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Recap

® Pretraining allows the model to acquire many capabilities from vast data

® |Increasing compute (data + parameters) predictably improves performance
(held-out perplexity)

® How to use a pretrained model for downstream tasks?
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Motivation

How do we tell the LM what we want to do?

Language L.ava2(708) e 2xA10080GB

What is the capital of Kenya?
What is the capital of Kenya? Kenya is a country in East Africa with coastline on the Indian Ocean. It encompasses savannah,
lakelands, the dramatic Great Rift Valley and mountain highlands.
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A survey on prompting in large language models

Sun, Chengcheng, Zhu, Yuan, Wang, Zhen, Zhu, Xiang

arXiv.org Machine Learning May-28-2022

We conduct a comprehensive survey on prompting in large language models (LLMs) from a technical perspective. We first identify four
major types of prompting in LLMs: explicit, implicit, hybrid, and multi-task. We then summarize the different prompting methods under
each type. We also analyze the different types of prompting from three aspects: the language model, the prompting method, and the
downstream task. We find that the prompting methods can be categorized into three groups: input-based, output-based, and model-
based. We also summarize the commonalities and differences between prompting and the traditional downstream task. We then

discuss the potential advantages and limitations of prompting in LLMs. Finally, we provide a discussion on the future of prompting in
LLMs.
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Early prompting approaches

Main goal: adapt the task to a native language modeling task

Example:
® Sentiment classification: [movie review] This movie is [great/awful].
e Summarization: [document] TL;DR: [summary]

-~
O

“Y What are potential limitations?
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In-context learning

How GPT-2 is evaluated on machine translation using GPT-2:
® Induce the task through a demonstration example:
translation ~ p(- | [french sentence] = [english sentence]; [french sentence] =)

® WMT-14 French-English test set: 11.5 BLEU (worse than unsupervised MT)

® But, there's only T0MB french data in the 40GB training datal
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In-context learning

In-context demonstrations elicit target capabilities consistently on GPT-3:

Few-shot

In addition to the task description, the model sees a few
examples of the task. No gradient updates are performed.

Translate English to French: task description
sea otter => loutre de mer examples
peppermint => menthe poivrée

plush girafe => girafe peluche

cheese => prompt

This is surprising as this is not a native language model task!

Limitations: results can vary with the choice and order of examples [Zhao et al., 2021]
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Post-training

e Goal: elicit capabilities acquired during pretraining so that the model can be
used directly for downstream task, e.g.,
® A chat model that answers user queries
® Areasoning model that solves math problems
® A shopping assistant that answers questions about products

® Methods: update the model on some examples of the target task (often require
annotation)
® Supervised finetuning (SFT): input and gold output
® Reinforcement learning (RL): input and an output judge
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Supervised finetuning

e Supervised learning on the target task
® |nput: prompt (e.g., instruction or
question)
® Qutput: gold response

¢ Key challenge: data collection
How to get the prompts and responses?

A promptis
sampled from our
prompt dataset.

A labeler
demonstrates the
desired output
behavior.

This datais used
to fine-tune GPT-3
with supervised
learning.

Explain the moon

landing to a 6 year old

\J

)

Z

Some people went
to the moon...
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What kind of data do we need?

Idea 1: use existing NLP benchmarks

° Natural language inference:
Suppose "The banker contacted the professors and the athlete”, Can we infer that
“The banker contacted the professors”?

® Question answering:
Given the article "The Panthers finished the regular season [...]", what team did the
Panthers defeat?

e Sentiment analysis:
What's the rating of this review on a scale of 1 to 5: We came here on a Saturday
night and luckily it wasn’t as packed as | thought it would be [...]
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° Natural language inference:
Suppose "The banker contacted the professors and the athlete”, Can we infer that
“The banker contacted the professors”?

® Question answering:
Given the article "The Panthers finished the regular season [...]", what team did the
Panthers defeat?

e Sentiment analysis:
What's the rating of this review on a scale of 1 to 5: We came here on a Saturday
night and luckily it wasn’t as packed as | thought it would be [...]

But this is not what we ask ChatGPT to do!  distribution shift
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What kind of data do we need?

