/46

https://arxiv.org/pdf/2305.15717

Parameter efficient finetuning

Finetuning all weights of a large model can be expensive (in what way?)

17746

https://arxiv.org/pdf/1911.03090.pdf
https://arxiv.org/pdf/2106.10199.pdf
https://arxiv.org/pdf/1902.00751.pdf

Parameter efficient finetuning

Finetuning all weights of a large model can be expensive (in what way?)

Can we finetune a smaller number of parameters to achieve performance similar to
full finetuning?
e Select a subset of parameters to update
® |astklayers [Lee et al., 2019]
® Bias terms (BitFit) [Ben-Zaken et al., 2022]
® Add a small number of parameters to adapte the (frozen) pretrained model
® |nsert a small MLP in-between layers [Houlsby et al., 2019]

17746

https://arxiv.org/pdf/1911.03090.pdf
https://arxiv.org/pdf/2106.10199.pdf
https://arxiv.org/pdf/1902.00751.pdf

Low-rank adaptation of LMs

LoRA [Hu et al., 2021]: add low-rank matrices as additional parameters
Hypothesis: weight matrices are low rank

Adapters: For any matrix multiplication h = Wpx, we
modify it to

Pretrained h=Wox + AWx = Wpx + BAx
Weights

e Wy € Rk B e RI*r A e R*K(r < k)

® |nitialization: BA=10

® Can be applied to any weight matrices, e.g., QKV
projection matrices

18/46

https://arxiv.org/pdf/2106.09685.pdf

Low-rank adaptation of LMs

® Converges to full finetuning as r increases and performance goes up consistently

19/46

Low-rank adaptation of LMs

® Converges to full finetuning as r increases and performance goes up consistently

e No additional inference latency: W = Wy + BA

19/46

Low-rank adaptation of LMs

® Converges to full finetuning as r increases and performance goes up consistently
® No additional inference latency: W = Wy + BA

® Main benefits:

® Memory and storage saving (optimizer states, checkpoints): 10,000x
reduction on GPT3 (r = 4)
® Easy to switch between different finetuned custom models

19/46

Summary

® Supervised finetuning: train the model on human-annotated prompt-response
data

e Data consideration:

® Desiderata: diverse, similar to test data / target task
® Often costly to obtain; can synthesize using LMs

® Performance upperbound is still decided by the pretrained model

20/46

Table of Contents

Reinforcement learning

21/46

Learning from outcomes

Motivation:
® Demonstrations are expensive to obtain—can we learn from weaker signals?

® For many tasks, humans (and animals) only get signal on whether they
succeeded or not

Example:
e Complex physical tasks: learning to shoot a basketball
® Reasoning: learning to play the game of Go
® Decision making: learning to optimize financial portfolios
e Communication: learning to articulate your ideas to others

22/46

Reinforcement learning

Goal: learning from experience by maximizing the expected cumulative reward

23/46

Reinforcement learning

Goal: learning from experience by maximizing the expected cumulative reward

1. Agent takes a sequence of actions in a world
Get a degree, update CV, apply for a job

23/46

Reinforcement learning

Goal: learning from experience by maximizing the expected cumulative reward

1. Agent takes a sequence of actions in a world
Get a degree, update CV, apply for a job

2. Agent gets rewards along the way indicating how well it did
No reponse

23/46

Reinforcement learning

Goal: learning from experience by maximizing the expected cumulative reward

1. Agent takes a sequence of actions in a world
Get a degree, update CV, apply for a job

2. Agent gets rewards along the way indicating how well it did
No reponse

3. Agent updates its policy (on what actions to take)
Find a connection? Get an internship? Apply for a different position?

23/46

Reinforcement learning

Goal: learning from experience by maximizing the expected cumulative reward

1. Agent takes a sequence of actions in a world
Get a degree, update CV, apply for a job

2. Agent gets rewards along the way indicating how well it did
No reponse

3. Agent updates its policy (on what actions to take)
Find a connection? Get an internship? Apply for a different position?

