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Recap

• Pretraining allows the model to acquire many capabilities from vast data
• Increasing compute (data + parameters) predictably improves performance(held-out perplexity)
• How to use a pretrained model for downstream tasks?
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Motivation

How do we tell the LM what we want to do?
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Early prompting approaches

Main goal: adapt the task to a native language modeling task
Example:
• Sentiment classification: [movie review] This movie is [great/awful].
• Summarization: [document] TL;DR: [summary]

What are potential limitations?
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In-context learning

How GPT-2 is evaluated on machine translation using GPT-2:
• Induce the task through a demonstration example:

translation ∼ p(· | [french sentence] = [english sentence]; [french sentence] =)
• WMT-14 French-English test set: 11.5 BLEU (worse than unsupervised MT)
• But, there’s only 10MB french data in the 40GB training data!
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In-context learning

In-context demonstrations elicit target capabilities consistently on GPT-3:

This is surprising as this is not a native language model task!
Limitations: results can vary with the choice and order of examples [Zhao et al., 2021]
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https://arxiv.org/abs/2102.09690


Post-training

• Goal: elicit capabilities acquired during pretraining so that the model can beused directly for downstream task, e.g.,
• A chat model that answers user queries
• A reasoning model that solves math problems
• A shopping assistant that answers questions about products

• Methods: update the model on some examples of the target task (often requireannotation)
• Supervised finetuning (SFT): input and gold output
• Reinforcement learning (RL): input and an output judge
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Supervised finetuning

• Supervised learning on the target task
• Input: prompt (e.g., instruction orquestion)
• Output: gold response

• Key challenge: data collection
How to get the prompts and responses?
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What kind of data do we need?

Idea 1: use existing NLP benchmarks
• Natural language inference:

Suppose ”The banker contacted the professors and the athlete”. Can we infer that
”The banker contacted the professors”?
• Question answering:

Given the article ”The Panthers finished the regular season [...]”, what team did the
Panthers defeat?
• Sentiment analysis:

What’s the rating of this review on a scale of 1 to 5: We came here on a Saturday
night and luckily it wasn’t as packed as I thought it would be [...]

But this is not what we ask ChatGPT to do! distribution shift
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What kind of data do we need?

• Problem: Gap between training andtest data

• Straightforward solution: collecttraining data that is similar to testdata
How do we know what test data is like?
• Get some pilot data

which requires a working-ish model
first!

model

raw datatraining data

userfinetuning

annotation
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Data distribution from early OpenAI API

Figure: [Ouyang et al., 2022]

What if you’re not at OpenAI?
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Synthetic data
Use off-the-shelf LMs to generate prompts and responses:

Figure: Self-instruct [Wang et al., 2023]
14 / 46

https://arxiv.org/pdf/2212.10560


The Alpaca model

• November 30, 2022: ChatGPT released

• February 24, 2023: LLaMA released (open-weight pretrained model)
• March 13, 2023: Alpaca released (open-source ChatGPT like model)

• 175 seed instruction from Self-Instruct
• 52K prompt-response pair from text-davinci-003 (¡$500)
• Supervised finetuning from LLaMA-7B (¡$100)

• Impact:

• Provides an open-source ChatGPT like model for research
• Many later open-source models adopt this distillation approach
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How good are distilled models?

Figure: The False Promise of Imitating Proprietary LLMs [Gudibande et al., 2023]
• Increasing the amount of synthetic data doesn’t keep increasing performance
• Distillation can hurt performance on tasks out of the SFT data
• Further performance gain comes from stronger pretrained models
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https://arxiv.org/pdf/2305.15717


Parameter efficient finetuning

Finetuning all weights of a large model can be expensive (in what way?)

Can we finetune a smaller number of parameters to achieve performance similar tofull finetuning?
• Select a subset of parameters to update

• Last k layers [Lee et al., 2019]
• Bias terms (BitFit) [Ben-Zaken et al., 2022]

• Add a small number of parameters to adapte the (frozen) pretrained model
• Insert a small MLP in-between layers [Houlsby et al., 2019]
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Low-rank adaptation of LMs

LoRA [Hu et al., 2021]: add low-rank matrices as additional parameters
Hypothesis: weight matrices are low rank
Adapters: For any matrix multiplication h = W0x , wemodify it to

h = W0x +∆Wx = W0x + BAx

• W0 ∈ Rd×k ,B ∈ Rd×r ,A ∈ Rr×k(r ≪ k)

