Post-training of language models

He He

March 12, 2025

Table of Contents

Introduction

Supervised finetuning

Reinforcement learning

- Pretraining allows the model to acquire many capabilities from vast data
- Increasing compute (data + parameters) predictably improves performance (held-out perplexity)
- How to use a pretrained model for downstream tasks?

Motivation

Language LLaMA-2 (70B)

How do we tell the LM what we want to do?

• 2X A100 80GB

What is the capital of Kenya? What is the capital of Kenya? Kenya is a country in East Africa with coastline on the Indian Ocean. It encompasses savannah, lakelands, the dramatic Great Rift Valley and mountain highlands.

Motivation

How do we tell the LM what we want to do?

Language LLaMA-2 (70B) • 2X A100 80GB

What is the capital of Kenya? What is the capital of Kenya? Kenya is a country in East Africa with coastline on the Indian Ocean. It encompasses savannah, lakelands, the dramatic Great Rift Valley and mountain highlands.

Language LLaMA-2 (70B) • 2X A100 80GB

A survey on prompting in large language models Sun, Chengcheng, Zhu, Yuan, Wang, Zhen, Zhu, Xiang

arXiv.org Machine Learning May-28-2022

We conduct a comprehensive survey on prompting in large language models (LLMs) from a technical perspective. We first identify four major types of prompting in LLMs: explicit, implicit, hybrid, and multi-task. We then summarize the different prompting methods under each type. We also analyze the different types of prompting from three aspects: the language model, the prompting method, and the downstream task. We find that the prompting methods can be categorized into three groups: input-based, output-based, and model-based. We also summarize the commonalities and differences between prompting and the traditional downstream task. We then discuss the potential advantages and limitations of prompting in LLMs. Finally, we provide a discussion on the future of prompting in LLMs.

Main goal: adapt the task to a native language modeling task

Example:

- Sentiment classification: [movie review] This movie is [great/awful].
- Summarization: [document] TL;DR: [summary]

What are potential limitations?

In-context learning

How GPT-2 is evaluated on machine translation using GPT-2:

• Induce the task through a demonstration example:

translation $\sim p(\cdot | [french sentence] = [english sentence]; [french sentence] =)$

- WMT-14 French-English test set: 11.5 BLEU (worse than unsupervised MT)
- But, there's only 10MB french data in the 40GB training data!

In-context learning

In-context demonstrations elicit target capabilities consistently on GPT-3:

Few-shot

In addition to the task description, the model sees a few examples of the task. No gradient updates are performed.

This is surprising as this is not a native language model task!

Limitations: results can vary with the choice and order of examples [Zhao et al., 2021]

Post-training

- **Goal**: elicit capabilities acquired during pretraining so that the model can be used directly for downstream task, e.g.,
 - A chat model that answers user queries
 - A reasoning model that solves math problems
 - A shopping assistant that answers questions about products
- **Methods**: update the model on some examples of the target task (often require annotation)
 - Supervised finetuning (SFT): input and gold output
 - Reinforcement learning (RL): input and an output judge

Table of Contents

Introduction

Supervised finetuning

Reinforcement learning

- Supervised learning on the target task
 - Input: prompt (e.g., instruction or question)
 - Output: gold response
- **Key challenge**: data collection How to get the prompts and responses?

A prompt is sampled from our prompt dataset.

Explain the moon landing to a 6 year old

A labeler demonstrates the desired output behavior.

This data is used to fine-tune GPT-3 with supervised learning.

Idea 1: use existing NLP benchmarks

• Natural language inference:

Suppose "The banker contacted the professors and the athlete". Can we infer that "The banker contacted the professors"?

Question answering:

Given the article "The Panthers finished the regular season [...]", what team did the Panthers defeat?

• Sentiment analysis:

What's the rating of this review on a scale of 1 to 5: We came here on a Saturday night and luckily it wasn't as packed as I thought it would be [...]

Idea 1: use existing NLP benchmarks

• Natural language inference:

Suppose "The banker contacted the professors and the athlete". Can we infer that "The banker contacted the professors"?

Question answering:

Given the article "The Panthers finished the regular season [...]", what team did the Panthers defeat?

• Sentiment analysis:

What's the rating of this review on a scale of 1 to 5: We came here on a Saturday night and luckily it wasn't as packed as I thought it would be [...]

But this is not what we ask ChatGPT to do! **distribution shift**

• **Problem**: Gap between training and test data

- **Problem**: Gap between training and test data
- Straightforward **solution**: collect training data that is similar to test data

How do we know what test data is like?

- **Problem**: Gap between training and test data
- Straightforward **solution**: collect training data that is similar to test data

How do we know what test data is like?

• Get some pilot data which requires a working-ish model first!

- **Problem**: Gap between training and test data
- Straightforward solution: collect training data that is similar to test data

How do we know what test data is like?

• Get some pilot data which requires a working-ish model first!

Data distribution from early OpenAI API

_

_

Table 1:	Distribution of use	
case cate	egories from our API	
prompt dataset.		