4, Go backto 1

23/46

Reinforcement learning

Goal: learning from experience by maximizing the expected cumulative reward

1.

Agent takes a sequence of actions in a world trial
Get a degree, update CV, apply for a job

. Agent gets rewards along the way indicating how well it did error
No reponse

. Agent updates its policy (on what actions to take) learn

Find a connection? Get an internship? Apply for a different position?

. Go backto 1 rinse and repeat

23/46

Reinforcement learning: formalization

At each time step t, an agent

® isinastates; € S (S is the state space)
cell[i] [j] in the grid world

L= T

24/46

Reinforcement learning: formalization

At each time step t, an agent

® isinastates; € S (S is the state space)
_ cell[i] [j] in the grid world

1 2 3 4 5 6 7 8 9
1 77 e takes an action a; ¢ A (A is the action space)
2 E {up, down, left, right}
3| %1 !
4 : ~F=1=-1=-9=---
5
6

24/46

Reinforcement learning: formalization

At each time step t, an agent

® isinastates; € S (S is the state space)
s 4 s s g cell[i] [j] in the grid world
e takes an action a; ¢ A (A is the action space)

{up, down, left, right}
: ® transitions to the next state s;;1 according to a
= transition function p(- | s;, a;)
H moves to the corresponding cell if there's no blocker

I"'I}\g

L= T
1
|
1
1
1
I
I

24/46

Reinforcement learning: formalization

1~

[= L)

At each time step t, an agent

® isinastates; € S (S is the state space)
cell[i] [j] in the grid world
e takes an action a; ¢ A (A is the action space)

{up, down, left, right}

® transitions to the next state s;;1 according to a
transition function p(- | s, a;)
moves to the corresponding cell if there's no blocker

® obtains a reward r(s;, a;) according to the reward
functionr: S x A—R
1if s¢41 is star and 0 otherwise

24/46

Reinforcement learning: objective

The agent uses a policy 7 to decide which actions to take in a state:
e Deterministic: m(s) = a
e Stochastic: m(a|s)=P(A=a|S=s) (ourfocus)

25/46

Reinforcement learning: objective

The agent uses a policy 7 to decide which actions to take in a state:
e Deterministic: m(s) = a
e Stochastic: m(a|s)=P(A=a|S=s) (ourfocus)

A policy 7y defines a distribution py(7) over trajectories 7 = (a1, s1,...,ar, sT).

S2

U p(St+1|St7at)

p(St+1lst, ar)

25/46

Reinforcement learning: objective

The agent uses a policy 7 to decide which actions to take in a state:
e Deterministic: m(s) = a
e Stochastic: m(a|s)=P(A=a|S=s) (ourfocus)

A policy 7y defines a distribution py(7) over trajectories 7 = (a1, s1,...,ar, sT).

The agent's objective is to learn a policy mg (parametrized by) that maximizes the
expected

maximize [, []

25/46

Sketch of RL algorithms

Key steps:
e Trial: run policy to generate trajectories
e Error: estimate expected return

fit a model/
estimate the return . .
® Learn: improve the policy
generate samples
(i.e. run the policy)
| S—

Figure: From Sergey Levine's slides

26/46

Sketch of RL algorithms

fit a model/
estimate the return
generate samples
(i.e. run the policy)
; improve the policy

Figure: From Sergey Levine's slides

Key steps:
e Trial: run policy to generate trajectories
e Error: estimate expected return
® Learn: improve the policy

Challenges:

® Trials could be expensive (e.g., healthcare,
education)

® Reward signal could be sparse (e.g., expert
feedback)

®* May need many samples to learn a good
policy

26/46

Policy gradient algorithms

fit a model/ evaluate returns
estimate the return 2SN C-198-19)

generate samples

(i.e. run the policy)

| W—

While not converged

improve the policy [ZRSNEAY N DY)

1. Sample trajectories from the current policy
2. Estimate return for each trajectories based on observed rewards

3. Take a gradient step on the expected return (w.r.t. the policy)

27/46

How to compute the gradient?