• Initialization: BA = 0

• Can be applied to any weight matrices, e.g., QKVprojection matrices
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https://arxiv.org/pdf/2106.09685.pdf


Low-rank adaptation of LMs

• Converges to full finetuning as r increases and performance goes up consistently

• No additional inference latency: W = W0 + BA

• Main benefits:

• Memory and storage saving (optimizer states, checkpoints): 10,000xreduction on GPT3 (r = 4)
• Easy to switch between different finetuned custom models
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Summary

• Supervised finetuning: train the model on human-annotated prompt-responsedata
• Data consideration:
• Desiderata: diverse, similar to test data / target task
• Often costly to obtain; can synthesize using LMs

• Performance upperbound is still decided by the pretrained model
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Learning from outcomes

Motivation:
• Demonstrations are expensive to obtain—can we learn from weaker signals?
• For many tasks, humans (and animals) only get signal on whether theysucceeded or not

Example:
• Complex physical tasks: learning to shoot a basketball
• Reasoning: learning to play the game of Go
• Decision making: learning to optimize financial portfolios
• Communication: learning to articulate your ideas to others
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Reinforcement learning

Goal: learning from experience by maximizing the expected cumulative reward

1. Agent takes a sequence of actions in a world

trial

Get a degree, update CV, apply for a job
2. Agent gets rewards along the way indicating how well it did

error

No reponse
3. Agent updates its policy (on what actions to take)

learn

Find a connection? Get an internship? Apply for a different position?
4. Go back to 1

rinse and repeat
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Reinforcement learning: formalization

At each time step t , an agent
• is in a state st ∈ S (S is the state space)
cell[i][j] in the grid world

• takes an action at ∈ A (A is the action space)
{up, down, left, right}
• transitions to the next state st+1 according to a

transition function p(· | st , at)moves to the corresponding cell if there’s no blocker
• obtains a reward r(st , at) according to the reward

function r : S ×A → R1 if st+1 is star and 0 otherwise
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Reinforcement learning: objective
The agent uses a policy π to decide which actions to take in a state:
• Deterministic: π(s) = a

• Stochastic: π(a | s) = P(A = a | S = s) (our focus)

A policy πθ defines a distribution pθ(τ) over trajectories τ = (a1, s1, . . . , aT , sT ).

The agent’s objective is to learn a policy πθ (parametrized by θ) that maximizes theexpected return:
maximize Eτ∼pθ(τ)

[
T∑
t=1

r(st , at)

]
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Sketch of RL algorithms

Figure: From Sergey Levine’s slides

Key steps:
• Trial: run policy to generate trajectories
• Error: estimate expected return
• Learn: improve the policy

Challenges:
• Trials could be expensive (e.g., healthcare,education)
• Reward signal could be sparse (e.g., expertfeedback)
• May need many samples to learn a goodpolicy
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Policy gradient algorithms

While not converged
1. Sample trajectories from the current policy
2. Estimate return for each trajectories based on observed rewards
3. Take a gradient step on the expected return (w.r.t. the policy)
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How to compute the gradient?

Notation: let r(τ) =∑T
t=1 r(st , at) be the return.

Our objective: J(θ) = Eτ∼pθ(τ) [r(τ)] =
∑
τ

pθ(τ)r(τ)

∇θJ(θ) = ∇θ

∑
τ

pθ(τ)r(τ)

=
∑
τ

∇θpθ(τ)r(τ)

=
∑
τ

pθ(τ)∇θ log pθ(τ)r(τ)

= Eτ∼pθ(τ) [∇θ log pθ(τ)r(τ)]

log derivative trick

pθ(τ)∇θ log pθ(τ)

=pθ(τ)
∇θpθ(τ)

pθ(τ)

=∇θpθ(τ)
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How to compute the gradient?

∇θJ(θ) = Eτ∼pθ(τ) [∇θ log pθ(τ)r(τ)] Monte Carlo estimation of the expected gradient

But what is pθ(τ)?

pθ(τ) = pθ(a1, s1, . . . , aT , sT ) = p(s1)
T∏
t=1

πθ(at | st)
T−1∏
t=1

p(st+1 | st , at)

log pθ(τ) = log p(s1) +
T∑
t=1

log πθ(at | st) +
T−1∑
t=1

log p(st+1 | st , at)

∇θJ(θ) = Eτ∼pθ(τ)

[(
T∑
t=1

∇θ log πθ(at | st)

)(
T∑
t=1

r(st , at)