Use-case (%) Generation 45.6% Open QA 12.4% 11.2% Brainstorming Chat 8.4% Rewrite 6.6% Summarization 4.2% Classification 3.5% Other 3.5% Closed QA 2.6% Extract 1.9%

Table 2: Illustrative prompts from our API prompt dataset. These are fictional examples inspired by real usage—see more examples in Appendix $\boxed{A.2.1}$

Use-case	Prompt
Brainstorming	List five ideas for how to regain enthusiasm for my career
Generation	Write a short story where a bear goes to the beach, makes friends with a seal, and then returns home.
Rewrite	This is the summary of a Broadway play:
	{summary}
	This is the outline of the commercial for that play:

Figure: [Ouyang et al., 2022]

Data distribution from early OpenAI API

_

Table 1: Distribution of usecase categories from our APIprompt dataset.

Use-case	(%)
Generation	45.6%
Open QA	12.4%
Brainstorming	11.2%
Chat	8.4%
Rewrite	6.6%
Summarization	4.2%
Classification	3.5%
Other	3.5%
Closed QA	2.6%
Extract	1.9%

Table 2: Illustrative prompts from our API prompt dataset. These are fictional examples inspired by real usage—see more examples in Appendix A.2.1

Use-case	Prompt
Brainstorming	List five ideas for how to regain enthusiasm for my career
Generation	Write a short story where a bear goes to the beach, makes friends with a seal, and then returns home.
Rewrite	This is the summary of a Broadway play:
	{summary}
	This is the outline of the commercial for that play:

Figure: [Ouyang et al., 2022]

What if you're not at OpenAl?

Synthetic data

Use off-the-shelf LMs to generate prompts and responses:

Figure: Self-instruct [Wang et al., 2023]

• November 30, 2022: ChatGPT released

- November 30, 2022: ChatGPT released
- February 24, 2023: LLaMA released (open-weight pretrained model)

- November 30, 2022: ChatGPT released
- February 24, 2023: LLaMA released (open-weight pretrained model)
- March 13, 2023: Alpaca released (open-source ChatGPT like model)
 - 175 seed instruction from Self-Instruct
 - 52K prompt-response pair from text-davinci-003 (;\$500)
 - Supervised finetuning from LLaMA-7B (;\$100)

- November 30, 2022: ChatGPT released
- February 24, 2023: LLaMA released (open-weight pretrained model)
- March 13, 2023: Alpaca released (open-source ChatGPT like model)
 - 175 seed instruction from Self-Instruct
 - 52K prompt-response pair from text-davinci-003 (;\$500)
 - Supervised finetuning from LLaMA-7B (;\$100)
- Impact:
 - Provides an open-source ChatGPT like model for research
 - Many later open-source models adopt this distillation approach

How good are distilled models?

Figure: The False Promise of Imitating Proprietary LLMs [Gudibande et al., 2023]

- Increasing the amount of synthetic data doesn't keep increasing performance
- Distillation can hurt performance on tasks out of the SFT data
- Further performance gain comes from stronger pretrained models

Parameter efficient finetuning

Finetuning all weights of a large model can be expensive (in what way?)

Parameter efficient finetuning

Finetuning all weights of a large model can be expensive (in what way?)

Can we finetune a smaller number of parameters to achieve performance similar to full finetuning?

- Select a subset of parameters to update
 - Last k layers [Lee et al., 2019]
 - Bias terms (BitFit) [Ben-Zaken et al., 2022]
- Add a small number of parameters to adapte the (frozen) pretrained model
 - Insert a small MLP in-between layers [Houlsby et al., 2019]

LoRA [Hu et al., 2021]: add low-rank matrices as additional parameters

Hypothesis: weight matrices are low rank

Adapters: For any matrix multiplication $h = W_0 x$, we modify it to

 $h = W_0 x + \Delta W x = W_0 x + BA x$

- $W_0 \in \mathbb{R}^{d \times k}, B \in \mathbb{R}^{d \times r}, A \in \mathbb{R}^{r \times k} (r \ll k)$
- Initialization: BA = 0
- Can be applied to any weight matrices, e.g., QKV projection matrices

• Converges to full finetuning as *r* increases and performance goes up consistently

- Converges to full finetuning as *r* increases and performance goes up consistently
- No additional inference latency: $W = W_0 + BA$

- Converges to full finetuning as r increases and performance goes up consistently
- No additional inference latency: $W = W_0 + BA$
- Main benefits:
 - Memory and storage saving (optimizer states, checkpoints): 10,000x reduction on GPT3 (r = 4)
 - Easy to switch between different finetuned custom models

Summary

- Supervised finetuning: train the model on human-annotated prompt-response data
- Data consideration:
 - Desiderata: diverse, similar to test data / target task
 - Often costly to obtain; can synthesize using LMs
- Performance upperbound is still decided by the pretrained model

Table of Contents

Introduction

Supervised finetuning

Reinforcement learning

Learning from outcomes

Motivation:

- Demonstrations are expensive to obtain—can we learn from weaker signals?
- For many tasks, humans (and animals) only get signal on whether they succeeded or not

Example:

- Complex physical tasks: learning to shoot a basketball
- Reasoning: learning to play the game of Go
- Decision making: learning to optimize financial portfolios
- Communication: learning to articulate your ideas to others