Notation: let r(7) = Zthl r(st, ar) be the return.

28/46

How to compute the gradient?

Notation: let r(7) = Zthl r(st, ar) be the return.

Our objective: J(0) = E

Tpo(T [r] = Z PH

28/46

How to compute the gradient?

Notation: let r(7) = Z;l r(st, ar) be the return.

Our objective: J(0) =K., () [r(7)] = Zp(,

VoJ(0) = Vy Z po(7)r(7) log derivative trick
B () ool TaTezeA)
_ . V@ Po (7’)
— r(1) _pe(T)—pg(T)

=E,py(r) [V log po(T)r(7)] =Vpy(7)

28/46

How to compute the gradient?

VJ(0) = Erpy(r) [Volog pg(T)r(7)] Monte Carlo estimation of the expected gradient

29/46

How to compute the gradient?

VJ(0) = Erpy(r) [Volog pg(T)r(7)] Monte Carlo estimation of the expected gradient

But what is pg(7)?

T T-1

po(7) = po(a1,s1,...,ar,st) = p(s1) Hﬁe(at | st) H p(st+1 | st. at)
t=1 t=1

29/46

How to compute the gradient?

VJ(0) = Erpy(r) [Volog pg(T)r(7)] Monte Carlo estimation of the expected gradient

But what is pg(7)?

T T-1
po(7) = po(a1,s1,...,ar,st) = p(s1) Hﬁe(at | st) H p(st+1 | st. at)
t=1 t=1
T-1

log py(7) = log p(s1 +Zlog7re ar| se)+ Y logp(sei1 | st ar)
t=1 t=1

29/46

How to compute the gradient?

VJ(0) = Erpy(r) [Volog pg(T)r(7)] Monte Carlo estimation of the expected gradient

But what is pg(7)?

T T-1
po(7) = po(a1,s1,...,ar,st) = p(s1) Hﬁe(at | st) H p(st+1 | st. at)
t=1 t=1
T-1
log py(7) = log p(s1 +Zlog7re ar| se)+ Y logp(sei1 | st ar)
t=1 t=1

VoJ(0) =

TNPG

(ng log mo(az | st) (ér s, a)]

29/46

Putting everything together

REINFORCE algorithm:
1. Sample N trajectories 71, ..., 7N from 7y
2. Estimate the gradient:

N T
VoJ(0) =~ Z (Z Vo log mo(at | st > (Zr st7)

i=1 \t=1

3. Update the policy with gradient ascent: 6 < 0 + aVJ(0)
4, Go backto 1

30/46

How is all this related to LLMs?

Think of tokens as actions:

® Action space: vocabulary a;=x; €V
e State space: history / prefix sy = (x1,

® Policy: a language model py(x: | x<t)

® Trajectory: a sentence / generation xi,.

)

W XT

31/46

How is all this related to LLMs?

REINFORCE algorithm on text:
1. Sample N generations from the language model py
2. Estimate the gradient: g = £ S| (Z;l Vg log py(x| | xgt)) r(x1.7)
3. Update the policy with gradient ascent: § < 0 + ag
4. Go backto 1

32/46

How is all this related to LLMs?

REINFORCE algorithm on text:

1. Sample N generations from the language model py

2. Estimate the gradient: g = £ S| (Z;l Vg log py(x| | xgt)) r(x1.7)
3. Update the policy with gradient ascent: § < 0 + ag
4. Go backto 1

What is the algorithm doing?

If r(xy.7)is , take a gradient step to .
If r(x1.7) is negative, take a gradient step to decrease py(x1.7).