® Problem: Gap between training and
test data
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Data distribution from early OpenAl API

Table 1: Distribution of use
case categories from our API
prompt dataset.

Use-case (%)
Generation 45.6%
Open QA 12.4%
Brainstorming  11.2%
Chat 8.4%
Rewrite 6.6%
Summarization 4.2%
Classification 3.5%
Other 3.5%
Closed QA 2.6%
Extract 1.9%

Table 2: Illustrative prompts from our API prompt dataset. These
are fictional examples inspired by real usage—see more examples

in Appendix/A.2.1

Use-case Prompt

Brainstorming List five ideas for how to regain enthusiasm for my
career

Generation ‘Write a short story where a bear goes to the beach,
makes friends with a seal, and then returns home.

Rewrite This is the summary of a Broadway play:
{summary }

na

This is the outline of the commercial for that play:

Figure: [Ouyang et al., 2022]
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Table 1: Distribution of use
case categories from our API
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Generation 45.6%
Open QA 12.4%
Brainstorming  11.2%
Chat 8.4%
Rewrite 6.6%
Summarization 4.2%
Classification 3.5%
Other 3.5%
Closed QA 2.6%
Extract 1.9%

What if you're not at OpenAl?

Table 2: Illustrative prompts from our API prompt dataset. These
are fictional examples inspired by real usage—see more examples

in Appendix/A.2.1

Use-case Prompt
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Synthetic data

Use off-the-shelf LMs to generate prompts and responses:

175 seed tasks with
1 instruction and
1 instance per task

B

Step 4: Filtering

. . . Step 2: Classification
Task Pool . Step 1: Instruction Generation . Task Identification
/ LM
\'/ Instruction : Give me a quote from a LM
famous person on this topic.

Step 3: Instance Generation

Yes
Instruction : Find out if the given text is in favor of or against abortion.

Class Label: Pro-abortion

Input: Text: I believe that women should have the right to choose whether or not

they want to have an abortion. Output-first

Instruction : Give me a quote from a famous person on this topic. | No

Input: Topic: The importance of being honest.

Output: "Honesty is the first chapter in the book of wisdom." - Thomas Jefferson Input-first

Figure: Self-instruct [Wang et al., 2023]

LM
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The Alpaca model

e November 30, 2022: ChatGPT released
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The Alpaca model

November 30, 2022: ChatGPT released

® February 24, 2023: LLaMA released (open-weight pretrained model)

March 13, 2023: Alpaca released (open-source ChatGPT like model)

® 175 seed instruction from Self-Instruct
® 52K prompt-response pair from text-davinci-003 (j$500)
® Supervised finetuning from LLaMA-7B (j$100)

® |mpact:
® Provides an open-source ChatGPT like model for research
® Many later open-source models adopt this distillation approach
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How good are distilled models?

Crowdworker Evaluation

80 35 Natural Questions 3-Shot 80 Crowdworker Evaluation
R N N R N T R R B
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Amount of Imitation Data (Millions of Tokens) Amount of Imitation Data (Millions of Tokens) Number of Model Parameters (Billions)

Figure: The False Promise of Imitating Proprietary LLMs [Gudibande et al., 2023]

® Increasing the amount of synthetic data doesn't keep increasing performance
e Distillation can hurt performance on tasks out of the SFT data
® Further performance gain comes from stronger pretrained models

16/46


https://arxiv.org/pdf/2305.15717

Parameter efficient finetuning

Finetuning all weights of a large model can be expensive (in what way?)
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Parameter efficient finetuning

Finetuning all weights of a large model can be expensive (in what way?)