Reinforcement learning

Goal: learning from experience by maximizing the expected cumulative reward

Reinforcement learning

Goal: learning from experience by maximizing the expected cumulative reward

1. Agent takes a sequence of **actions** in a world *Get a degree, update CV, apply for a job*
Goal: learning from experience by maximizing the expected cumulative reward

- 1. Agent takes a sequence of **actions** in a world *Get a degree, update CV, apply for a job*
- 2. Agent gets **rewards** along the way indicating how well it did *No reponse*

Goal: learning from experience by maximizing the expected cumulative reward

- 1. Agent takes a sequence of **actions** in a world *Get a degree, update CV, apply for a job*
- 2. Agent gets **rewards** along the way indicating how well it did *No reponse*
- 3. Agent updates its **policy** (on what actions to take) *Find a connection? Get an internship? Apply for a different position?*

Goal: learning from experience by maximizing the expected cumulative reward

- 1. Agent takes a sequence of **actions** in a world *Get a degree, update CV, apply for a job*
- 2. Agent gets **rewards** along the way indicating how well it did *No reponse*
- 3. Agent updates its **policy** (on what actions to take) *Find a connection? Get an internship? Apply for a different position?*
- 4. Go back to 1

Goal: learning from experience by maximizing the expected cumulative reward

1. Agent takes a sequence of actions in a world	trial
Get a degree, update CV, apply for a job	

- 2. Agent gets **rewards** along the way indicating how well it did *error No reponse*
- 3. Agent updates its **policy** (on what actions to take) *Find a connection? Get an internship? Apply for a different position?*
- 4. Go back to 1

rinse and repeat

learn

At each time step *t*, an agent

is in a state s_t ∈ S
 cell[i][j] in the grid world

(*S* is the **state space**)

At each time step *t*, an agent

- is in a state s_t ∈ S
 cell[i][j] in the grid world
- takes an **action** $a_t \in \mathcal{A}$ {up, down, left, right}

(S is the **state space**)

(\mathcal{A} is the **action space**)

At each time step *t*, an agent

- is in a state s_t ∈ S (S is the state space)
 cell[i][j] in the grid world
- takes an action $a_t \in \mathcal{A}$ (\mathcal{A} is the action space) {up, down, left, right}
- transitions to the next state s_{t+1} according to a transition function p(· | s_t, a_t) moves to the corresponding cell if there's no blocker

At each time step *t*, an agent

- is in a state state space)
 cell[i][j] in the grid world
- takes an action $a_t \in \mathcal{A}$ (\mathcal{A} is the action space) {up, down, left, right}
- transitions to the next state s_{t+1} according to a transition function p(· | s_t, a_t) moves to the corresponding cell if there's no blocker
- obtains a **reward** $r(s_t, a_t)$ according to the **reward function** $r: S \times A \rightarrow \mathbb{R}$ 1 if s_{t+1} is star and 0 otherwise

Reinforcement learning: objective

The agent uses a **policy** π to decide which actions to take in a state:

- Deterministic: $\pi(s) = a$
- Stochastic: $\pi(a \mid s) = \mathbb{P}(A = a \mid S = s)$ (our focus)

Reinforcement learning: objective

The agent uses a **policy** π to decide which actions to take in a state:

- Deterministic: $\pi(s) = a$
- Stochastic: $\pi(a \mid s) = \mathbb{P}(A = a \mid S = s)$ (our focus)

A policy π_{θ} defines a distribution $p_{\theta}(\tau)$ over **trajectories** $\tau = (a_1, s_1, \dots, a_T, s_T)$.

Reinforcement learning: objective

The agent uses a **policy** π to decide which actions to take in a state:

- Deterministic: $\pi(s) = a$
- Stochastic: $\pi(a \mid s) = \mathbb{P}(A = a \mid S = s)$ (our focus)

A policy π_{θ} defines a distribution $p_{\theta}(\tau)$ over **trajectories** $\tau = (a_1, s_1, \dots, a_T, s_T)$.

The agent's **objective** is to learn a policy π_{θ} (parametrized by θ) that maximizes the expected return:

maximize
$$\mathbb{E}_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t=1}^{r} r(s_t, a_t) \right]$$

Sketch of RL algorithms

Figure: From Sergey Levine's slides

Key steps:

- **Trial**: run policy to generate trajectories
- Error: estimate expected return
- Learn: improve the policy

Sketch of RL algorithms

Figure: From Sergey Levine's slides

Key steps:

- **Trial**: run policy to generate trajectories
- Error: estimate expected return
- Learn: improve the policy

Challenges:

- Trials could be expensive (e.g., healthcare, education)
- Reward signal could be sparse (e.g., expert feedback)
- May need many samples to learn a good policy

Policy gradient algorithms

While not converged

- 1. Sample trajectories from the current policy
- 2. Estimate return for each trajectories based on observed rewards
- 3. Take a gradient step on the expected return (w.r.t. the policy)

Notation: let $r(\tau) = \sum_{t=1}^{T} r(s_t, a_t)$ be the return.

Notation: let $r(\tau) = \sum_{t=1}^{T} r(s_t, a_t)$ be the return.