Supervised learning on model generations weighted by return

32/46

Challenges in policy gradient

. 1
g:NZ

N
i=1

T o T
(Z Vo log mg(a} | s{)) Z r(st, at)

t=1 t=1

® \We estimate the policy gradient based on a random sample of trajectories
g is a random variable

33/46

Challenges in policy gradient

N T

Z (Z Vg logmo(at | St)> Z r(st, at)

i=1 = t=1

® \We estimate the policy gradient based on a random sample of trajectories
g is a random variable

® This estimator is unbiased
In expectation, it is the true policy gradient: E[g] = V¢J(0)

33/46

Challenges in policy gradient

N T

Z (Z Vg logmo(at | St)> Z r(st, at)

i=1 = t=1

® \We estimate the policy gradient based on a random sample of trajectories
g is a random variable

® This estimator is unbiased
In expectation, it is the true policy gradient: E[g] = V¢J(0)

e But it has high variance
Depending on which trajectories we get, g can vary greatly

33/46

Variance of the policy gradient estimator

LN T N\ T
g N Z (Vg logmg(a; | sé)) Z r(se, at)

i=1 \t=1 t=1

by the same return

E; ¢ Note that every step along the trajectory is multiplied

e Reward may be sparse and delayed

L= T
1
|
1
1
1
I
I

: H ® The credit assignment problem: how do we know
which step is responsible for the good/bad outcome?

34/46

Reducing variance: use reward-to-go

® We get a return for the full trajectory 2;1 r(st, ar), how to better allocate it to
each step (s¢, at)?

® Future actions (a;) should not affect past rewards (ry, ..., rr—1)
® a; only get rewards after t, i.e. reward-to-go:

LN /T o
E=5> (Z Vg logmy(a; | Sé)> > r(as)

i=1 \t=1

=|

35/46

Important quantities related to reward-to-go

e Q-function: expected return starting from s; and taking a;

T
QW(SD at) = I’(St, at) + IE51:+1:Tyat+1:T [Z r(st" at')]

t/'=t+1

36/46

Important quantities related to reward-to-go

e Q-function: expected return starting from s; and taking a;

T
QW(SD at) = I’(St, at) + IE51:+1:T7‘91.~+1:T [Z r(st" at')]

t'=t+1

® Reward-to-go: single trajectory estimate of the Q-value from (s;, a;)

36/46

Important quantities related to reward-to-go

e Q-function: expected return starting from s; and taking a;

T
QW(SD at) = I’(St, at) + IE51:+1:T7‘91.~+1:T [Z r(sf" at')]

t/'=t+1

® Reward-to-go: single trajectory estimate of the Q-value from (s;, a;)

® Value function: expected return starting from s;

VF(St) = Eat’\/ﬂ'("St) [Qﬂ(stv af)]

36/46

Important quantities related to reward-to-go

e Q-function: expected return starting from s; and taking a;

T
QW(SD at) = I’(St, at) + IE51:+1:T7«91.~+1:T [Z r(sf" at/)]

t/'=t+1

® Reward-to-go: single trajectory estimate of the Q-value from (s;, a;)

® Value function: expected return starting from s;
V7(st) = B (lse) [Q7(st, ar)]

e Concept check: whatis Es [V™(s1)]?

36/46

Reducing variance: subtract a baseline
® Subtract a baseline from the return:

1N /T o ' '
g=4 > (Z Ve logmg(as | s¢)(r(7') — b(Sé)))
i=1

t=1

b(-): a function of the state or some constant

37/46

Reducing variance: subtract a baseline
® Subtract a baseline from the return:

N /T
s 1 i i i
g = N Z (Z Vg logmg(a | s:)(r(r") — b(st))>

i=1 \t=1
b(-): a function of the state or some constant

® |ntuition: the return may not be due to the action you take but just because you
are in a state "closer” to the goal

37/46

Reducing variance: subtract a baseline
® Subtract a baseline from the return:

N /T
s 1 i i i
g = N Z (Z Vg logmg(a | s:)(r(r") — b(st))>

i=1 \t=1
b(+): a function of the state or some constant

® |ntuition: the return may not be due to the action you take but just because you
are in a state "closer” to the goal

® By subtracting a baseline, we measure how much better the action is than the
typical return

37/46

Reducing variance: subtract a baseline
® Subtract a baseline from the return:

N /T
s 1 i i i
g = N Z (Z Vg logmg(a | s:)(r(r") — b(st))>

i=1 \t=1
b(+): a function of the state or some constant

® |ntuition: the return may not be due to the action you take but just because you
are in a state "closer” to the goal

® By subtracting a baseline, we measure how much better the action is than the
typical return

® Asimple choice is the average return

1L
b(s) = 1 > (™)
i=1

37/46

Reducing variance: subtract a baseline

Does this change our objective?
e g isstill an unbiased estimator, i.e.