Can we finetune a smaller number of parameters to achieve performance similar to
full finetuning?
e Select a subset of parameters to update
® |astklayers [Lee et al., 2019]
® Bias terms (BitFit) [Ben-Zaken et al., 2022]
® Add a small number of parameters to adapte the (frozen) pretrained model
® |nsert a small MLP in-between layers [Houlsby et al., 2019]
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Low-rank adaptation of LMs

LoRA [Hu et al., 2021]: add low-rank matrices as additional parameters
Hypothesis: weight matrices are low rank

Adapters: For any matrix multiplication h = Wpx, we
modify it to

Pretrained h=Wox + AWx = Wpx + BAx
Weights

e Wy € Rk B e RI*r A e R*K(r < k)

® |nitialization: BA=10

® Can be applied to any weight matrices, e.g., QKV
projection matrices

18/46


https://arxiv.org/pdf/2106.09685.pdf

Low-rank adaptation of LMs

® Converges to full finetuning as r increases and performance goes up consistently
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Low-rank adaptation of LMs

® Converges to full finetuning as r increases and performance goes up consistently
® No additional inference latency: W = Wy + BA

® Main benefits:

® Memory and storage saving (optimizer states, checkpoints): 10,000x
reduction on GPT3 (r = 4)
® Easy to switch between different finetuned custom models
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Summary

® Supervised finetuning: train the model on human-annotated prompt-response
data

e Data consideration:

® Desiderata: diverse, similar to test data / target task
® Often costly to obtain; can synthesize using LMs

® Performance upperbound is still decided by the pretrained model
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Learning from outcomes

Motivation:
® Demonstrations are expensive to obtain—can we learn from weaker signals?

® For many tasks, humans (and animals) only get signal on whether they
succeeded or not

Example:
e Complex physical tasks: learning to shoot a basketball
® Reasoning: learning to play the game of Go
® Decision making: learning to optimize financial portfolios
e Communication: learning to articulate your ideas to others
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Reinforcement learning

Goal: learning from experience by maximizing the expected cumulative reward
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Reinforcement learning

Goal: learning from experience by maximizing the expected cumulative reward

1.

Agent takes a sequence of actions in a world trial
Get a degree, update CV, apply for a job

. Agent gets rewards along the way indicating how well it did error
No reponse

. Agent updates its policy (on what actions to take) learn

Find a connection? Get an internship? Apply for a different position?

. Go backto 1 rinse and repeat
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Reinforcement learning: formalization

At each time step t, an agent

® isinastates; € S (S is the state space)
cell[i] [j] in the grid world

L= T
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Reinforcement learning: formalization

At each time step t, an agent

® isinastates; € S (S is the state space)
_ cell[i] [j] in the grid world

1 2 3 4 5 6 7 8 9
1 77 e takes an action a; ¢ A (A is the action space)
2 E {up, down, left, right}
3| %1 !
4 : ~F=1=-1=-9=---
5
6
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Reinforcement learning: formalization

At each time step t, an agent

® isinastates; € S (S is the state space)
s 4 s s g cell[i] [j] in the grid world
e takes an action a; ¢ A (A is the action space)

{up, down, left, right}
: ® transitions to the next state s;;1 according to a
= transition function p(- | s;, a;)
H moves to the corresponding cell if there's no blocker

I"'I}\g

L= T
1
|
1
1
1
I
I
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Reinforcement learning: formalization

1~

[= L )

At each time step t, an agent

® isinastates; € S (S is the state space)
cell[i] [j] in the grid world
e takes an action a; ¢ A (A is the action space)

{up, down, left, right}

® transitions to the next state s;;1 according to a
transition function p(- | s, a;)
moves to the corresponding cell if there's no blocker

® obtains a reward r(s;, a;) according to the reward
functionr: S x A—R
1if s¢41 is star and 0 otherwise
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Reinforcement learning: objective

The agent uses a policy 7 to decide which actions to take in a state:
e Deterministic: m(s) = a
e Stochastic: m(a|s)=P(A=a|S=s) (ourfocus)
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Reinforcement learning: objective

The agent uses a policy 7 to decide which actions to take in a state:
e Deterministic: m(s) = a
e Stochastic: m(a|s)=P(A=a|S=s) (ourfocus)

A policy 7y defines a distribution py(7) over trajectories 7 = (a1, s1,...,ar, sT).

S2

U p(St+1|St7at)

p(St+1lst, ar)

25/46



Reinforcement learning: objective

The agent uses a policy 7 to decide which actions to take in a state:
e Deterministic: m(s) = a
e Stochastic: m(a|s)=P(A=a|S=s) (ourfocus)

A policy 7y defines a distribution py(7) over trajectories 7 = (a1, s1,...,ar, sT).