Our objective:
$$J(\theta) = \mathbb{E}_{\tau \sim p_{\theta}(\tau)} [r(\tau)] = \sum_{\tau} p_{\theta}(\tau) r(\tau)$$

Notation: let $r(\tau) = \sum_{t=1}^{T} r(s_t, a_t)$ be the return.

Our objective:
$$J(\theta) = \mathbb{E}_{\tau \sim p_{\theta}(\tau)} [r(\tau)] = \sum_{\tau} p_{\theta}(\tau) r(\tau)$$

$$\begin{aligned} \nabla_{\theta} J(\theta) &= \nabla_{\theta} \sum_{\tau} p_{\theta}(\tau) r(\tau) \\ &= \sum_{\tau} \nabla_{\theta} p_{\theta}(\tau) r(\tau) \\ &= \sum_{\tau} p_{\theta}(\tau) \nabla_{\theta} \log p_{\theta}(\tau) r(\tau) \\ &= \mathbb{E}_{\tau \sim p_{\theta}(\tau)} \left[\nabla_{\theta} \log p_{\theta}(\tau) r(\tau) \right] \end{aligned}$$

log derivative trick

$$p_{\theta}(\tau) \nabla_{\theta} \log p_{\theta}(\tau)$$
$$= p_{\theta}(\tau) \frac{\nabla_{\theta} p_{\theta}(\tau)}{p_{\theta}(\tau)}$$
$$= \nabla_{\theta} p_{\theta}(\tau)$$

 $\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim p_{\theta}(\tau)} \left[\nabla_{\theta} \log p_{\theta}(\tau) r(\tau) \right]$ Monte Carlo estimation of the expected gradient

 $\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim p_{\theta}(\tau)} \left[\nabla_{\theta} \log p_{\theta}(\tau) r(\tau) \right]$ Monte Carlo estimation of the expected gradient

But what is $p_{\theta}(\tau)$?

$$p_{ heta}(au) = p_{ heta}(a_1, s_1, \dots, a_T, s_T) = p(s_1) \prod_{t=1}^T \pi_{ heta}(a_t \mid s_t) \prod_{t=1}^{T-1} p(s_{t+1} \mid s_t, a_t)$$

 $\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim p_{\theta}(\tau)} \left[\nabla_{\theta} \log p_{\theta}(\tau) r(\tau) \right]$ Monte Carlo estimation of the expected gradient

But what is $p_{\theta}(\tau)$?

$$p_{ heta}(au) = p_{ heta}(a_1, s_1, \dots, a_T, s_T) = p(s_1) \prod_{t=1}^T \pi_{ heta}(a_t \mid s_t) \prod_{t=1}^{T-1} p(s_{t+1} \mid s_t, a_t) \ \log p_{ heta}(au) = \log p(s_1) + \sum_{t=1}^T \log \pi_{ heta}(a_t \mid s_t) + \sum_{t=1}^{T-1} \log p(s_{t+1} \mid s_t, a_t)$$

 $\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim p_{\theta}(\tau)} \left[\nabla_{\theta} \log p_{\theta}(\tau) r(\tau) \right]$ Monte Carlo estimation of the expected gradient

But what is $p_{\theta}(\tau)$?

$$p_{\theta}(\tau) = p_{\theta}(a_1, s_1, \dots, a_T, s_T) = p(s_1) \prod_{t=1}^T \pi_{\theta}(a_t \mid s_t) \prod_{t=1}^{T-1} p(s_{t+1} \mid s_t, a_t)$$
$$\log p_{\theta}(\tau) = \log p(s_1) + \sum_{t=1}^T \log \pi_{\theta}(a_t \mid s_t) + \sum_{t=1}^{T-1} \log p(s_{t+1} \mid s_t, a_t)$$
$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim p_{\theta}(\tau)} \left[\left(\sum_{t=1}^T \nabla_{\theta} \log \pi_{\theta}(a_t \mid s_t) \right) \left(\sum_{t=1}^T r(s_t, a_t) \right) \right]$$

Putting everything together

REINFORCE algorithm:

- 1. Sample *N* trajectories τ^1, \ldots, τ^N from π_θ
- 2. Estimate the gradient:

$$abla_ heta J(heta) pprox \sum_{i=1}^N \left(\sum_{t=1}^T
abla_ heta \log \pi_ heta(a_t^i \mid s_t^i)
ight) \left(\sum_{t=1}^T r(s_t^i, a_t^i)
ight)$$

- 3. Update the policy with gradient ascent: $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$
- 4. Go back to 1

Think of tokens as actions:

- Action space: vocabulary $a_t = x_t \in \mathcal{V}$
- State space: history / prefix $s_t = (x_1, \dots, x_{t-1})$
- Policy: a language model $p_{\theta}(x_t \mid x_{< t})$
- Trajectory: a sentence / generation x_1, \ldots, x_T

How is all this related to LLMs?

REINFORCE algorithm on text:

- 1. Sample *N* generations from the language model p_{θ}
- 2. Estimate the gradient: $\hat{g} = \frac{1}{N} \sum_{i=1}^{N} \left(\sum_{t=1}^{T} \nabla_{\theta} \log p_{\theta}(x_t^i \mid x_{< t}^i) \right) r(x_{1:T})$
- 3. Update the policy with gradient ascent: $\theta \leftarrow \theta + \alpha \hat{g}$
- 4. Go back to 1

How is all this related to LLMs?