E[Vglogmg(at | st)(r(7) — b(st))] = E[Vglogma(ar | st)r(7)]

38/46

Reducing variance: subtract a baseline

Does this change our objective?
e g isstill an unbiased estimator, i.e.

E[Vglogmg(at | st)(r(7) — b(st))] = E[Vglogma(ar | st)r(7)]

E[Ve log mo(a: | st) b(st)] =E,, |:b(st)]EatN7r9('|St) [VG log g (a | St)]]

38/46

Reducing variance: subtract a baseline

Does this change our objective?
e g isstill an unbiased estimator, i.e.

E[Vglogmg(at | st)(r(7) — b(st))] = E[Vglogma(ar | st)r(7)]
E[Ve log mo(a: | st) b(st)] =E,, [b(st)Eat~7r9(-|st) [Vé’ log g (a | St)]]

E[Vglogmg(ar | st)] = ZWH at | st)Vglogm(at | st) Zveﬁe at | st)

at

= VoY m9(at | st) = Vol =0

® Aslong as b(-) does not depend on a, it doesn’t introduce any bias.

38/46

The advantage function

® Advantage function: how much better a; is compared to other actions in state
St
A" (st,at) = Q" (st,at) — V™ (st)

reward-to-go minus a (state-dependent) baseline

39/46

The advantage function

® Advantage function: how much better a; is compared to other actions in state
St

A" (st,ar) = Q" (st,at) — V™ (st)
reward-to-go minus a (state-dependent) baseline
® How to estimate advantage in policy gradient?
T T . T
gzN;<;V¢9logm(aHst> (;r St, at))

high variance because it's estimated from a single trajectory

39/46

The advantage function

® Advantage function: how much better a; is compared to other actions in state
St

A" (st,at) = Q" (st,at) — V™ (st)
reward-to-go minus a (state-dependent) baseline
® How to estimate advantage in policy gradient?
T T . T
£ 3 (o voesmtat 1) (Yoo o)
i=1 \t=1 t=1
high variance because it's estimated from a single trajectory

® We can improve the estimate by sampling more rollouts from (s;, a)

39/46

The advantage function

® Advantage function: how much better a; is compared to other actions in state
St

A"(st,at) = Q" (st,ar) — V7 (st)
reward-to-go minus a (state-dependent) baseline
® How to estimate advantage in policy gradient?
T T T
£ 3 (o voesmtat 1) (Yoo o)
i=1 \t=1 t=1
high variance because it's estimated from a single trajectory
® We can improve the estimate by sampling more rollouts from (s;, a)

® Can we fit a function to predict A™?

39/46

The advantage function

® Advantage function: how much better a; is compared to other actions in state
St

A"(st,at) = Q" (st,ar) — V7 (st)
reward-to-go minus a (state-dependent) baseline
® How to estimate advantage in policy gradient?
T T T
£ 3 (o voesmtat 1) (Yoo o)
i=1 \t=1 t=1
high variance because it's estimated from a single trajectory
® We can improve the estimate by sampling more rollouts from (s;, a)

® Can we fit a function to predict A™?
® How does this solve the high variance problem?

39/46

Fitting the value function
® Rewrite the advantage function

A™(st,at) = Q7 (st,ar) — V™ (st)
= r(st,ar) + V™ (ser1) — V™ (st)

40/46

Fitting the value function
® Rewrite the advantage function

A" (st,a:) = Q" (st,ar) — V7 (st)
= r(st,ar) + V™ (ser1) — V™ (st)

® So we just need to fit the value function!