)]
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Putting everything together

REINFORCE algorithm:
1. Sample N trajectories τ1, . . . , τN from πθ

2. Estimate the gradient:

∇θJ(θ) ≈
N∑
i=1

(
T∑
t=1

∇θ log πθ(a
i
t | s it)

)(
T∑
t=1

r(s it , a
i
t)

)

3. Update the policy with gradient ascent: θ ← θ + α∇θJ(θ)

4. Go back to 1
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How is all this related to LLMs?

Think of tokens as actions:
• Action space: vocabulary at = xt ∈ V

• State space: history / prefix st = (x1, . . . , xt−1)

• Policy: a language model pθ(xt | x<t)

• Trajectory: a sentence / generation x1, . . . , xT
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How is all this related to LLMs?

REINFORCE algorithm on text:
1. Sample N generations from the language model pθ
2. Estimate the gradient: ĝ = 1

N

∑N
i=1

(∑T
t=1∇θ log pθ(x

i
t | x i<t)

)
r(x1:T )

3. Update the policy with gradient ascent: θ ← θ + αĝ

4. Go back to 1

What is the algorithm doing?

If r(x1:T ) is positive, take a gradient step to increase pθ(x1:T ).If r(x1:T ) is negative, take a gradient step to decrease pθ(x1:T ).
Supervised learning on model generations weighted by return

32 / 46



How is all this related to LLMs?

REINFORCE algorithm on text:
1. Sample N generations from the language model pθ
2. Estimate the gradient: ĝ = 1
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Challenges in policy gradient

ĝ =
1

N

N∑
i=1

(
T∑
t=1

∇θ log πθ(a
i
t | s it)

)
T∑
t=1

r(st , at)

• We estimate the policy gradient based on a random sample of trajectories
ĝ is a random variable

• This estimator is unbiased
In expectation, it is the true policy gradient: E[ĝ ] = ∇θJ(θ)

• But it has high variance
Depending on which trajectories we get, ĝ can vary greatly
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ĝ =
1

N

N∑
i=1

(
T∑
t=1

∇θ log πθ(a
i
t | s it)

)
T∑
t=1

r(st , at)

• We estimate the policy gradient based on a random sample of trajectories
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In expectation, it is the true policy gradient: E[ĝ ] = ∇θJ(θ)

• But it has high variance
Depending on which trajectories we get, ĝ can vary greatly
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Variance of the policy gradient estimator

ĝ =
1

N

N∑
i=1

(
T∑
t=1

∇θ log πθ(a
i
t | s it)

)
T∑
t=1

r(st , at)

• Note that every step along the trajectory is multipliedby the same return
• Reward may be sparse and delayed
• The credit assignment problem: how do we knowwhich step is responsible for the good/bad outcome?
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Reducing variance: use reward-to-go

• We get a return for the full trajectory∑T
t=1 r(st , at), how to better allocate it toeach step (st , at)?

• Future actions (at ) should not affect past rewards (r1, . . . , rt−1)
• at only get rewards after t , i.e. reward-to-go:

ĝ =
1

N

N∑
i=1

(
T∑
t=1

∇θ log πθ(a
i
t | s it)

)
T∑
j=t

r(aj , sj)
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Important quantities related to reward-to-go

• Q-function: expected return starting from st and taking at

Qπ(st , at) = r(st , at) + Est+1:T ,at+1:T

[
T∑

t′=t+1

r(st′ , at′)

]

• Reward-to-go: single trajectory estimate of the Q-value from (st , at)

• Value function: expected return starting from st

V π(st) = Eat∼π(·|st) [Q
π(st , at)]

• Concept check: what is Es1 [V
π(s1)]?
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Reducing variance: subtract a baseline
• Subtract a baseline from the return:

ĝ =
1

N

N∑
i=1

(
T∑
t=1

∇θ log πθ(a
i
t | s it)(r(τ i )− b(s it))

)

b(·): a function of the state or some constant

• Intuition: the return may not be due to the action you take but just because youare in a state ”closer” to the goal
• By subtracting a baseline, we measure how much better the action is than thetypical return
• A simple choice is the average return

b(s) =
1

N

N∑
i=1

r(τ i )
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Reducing variance: subtract a baseline
Does this change our objective?
• ĝ is still an unbiased estimator, i.e.