REINFORCE algorithm on text:

- 1. Sample *N* generations from the language model p_{θ}
- 2. Estimate the gradient: $\hat{g} = \frac{1}{N} \sum_{i=1}^{N} \left(\sum_{t=1}^{T} \nabla_{\theta} \log p_{\theta}(x_t^i \mid x_{< t}^i) \right) r(x_{1:T})$
- 3. Update the policy with gradient ascent: $\theta \leftarrow \theta + \alpha \hat{g}$
- 4. Go back to 1

What is the algorithm doing?

If $r(x_{1:T})$ is positive, take a gradient step to increase $p_{\theta}(x_{1:T})$. If $r(x_{1:T})$ is negative, take a gradient step to decrease $p_{\theta}(x_{1:T})$.

Supervised learning on model generations weighted by return

Challenges in policy gradient

$$\hat{g} = rac{1}{N}\sum_{i=1}^{N}\left(\sum_{t=1}^{T}
abla_{ heta}\log\pi_{ heta}(a_{t}^{i}\mid s_{t}^{i})
ight)\sum_{t=1}^{T}r(s_{t},a_{t})$$

• We estimate the policy gradient based on a random sample of trajectories \hat{g} is a random variable

Challenges in policy gradient

$$\hat{g} = rac{1}{N}\sum_{i=1}^{N}\left(\sum_{t=1}^{T}
abla_{ heta}\log\pi_{ heta}(a_{t}^{i}\mid s_{t}^{i})
ight)\sum_{t=1}^{T}r(s_{t},a_{t})$$

- We estimate the policy gradient based on a random sample of trajectories \hat{g} is a random variable
- This estimator is unbiased In expectation, it is the true policy gradient: $\mathbb{E}[\hat{g}] = \nabla_{\theta} J(\theta)$

Challenges in policy gradient

$$\hat{g} = rac{1}{N}\sum_{i=1}^{N}\left(\sum_{t=1}^{T}
abla_{ heta}\log\pi_{ heta}(a_{t}^{i}\mid s_{t}^{i})
ight)\sum_{t=1}^{T}r(s_{t},a_{t})$$

- We estimate the policy gradient based on a random sample of trajectories \hat{g} is a random variable
- This estimator is unbiased In expectation, it is the true policy gradient: $\mathbb{E}[\hat{g}] = \nabla_{\theta} J(\theta)$
- But it has high variance Depending on which trajectories we get, \hat{g} can vary greatly

Variance of the policy gradient estimator

$$\hat{g} = rac{1}{N}\sum_{i=1}^{N}\left(\sum_{t=1}^{T}
abla_{ heta}\log\pi_{ heta}(a_t^i\mid s_t^i)
ight)\sum_{t=1}^{T}r(s_t,a_t)$$

- Note that every step along the trajectory is multiplied by the same return
- Reward may be sparse and delayed
- The credit assignment problem: how do we know which step is responsible for the good/bad outcome?

Reducing variance: use reward-to-go

- We get a return for the full trajectory $\sum_{t=1}^{T} r(s_t, a_t)$, how to better allocate it to each step (s_t, a_t) ?
- Future actions (a_t) should not affect past rewards (r_1, \ldots, r_{t-1})
- *a_t* only get rewards after *t*, i.e. **reward-to-go**:

$$\hat{g} = rac{1}{N}\sum_{i=1}^{N}\left(\sum_{t=1}^{T}
abla_{ heta}\log\pi_{ heta}(a_{t}^{i}\mid s_{t}^{i})
ight)\sum_{j=t}^{T}r(a_{j},s_{j})$$

• **Q-function**: expected return starting from *s*_t and taking *a*_t

$$Q^{\pi}(s_t, a_t) = r(s_t, a_t) + \mathbb{E}_{s_{t+1:T}, a_{t+1:T}} \left[\sum_{t'=t+1}^T r(s_{t'}, a_{t'}) \right]$$

• **Q-function**: expected return starting from *s*_t and taking *a*_t

$$Q^{\pi}(s_t, a_t) = r(s_t, a_t) + \mathbb{E}_{s_{t+1:T}, a_{t+1:T}} \left[\sum_{t'=t+1}^T r(s_{t'}, a_{t'}) \right]$$

• Reward-to-go: single trajectory estimate of the Q-value from (s_t, a_t)

• **Q-function**: expected return starting from *s*_t and taking *a*_t

$$Q^{\pi}(s_t, a_t) = r(s_t, a_t) + \mathbb{E}_{s_{t+1:T}, a_{t+1:T}} \left[\sum_{t'=t+1}^T r(s_{t'}, a_{t'}) \right]$$

- Reward-to-go: single trajectory estimate of the Q-value from (s_t, a_t)
- Value function: expected return starting from *s*_t

$$V^{\pi}(s_t) = \mathbb{E}_{a_t \sim \pi(\cdot \mid s_t)}\left[Q^{\pi}(s_t, a_t)
ight]$$

• **Q-function**: expected return starting from *s*_t and taking *a*_t

$$Q^{\pi}(s_t, a_t) = r(s_t, a_t) + \mathbb{E}_{s_{t+1:T}, a_{t+1:T}} \left[\sum_{t'=t+1}^T r(s_{t'}, a_{t'}) \right]$$

- Reward-to-go: single trajectory estimate of the Q-value from (s_t, a_t)
- Value function: expected return starting from *s*_t

$$V^{\pi}(s_t) = \mathbb{E}_{a_t \sim \pi(\cdot \mid s_t)}\left[Q^{\pi}(s_t, a_t)
ight]$$

• Concept check: what is $\mathbb{E}_{s_1}[V^{\pi}(s_1)]$?