40/46

Fitting the value function
® Rewrite the advantage function
A"(st,ar) = Q" (st,ar) — V™ (st)
= r(st;at) + V7 (ser1) — V7(st)
® So we just need to fit the value function!

e Estimate the value from a rollout 7
-

Vi(st) = risp,ap)

t'=t

40/46

Fitting the value function
® Rewrite the advantage function
A"(st,ar) = Q" (st,ar) — V™ (st)
= r(st;at) + V7 (ser1) — V7(st)
® So we just need to fit the value function!

e Estimate the value from a rollout 7
-

Vi(st) = risp,ap)

t'=t

e This gives us a training example (s!, V7(s!))

40/46

Fitting the value function
® Rewrite the advantage function
A"(st,ar) = Q" (st,ar) — V™ (st)
= r(st;at) + V7 (ser1) — V7(st)

So we just need to fit the value function!

Estimate the value from a rollout 7/

T

Vi(st) = risp,ap)

t'=t

This gives us a training example (s!, V™(s!))

Given a training set D, train a regression model w by minimizing the squared

loss:)
> (Vals) - 7(s))

seD

40/46

Actor-Critic methods

® Critic: evaluate the policy
update w to improve estimates of V,,

® Actor: improve the policy
update 6 to improve the policy give feedback from the critic

41/46

Actor-Critic methods

® Critic: evaluate the policy

update w to improve estimates of V,,

® Actor: improve the policy

update 6 to improve the policy give feedback from the critic

Algorithm sketch:

1.

vk WN

Sample a trajectory from current policy

Update w given the estimated state values

Evaluate A™ (s, a;) = r(se, ar) + V2 (ser1) — V7 (st)

Update the policy with gradient g = ZtT:1 Vo log mg(ar | s¢)A™(st, ar)
Go back to 1

41/46

On-Policy vs. Off-Policy

® On-Policy methods use samples from the policy that is currently being
optimized (i.e. mp(a | s)).

e Off-Policy methods use samples generated by a different behavior policy
u(als).
® Advantages of off-policy:

42746

On-Policy vs. Off-Policy

® On-Policy methods use samples from the policy that is currently being
optimized (i.e. mp(a | s)).

e Off-Policy methods use samples generated by a different behavior policy
u(als).
® Advantages of off-policy:

® Can reuse old trajectories generated by past policies.
® Allows learning from demonstrations or replay buffers.
® Can have multiple exploration policies to generate trajectories.

42746

Off-Policy Policy Gradient

e Standard on-policy gradient (REINFORCE) is:
Vod(0) = Ervnr, [vg log 79(7) r(T)} .

e Off-policy scenario: 7 is generated by a behavior policy u(7), but we want
gradient w.r.t. m.

Vod(6) # Ero [Ve log 4(7) R(T)}

e Key challenge: Correctly handling the discrepancy between i and 7.

43/46

Importance Sampling: A Quick Review

® We often want an expectation under some distribution p(x), but we only have
samples from a different distribution g(x).

Importance Sampling uses a correction ratio:

o

(X)}

Bplf (9] = Exea () 7103

Q
—~

In the RL context:

p(r) _ molr)
a(r) p(r)
® This ratio re-weights off-policy trajectories to match the target policy
distribution.

44/46

Off-Policy Policy Gradient

e Off-policy scenario: 7 is generated by a behavior policy u(7), but we want
gradient w.r.t. m.

VoJ(0) = Ervp [[J(T) Vo log mo(7) R(T)} where p(r) = W@(T).

® Usually we re-weight per step:
N mo(al | s) S L C
P2 (e e arata 1) Y e
i=1 \t=1 par | st t=1

® Importance weight also incurs high variance: when will the ratio blow up?

® 71y and u cannot be too different

45/46

Summary

® Reinforcement learning: maximize return through trial and error (rollout,
evaluate policy, improve policy)

® Policy gradient: increase/decrease likelihood of the trajectory proportionally to
the return

e Key challenge: gradient is very noisy!
® Use reward-to-go for each action update
® Subtract a baseline
® Use function approximation for the value/Q function

46/46

	Introduction
	Supervised finetuning
	Reinforcement learning