The agent's objective is to learn a policy mg (parametrized by ) that maximizes the
expected

maximize [, [ ]
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Sketch of RL algorithms

Key steps:
e Trial: run policy to generate trajectories
e Error: estimate expected return

fit a model/
estimate the return . .
® Learn: improve the policy
generate samples
(i.e. run the policy)
| S—

Figure: From Sergey Levine's slides
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Sketch of RL algorithms

fit a model/
estimate the return
generate samples
(i.e. run the policy)
; improve the policy

Figure: From Sergey Levine's slides

Key steps:
e Trial: run policy to generate trajectories
e Error: estimate expected return
® Learn: improve the policy

Challenges:

® Trials could be expensive (e.g., healthcare,
education)

® Reward signal could be sparse (e.g., expert
feedback)

®* May need many samples to learn a good
policy
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Policy gradient algorithms

fit a model/ evaluate returns
estimate the return 2SN C-198-19)

generate samples

(i.e. run the policy)

| W—

While not converged

improve the policy [ZRSNEAY N DY)

1. Sample trajectories from the current policy
2. Estimate return for each trajectories based on observed rewards

3. Take a gradient step on the expected return (w.r.t. the policy)
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How to compute the gradient?

Notation: let r(7) = Zthl r(st, ar) be the return.
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How to compute the gradient?

Notation: let r(7) = Z;l r(st, ar) be the return.

Our objective:  J(0) =K., () [r(7)] = Zp(,

VoJ(0) = Vy Z po(7)r(7) log derivative trick
B () ool TaTezeA)
_ . V@ Po (7’)
— r(1) _pe(T)—pg(T)

=E,py(r) [V log po(T)r(7)] =Vpy(7)
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How to compute the gradient?

VJ(0) = Erpy(r) [Volog pg(T)r(7)] Monte Carlo estimation of the expected gradient
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T T-1
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T-1
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How to compute the gradient?

VJ(0) = Erpy(r) [Volog pg(T)r(7)] Monte Carlo estimation of the expected gradient

But what is pg(7)?

T T-1
po(7) = po(a1,s1,...,ar,st) = p(s1) Hﬁe(at | st) H p(st+1 | st. at)
t=1 t=1
T-1
log py(7) = log p(s1 +Zlog7re ar| se)+ Y logp(sei1 | st ar)
t=1 t=1

VoJ(0) =

TNPG

(ng log mo(az | st ) (ér s, a )]
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Putting everything together

REINFORCE algorithm:
1. Sample N trajectories 71, ..., 7N from 7y
2. Estimate the gradient:

N T
VoJ(0) =~ Z (Z Vo log mo( at | st > (Zr st7 )

i=1 \t=1

3. Update the policy with gradient ascent: 6 < 0 + aVJ(0)
4, Go backto 1
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How is all this related to LLMs?

Think of tokens as actions:

® Action space: vocabulary a;=x; €V
e State space: history / prefix sy = (x1,

® Policy: a language model  py(x: | x<t)

® Trajectory: a sentence / generation  xi,.

)

W XT
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How is all this related to LLMs?

REINFORCE algorithm on text:
1. Sample N generations from the language model py
2. Estimate the gradient: g = £ S| (Z;l Vg log py(x| | xgt)) r(x1.7)
3. Update the policy with gradient ascent: § < 0 + ag
4. Go backto 1
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How is all this related to LLMs?

REINFORCE algorithm on text:

1. Sample N generations from the language model py

2. Estimate the gradient: g = £ S| (Z;l Vg log py(x| | xgt)) r(x1.7)
3. Update the policy with gradient ascent: § < 0 + ag
4. Go backto 1

What is the algorithm doing?

If r(xy.7)is , take a gradient step to .
If r(x1.7) is negative, take a gradient step to decrease py(x1.7).