Reducing variance: subtract a baseline

• Subtract a **baseline** from the return:

$$\hat{g} = rac{1}{N}\sum_{i=1}^{N}\left(\sum_{t=1}^{T}
abla_{ heta}\log\pi_{ heta}(a_{t}^{i}\mid s_{t}^{i})(r(au^{i})-b(s_{t}^{i}))
ight)$$

 $b(\cdot)$: a function of the state or some constant

Reducing variance: subtract a baseline

• Subtract a **baseline** from the return:

$$\hat{g} = rac{1}{N}\sum_{i=1}^{N}\left(\sum_{t=1}^{T}
abla_{ heta}\log\pi_{ heta}(a_{t}^{i}\mid s_{t}^{i})(r(au^{i})-b(s_{t}^{i}))
ight)$$

 $b(\cdot)$: a function of the state or some constant

• Intuition: the return may not be due to the action you take but just because you are in a state "closer" to the goal
• Subtract a **baseline** from the return:

$$\hat{g} = rac{1}{N}\sum_{i=1}^N \left(\sum_{t=1}^T
abla_ heta \log \pi_ heta(a_t^i \mid s_t^i)(r(au^i) - b(s_t^i))
ight)$$

 $b(\cdot)$: a function of the state or some constant

- Intuition: the return may not be due to the action you take but just because you are in a state "closer" to the goal
- By subtracting a baseline, we measure how much better the action is than the typical return

• Subtract a **baseline** from the return:

$$\hat{g} = rac{1}{N}\sum_{i=1}^N \left(\sum_{t=1}^T
abla_ heta \log \pi_ heta(a_t^i \mid s_t^i)(r(au^i) - b(s_t^i))
ight)$$

 $b(\cdot)$: a function of the state or some constant

- Intuition: the return may not be due to the action you take but just because you are in a state "closer" to the goal
- By subtracting a baseline, we measure how much better the action is than the typical return
- A simple choice is the average return

$$b(s) = \frac{1}{N} \sum_{i=1}^{N} r(\tau^{i})$$

Does this change our objective?

• \hat{g} is still an **unbiased** estimator, i.e.

 $\mathbb{E}\left[\nabla_{\theta} \log \pi_{\theta}(a_t \mid s_t)(r(\tau) - b(s_t))\right] = \mathbb{E}\left[\nabla_{\theta} \log \pi_{\theta}(a_t \mid s_t)r(\tau)\right]$

Does this change our objective?

• \hat{g} is still an **unbiased** estimator, i.e.

$$\mathbb{E}\left[\nabla_{\theta} \log \pi_{\theta}(a_t \mid s_t)(r(\tau) - b(s_t))\right] = \mathbb{E}\left[\nabla_{\theta} \log \pi_{\theta}(a_t \mid s_t)r(\tau)\right]$$

$$\mathbb{E}\big[\nabla_{\theta} \log \pi_{\theta}(a_t \mid s_t) \, b(s_t)\big] = \mathbb{E}_{s_t}\Big[b(s_t) \, \mathbb{E}_{a_t \sim \pi_{\theta}}(\cdot \mid s_t) \big[\nabla_{\theta} \log \pi_{\theta}(a_t \mid s_t)\big]\Big]$$

Does this change our objective?

• \hat{g} is still an **unbiased** estimator, i.e.

$$\mathbb{E}\left[\nabla_{\theta} \log \pi_{\theta}(a_t \mid s_t)(r(\tau) - b(s_t))\right] = \mathbb{E}\left[\nabla_{\theta} \log \pi_{\theta}(a_t \mid s_t)r(\tau)\right]$$

$$\mathbb{E}\big[\nabla_{\theta}\log\pi_{\theta}(a_t\mid s_t)\,b(s_t)\big] = \mathbb{E}_{s_t}\Big[b(s_t)\,\mathbb{E}_{a_t\sim\pi_{\theta}(\cdot\mid s_t)}\big[\nabla_{\theta}\log\pi_{\theta}(a_t\mid s_t)\big]\Big]$$

$$egin{aligned} \mathbb{E}\left[
abla_ heta \log \pi_ heta(a_t \mid s_t)
ight] &= \sum_{a_t} \pi_ heta(a_t \mid s_t)
abla_ heta \log \pi_ heta(a_t \mid s_t) = \sum_{a_t}
abla_ heta\pi_ heta(a_t \mid s_t) =
abla_ heta 1 = 0 \end{aligned}$$

• As long as $b(\cdot)$ does not depend on a_t , it doesn't introduce any bias.