E [∇θ log πθ(at | st)(r(τ)− b(st))] = E [∇θ log πθ(at | st)r(τ)]

E
[
∇θ log πθ(at | st) b(st)

]
= Est

[
b(st)Eat∼πθ(·|st)

[
∇θ log πθ(at | st)

]]

E [∇θ log πθ(at | st)] =
∑
at

πθ(at | st)∇θ log πθ(at | st) =
∑
at

∇θπθ(at | st)

= ∇θ

∑
at

πθ(at | st) = ∇θ1 = 0

• As long as b(·) does not depend on at , it doesn’t introduce any bias.
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The advantage function
• Advantage function: how much better at is compared to other actions in state
st

Aπ(st , at) = Qπ(st , at)− V π(st)

reward-to-go minus a (state-dependent) baseline

• How to estimate advantage in policy gradient?

ĝ =
1

N

N∑
i=1

(
T∑
t=1

∇θ log πθ(a
i
t | s it)

)(
T∑
t=1

r(st , at)− b

)

high variance because it’s estimated from a single trajectory
• We can improve the estimate by sampling more rollouts from (st , at)

• Can we fit a function to predict Aπ?

• How does this solve the high variance problem?
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Fitting the value function
• Rewrite the advantage function

Aπ(st , at) = Qπ(st , at)− V π(st)

= r(st , at) + V π(st+1)− V π(st)

• So we just need to fit the value function!
• Estimate the value from a rollout τ i

V̂ π(s it) =
T∑

t′=t

r(s it′ , a
i
t′)

• This gives us a training example (s it , V̂
π(s it))

• Given a training set D, train a regression model w by minimizing the squaredloss: ∑
s∈D

(
V π
w (s)− V̂ π(s)

)2
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Actor-Critic methods

• Critic: evaluate the policyupdate w to improve estimates of Vw

• Actor: improve the policyupdate θ to improve the policy give feedback from the critic

Algorithm sketch:
1. Sample a trajectory from current policy
2. Update w given the estimated state values
3. Evaluate Âπ(st , at) = r(st , at) + V π

w (st+1)− V π
w (st)

4. Update the policy with gradient ĝ =
∑T

t=1∇θ log πθ(at | st)Âπ(st , at)

5. Go back to 1
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On-Policy vs. Off-Policy

• On-Policy methods use samples from the policy that is currently beingoptimized (i.e. πθ(a | s)).
• Off-Policy methods use samples generated by a different behavior policy
µ(a | s).
• Advantages of off-policy:

• Can reuse old trajectories generated by past policies.
• Allows learning from demonstrations or replay buffers.
• Can have multiple exploration policies to generate trajectories.
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Off-Policy Policy Gradient

• Standard on-policy gradient (REINFORCE) is:
∇θJ(θ) = Eτ∼πθ

[
∇θ log πθ(τ) r(τ)

]
.

• Off-policy scenario: τ is generated by a behavior policy µ(τ), but we wantgradient w.r.t. πθ.
∇θJ(θ) ̸= Eτ∼µ

[
∇θ log πθ(τ)R(τ)

]
• Key challenge: Correctly handling the discrepancy between µ and πθ.
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Importance Sampling: A Quick Review

• We often want an expectation under some distribution p(x), but we only havesamples from a different distribution q(x).
• Importance Sampling uses a correction ratio:

Ex∼p[f (x)] = Ex∼q

[
f (x)

p(x)

q(x)

]
.

• In the RL context:
p(τ)

q(τ)
→ πθ(τ)

µ(τ)

• This ratio re-weights off-policy trajectories to match the target policydistribution.
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Off-Policy Policy Gradient

• Off-policy scenario: τ is generated by a behavior policy µ(τ), but we wantgradient w.r.t. πθ.
∇θJ(θ) = Eτ∼µ

[
ρ(τ)∇θ log πθ(τ)R(τ)

]
, where ρ(τ) =

πθ(τ)

µ(τ)
.

• Usually we re-weight per step:

ĝ =
1

N

N∑
i=1

(
T∑
t=1

πθ(a
i
t | s it)

µ(ait | s it)
∇θ log πθ(a

i
t | s it)

)
T∑
t=1

r(s it , a
i
t)

• Importance weight also incurs high variance: when will the ratio blow up?
• πθ and µ cannot be too different
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Summary

• Reinforcement learning: maximize return through trial and error (rollout,evaluate policy, improve policy)
• Policy gradient: increase/decrease likelihood of the trajectory proportionally tothe return
• Key challenge: gradient is very noisy!
• Use reward-to-go for each action update
• Subtract a baseline
• Use function approximation for the value/Q function
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