Supervised learning on model generations weighted by return
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Challenges in policy gradient

. 1
g:NZ

N
i=1

T o T
(Z Vo log mg(a} | s{)) Z r(st, at)

t=1 t=1

® \We estimate the policy gradient based on a random sample of trajectories
g is a random variable
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Challenges in policy gradient

N T

Z (Z Vg logmo(at | St)> Z r(st, at)

i=1 = t=1

® \We estimate the policy gradient based on a random sample of trajectories
g is a random variable

® This estimator is unbiased
In expectation, it is the true policy gradient: E[g] = V¢J(0)
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Challenges in policy gradient

N T

Z (Z Vg logmo(at | St)> Z r(st, at)

i=1 = t=1

® \We estimate the policy gradient based on a random sample of trajectories
g is a random variable

® This estimator is unbiased
In expectation, it is the true policy gradient: E[g] = V¢J(0)

e But it has high variance
Depending on which trajectories we get, g can vary greatly
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Variance of the policy gradient estimator

LN T N\ T
g N Z ( Vg logmg(a; | sé)) Z r(se, at)

i=1 \t=1 t=1

by the same return

E; ¢ Note that every step along the trajectory is multiplied

e Reward may be sparse and delayed

L= T
1
|
1
1
1
I
I

: H ® The credit assignment problem: how do we know
which step is responsible for the good/bad outcome?
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Reducing variance: use reward-to-go

® We get a return for the full trajectory 2;1 r(st, ar), how to better allocate it to
each step (s¢, at)?

® Future actions (a;) should not affect past rewards (ry, ..., rr—1)
® a; only get rewards after t, i.e. reward-to-go:

LN /T o
E=5> (Z Vg logmy(a; | Sé)> > r(as)

i=1 \t=1

=|
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Important quantities related to reward-to-go

e Q-function: expected return starting from s; and taking a;

T
QW(SD at) = I’(St, at) + IE51:+1:Tyat+1:T [ Z r(st" at')]

t/'=t+1
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Important quantities related to reward-to-go

e Q-function: expected return starting from s; and taking a;

T
QW(SD at) = I’(St, at) + IE51:+1:T7«91.~+1:T [ Z r(sf" at/)]

t/'=t+1

® Reward-to-go: single trajectory estimate of the Q-value from (s;, a;)

® Value function: expected return starting from s;
V7(st) = B (lse) [Q7(st, ar)]

e Concept check: whatis Es [V™(s1)]?
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Reducing variance: subtract a baseline
® Subtract a baseline from the return:

1N /T o ' '
g=4 > (Z Ve logmg(as | s¢)(r(7') — b(Sé)))
i=1

t=1

b(-): a function of the state or some constant
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Reducing variance: subtract a baseline
® Subtract a baseline from the return:

N /T
s 1 i i i
g = N Z (Z Vg logmg(a | s:)(r(r") — b(st))>

i=1 \t=1
b(-): a function of the state or some constant

® |ntuition: the return may not be due to the action you take but just because you
are in a state "closer” to the goal
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Reducing variance: subtract a baseline
® Subtract a baseline from the return:

N /T
s 1 i i i
g = N Z (Z Vg logmg(a | s:)(r(r") — b(st))>

i=1 \t=1
b(+): a function of the state or some constant

® |ntuition: the return may not be due to the action you take but just because you
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N /T
s 1 i i i
g = N Z (Z Vg logmg(a | s:)(r(r") — b(st))>

i=1 \t=1
b(+): a function of the state or some constant

® |ntuition: the return may not be due to the action you take but just because you
are in a state "closer” to the goal

® By subtracting a baseline, we measure how much better the action is than the
typical return

® Asimple choice is the average return

1L
b(s) = 1 > (™)
i=1
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Reducing variance: subtract a baseline

Does this change our objective?
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Reducing variance: subtract a baseline

Does this change our objective?
e g isstill an unbiased estimator, i.e.

E[Vglogmg(at | st)(r(7) — b(st))] = E[Vglogma(ar | st)r(7)]
E[Ve log mo(a: | st) b(st)] =E,, [b(st)Eat~7r9(-|st) [Vé’ log g (a | St)]]

E[Vglogmg(ar | st)] = ZWH at | st)Vglogm(at | st) Zveﬁe at | st)

at

= VoY m9(at | st) = Vol =0

® Aslong as b(-) does not depend on a, it doesn’t introduce any bias.