• Advantage function: how much better a_t is compared to other actions in state s_t

$$A^{\pi}(s_t,a_t) = Q^{\pi}(s_t,a_t) - V^{\pi}(s_t)$$

reward-to-go minus a (state-dependent) baseline

• Advantage function: how much better a_t is compared to other actions in state s_t

$$A^{\pi}(s_t,a_t)=Q^{\pi}(s_t,a_t)-V^{\pi}(s_t)$$

reward-to-go minus a (state-dependent) baseline

• How to estimate advantage in policy gradient?

$$\hat{g} = rac{1}{N}\sum_{i=1}^{N}\left(\sum_{t=1}^{T}
abla_{ heta}\log\pi_{ heta}(a_{t}^{i}\mid s_{t}^{i})
ight)\left(\sum_{t=1}^{T}r(s_{t},a_{t})-b
ight)$$

high variance because it's estimated from a single trajectory

• Advantage function: how much better a_t is compared to other actions in state s_t

$$A^{\pi}(s_t,a_t)=Q^{\pi}(s_t,a_t)-V^{\pi}(s_t)$$

reward-to-go minus a (state-dependent) baseline

• How to estimate advantage in policy gradient?

$$\hat{g} = rac{1}{N}\sum_{i=1}^{N}\left(\sum_{t=1}^{T}
abla_{ heta}\log\pi_{ heta}(a_{t}^{i}\mid s_{t}^{i})
ight)\left(\sum_{t=1}^{T}r(s_{t},a_{t})-b
ight)$$

high variance because it's estimated from a single trajectory

• We can improve the estimate by sampling more rollouts from (s_t, a_t)

• Advantage function: how much better a_t is compared to other actions in state s_t

$$A^{\pi}(s_t,a_t)=Q^{\pi}(s_t,a_t)-V^{\pi}(s_t)$$

reward-to-go minus a (state-dependent) baseline

• How to estimate advantage in policy gradient?

$$\hat{g} = rac{1}{N}\sum_{i=1}^{N}\left(\sum_{t=1}^{T}
abla_{ heta}\log\pi_{ heta}(a_{t}^{i}\mid s_{t}^{i})
ight)\left(\sum_{t=1}^{T}r(s_{t},a_{t})-b
ight)$$

high variance because it's estimated from a single trajectory

- We can improve the estimate by sampling more rollouts from (s_t, a_t)
- Can we fit a function to predict A^{π} ?

• Advantage function: how much better a_t is compared to other actions in state s_t

$$A^{\pi}(s_t, a_t) = Q^{\pi}(s_t, a_t) - V^{\pi}(s_t)$$

reward-to-go minus a (state-dependent) baseline

• How to estimate advantage in policy gradient?

$$\hat{g} = rac{1}{N}\sum_{i=1}^{N}\left(\sum_{t=1}^{T}
abla_{ heta}\log\pi_{ heta}(a_{t}^{i}\mid s_{t}^{i})
ight)\left(\sum_{t=1}^{T}r(s_{t},a_{t})-b
ight)$$

high variance because it's estimated from a single trajectory

- We can improve the estimate by sampling more rollouts from (s_t, a_t)
- Can we fit a function to predict A^{π} ?
 - How does this solve the high variance problem?

• Rewrite the advantage function

$$egin{aligned} &\mathcal{A}^{\pi}(s_t, a_t) = Q^{\pi}(s_t, a_t) - V^{\pi}(s_t) \ &= r(s_t, a_t) + V^{\pi}(s_{t+1}) - V^{\pi}(s_t) \end{aligned}$$

• Rewrite the advantage function

$$egin{aligned} &\mathcal{A}^{\pi}(s_t, a_t) = Q^{\pi}(s_t, a_t) - V^{\pi}(s_t) \ &= r(s_t, a_t) + V^{\pi}(s_{t+1}) - V^{\pi}(s_t) \end{aligned}$$

• So we just need to fit the value function!

• Rewrite the advantage function

$$egin{aligned} & A^{\pi}(s_t, a_t) = Q^{\pi}(s_t, a_t) - V^{\pi}(s_t) \ &= r(s_t, a_t) + V^{\pi}(s_{t+1}) - V^{\pi}(s_t) \end{aligned}$$

- So we just need to fit the value function!
- Estimate the value from a rollout au^i

$$\hat{V}^{\pi}(s_{t}^{i}) = \sum_{t'=t}^{T} r(s_{t'}^{i}, a_{t'}^{i})$$

• Rewrite the advantage function

$$egin{aligned} \mathcal{A}^{\pi}(s_t, a_t) &= Q^{\pi}(s_t, a_t) - V^{\pi}(s_t) \ &= r(s_t, a_t) + V^{\pi}(s_{t+1}) - V^{\pi}(s_t) \end{aligned}$$

- So we just need to fit the value function!
- Estimate the value from a rollout au^i

$$\hat{V}^{\pi}(s_{t}^{i}) = \sum_{t'=t}^{T} r(s_{t'}^{i}, a_{t'}^{i})$$

• This gives us a training example $(s_t^i, \hat{V}^{\pi}(s_t^i))$

• Rewrite the advantage function

$$egin{aligned} &\mathcal{A}^{\pi}(s_t, a_t) = Q^{\pi}(s_t, a_t) - V^{\pi}(s_t) \ &= r(s_t, a_t) + V^{\pi}(s_{t+1}) - V^{\pi}(s_t) \end{aligned}$$

- So we just need to fit the value function!
- Estimate the value from a rollout au^i

$$\hat{V}^{\pi}(s_{t}^{i}) = \sum_{t'=t}^{T} r(s_{t'}^{i}, a_{t'}^{i})$$

- This gives us a training example $(s_t^i, \hat{V}^{\pi}(s_t^i))$
- Given a training set \mathcal{D} , train a regression model w by minimizing the squared loss:

$$\sum_{s\in\mathcal{D}}\left(V^{\pi}_w(s)-\hat{V}^{\pi}(s)
ight)^2$$

Actor-Critic methods

- **Critic**: evaluate the policy update *w* to improve estimates of *V_w*
- Actor: improve the policy update θ to improve the policy give feedback from the critic

Actor-Critic methods

- **Critic**: evaluate the policy update *w* to improve estimates of *V_w*
- Actor: improve the policy update θ to improve the policy give feedback from the critic

Algorithm sketch:

- 1. Sample a trajectory from current policy
- 2. Update *w* given the estimated state values
- 3. Evaluate $\hat{A}^{\pi}(s_t, a_t) = r(s_t, a_t) + V_w^{\pi}(s_{t+1}) V_w^{\pi}(s_t)$
- 4. Update the policy with gradient $\hat{g} = \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(a_t \mid s_t) \hat{A}^{\pi}(s_t, a_t)$
- 5. Go back to 1

On-Policy vs. Off-Policy

- **On-Policy** methods use samples from the policy that is currently being optimized (i.e. $\pi_{\theta}(a \mid s)$).
- **Off-Policy** methods use samples generated by a different behavior policy $\mu(a \mid s)$.
- Advantages of off-policy:

On-Policy vs. Off-Policy

- **On-Policy** methods use samples from the policy that is currently being optimized (i.e. $\pi_{\theta}(a \mid s)$).
- **Off-Policy** methods use samples generated by a different behavior policy $\mu(a \mid s)$.
- Advantages of off-policy:
 - Can reuse old trajectories generated by past policies.
 - Allows learning from demonstrations or replay buffers.
 - Can have multiple exploration policies to generate trajectories.

Off-Policy Policy Gradient

• Standard on-policy gradient (REINFORCE) is:

$$abla_{ heta} J(heta) \;=\; \mathbb{E}_{ au \sim \pi_{ heta}} \Big[
abla_{ heta} \log \pi_{ heta}(au) \, r(au) \Big].$$

• Off-policy scenario: τ is generated by a behavior policy $\mu(\tau)$, but we want gradient w.r.t. π_{θ} .

$$\nabla_{\theta} J(\theta) \neq \mathbb{E}_{\tau \sim \mu} \Big[\nabla_{\theta} \log \pi_{\theta}(\tau) R(\tau) \Big]$$

• Key challenge: Correctly handling the discrepancy between μ and π_{θ} .

Importance Sampling: A Quick Review

- We often want an expectation under some distribution p(x), but we only have samples from a different distribution q(x).
- Importance Sampling uses a correction ratio:

$$\mathbb{E}_{x \sim p}[f(x)] = \mathbb{E}_{x \sim q}\left[f(x) \frac{p(x)}{q(x)}\right].$$

In the RL context:

$$rac{p(au)}{q(au)}
ightarrow rac{\pi_{ heta}(au)}{\mu(au)}$$

• This ratio re-weights off-policy trajectories to match the target policy distribution.

Off-Policy Policy Gradient

• Off-policy scenario: τ is generated by a behavior policy $\mu(\tau)$, but we want gradient w.r.t. π_{θ} .

$$abla_{ heta} J(heta) \ = \ \mathbb{E}_{ au \sim \mu} \Big[
ho(au) \,
abla_{ heta} \log \pi_{ heta}(au) \, R(au) \Big], \quad ext{where} \quad
ho(au) \ = \ rac{\pi_{ heta}(au)}{\mu(au)}.$$

• Usually we re-weight per step:

$$\hat{g} = rac{1}{N}\sum_{i=1}^{N}\left(\sum_{t=1}^{T}rac{\pi_{ heta}(a_t^i \mid s_t^i)}{\mu(a_t^i \mid s_t^i)}
abla_{ heta}\log\pi_{ heta}(a_t^i \mid s_t^i)
ight)\sum_{t=1}^{T}r(s_t^i,a_t^i)$$

- Importance weight also incurs high variance: when will the ratio blow up?
- π_{θ} and μ cannot be too different

. .

Summary

- Reinforcement learning: maximize return through trial and error (rollout, evaluate policy, improve policy)
- Policy gradient: increase/decrease likelihood of the trajectory proportionally to the return
- Key challenge: gradient is very noisy!
 - Use reward-to-go for each action update
 - Subtract a baseline
 - Use function approximation for the value/Q function