38/46



The advantage function

® Advantage function: how much better a; is compared to other actions in state
St
A" (st,at) = Q" (st,at) — V™ (st)

reward-to-go minus a (state-dependent) baseline
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The advantage function

® Advantage function: how much better a; is compared to other actions in state
St

A"(st,at) = Q" (st,ar) — V7 (st)
reward-to-go minus a (state-dependent) baseline
® How to estimate advantage in policy gradient?
T T T
£ 3 (o voesmtat 1) (Yoo o)
i=1 \t=1 t=1
high variance because it's estimated from a single trajectory
® We can improve the estimate by sampling more rollouts from (s;, a)

® Can we fit a function to predict A™?
® How does this solve the high variance problem?
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Fitting the value function
® Rewrite the advantage function

A™(st,at) = Q7 (st,ar) — V™ (st)
= r(st,ar) + V™ (ser1) — V™ (st)
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Fitting the value function
® Rewrite the advantage function
A"(st,ar) = Q" (st,ar) — V™ (st)
= r(st;at) + V7 (ser1) — V7(st)

So we just need to fit the value function!

Estimate the value from a rollout 7/

T

Vi(st) = risp,ap)

t'=t

This gives us a training example (s!, V™(s!))

Given a training set D, train a regression model w by minimizing the squared

loss: )
> (Vals) - 7(s))

seD
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Actor-Critic methods

® Critic: evaluate the policy
update w to improve estimates of V,,

® Actor: improve the policy
update 6 to improve the policy give feedback from the critic

41/46



Actor-Critic methods

® Critic: evaluate the policy

update w to improve estimates of V,,

® Actor: improve the policy

update 6 to improve the policy give feedback from the critic

Algorithm sketch:

1.

vk WN

Sample a trajectory from current policy

Update w given the estimated state values

Evaluate A™ (s, a;) = r(se, ar) + V2 (ser1) — V7 (st)

Update the policy with gradient g = ZtT:1 Vo log mg(ar | s¢)A™(st, ar)
Go back to 1
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On-Policy vs. Off-Policy

® On-Policy methods use samples from the policy that is currently being
optimized (i.e. mp(a | s)).

e Off-Policy methods use samples generated by a different behavior policy
u(als).
® Advantages of off-policy:
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On-Policy vs. Off-Policy

® On-Policy methods use samples from the policy that is currently being
optimized (i.e. mp(a | s)).

e Off-Policy methods use samples generated by a different behavior policy
u(als).
® Advantages of off-policy:

® Can reuse old trajectories generated by past policies.
® Allows learning from demonstrations or replay buffers.
® Can have multiple exploration policies to generate trajectories.
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Off-Policy Policy Gradient

e Standard on-policy gradient (REINFORCE) is:
Vod(0) = Ervnr, [vg log 79(7) r(T)} .

e Off-policy scenario: 7 is generated by a behavior policy u(7), but we want
gradient w.r.t. m.

Vod(6) # Ero [Ve log 4(7) R(T)}

e Key challenge: Correctly handling the discrepancy between i and 7.
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Importance Sampling: A Quick Review

® We often want an expectation under some distribution p(x), but we only have
samples from a different distribution g(x).

Importance Sampling uses a correction ratio:

o

(X)}

Bplf (9] = Exea () 7103

Q
—~

In the RL context:

p(r) _ molr)
a(r)  p(r)
® This ratio re-weights off-policy trajectories to match the target policy
distribution.
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Off-Policy Policy Gradient

e Off-policy scenario: 7 is generated by a behavior policy u(7), but we want
gradient w.r.t. m.

VoJ(0) = Ervp [[J(T) Vo log mo(7) R(T)} where p(r) = W@(T).

® Usually we re-weight per step:
N mo(al | s) S L C
P2 (e e arata 1) Y e
i=1 \t=1 par | st t=1

® Importance weight also incurs high variance: when will the ratio blow up?

® 71y and u cannot be too different
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Summary

® Reinforcement learning: maximize return through trial and error (rollout,
evaluate policy, improve policy)

® Policy gradient: increase/decrease likelihood of the trajectory proportionally to
the return

e Key challenge: gradient is very noisy!
® Use reward-to-go for each action update
® Subtract a baseline
® Use function approximation for the value/Q function
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