
Pretraining and Finetuning

He He

February 19, 2025

1 / 43



Table of Contents

Review

Introduction

Tokenization

Architectures of pretrained models

Optimization

2 / 43



Last week

• Encoders: tokens to vectors

• Decoders: vectors to tokens

• Key difference: (autoregressive) decoders cannot look at the future
• Need causal masking
• Sequential output

• Can you use an encoder to generate tokens?

• Can you use a decoder to encode text?

3 / 43



Last week

• Encoders: tokens to vectors

• Decoders: vectors to tokens

• Key difference: (autoregressive) decoders cannot look at the future
• Need causal masking
• Sequential output

• Can you use an encoder to generate tokens?

• Can you use a decoder to encode text?

3 / 43



Last week

• Encoders: tokens to vectors

• Decoders: vectors to tokens

• Key difference: (autoregressive) decoders cannot look at the future
• Need causal masking
• Sequential output

• Can you use an encoder to generate tokens?

• Can you use a decoder to encode text?

3 / 43



Table of Contents

Review

Introduction

Tokenization

Architectures of pretrained models

Optimization

4 / 43



Representation learning
Recap: What are good representations?

• Enable a notion of distance over text (word embeddings)
• Contains good features for downstream tasks

Examples: negative the food is good but doesn’t worth an hour wait
• Simple features (e.g. unigram BoW) require complex models.
• Good features only need simple models (e.g. linear classifier) .

Figure: Sentiment neuron [Radford et al., 2017]

5 / 43

https://arxiv.org/abs/1704.01444


Representation learning
Recap: What are good representations?

• Enable a notion of distance over text (word embeddings)
• Contains good features for downstream tasks

Examples: negative the food is good but doesn’t worth an hour wait
• Simple features (e.g. unigram BoW) require complex models.

• Good features only need simple models (e.g. linear classifier) .

Figure: Sentiment neuron [Radford et al., 2017]

5 / 43

https://arxiv.org/abs/1704.01444


Representation learning
Recap: What are good representations?

• Enable a notion of distance over text (word embeddings)
• Contains good features for downstream tasks

Examples: negative the food is good but doesn’t worth an hour wait
• Simple features (e.g. unigram BoW) require complex models.
• Good features only need simple models (e.g. linear classifier) .

Figure: Sentiment neuron [Radford et al., 2017]

5 / 43

https://arxiv.org/abs/1704.01444


Representation learning

What can we do with good representations:
• Learning with small data: fine-tuning learned representations
• Transfer learning: one model/representation for many tasks
• Metric learning: get a similarity metric

How to obtain such a representation:
• Training a neural network on any task gives us a representation good for that

task.
• But on which task can we learn good general representations?

6 / 43



Representation learning

What can we do with good representations:
• Learning with small data: fine-tuning learned representations
• Transfer learning: one model/representation for many tasks
• Metric learning: get a similarity metric

How to obtain such a representation:
• Training a neural network on any task gives us a representation good for that

task.
• But on which task can we learn good general representations?

6 / 43



What can we learn from word prediction given context?

• The cats that are raised by my sister sleeping.

syntax

• Jane is happy that John invited friends to his birthday party. coreference

• is the capital of Tanzania. knowledge

• The boy is because he lost his keys. commonsense

• John took 100 bucks to Vegas. He won 50 and then lost 100. Now he only has
to go home. numerical reasoning

Text contains a surprisingly large number of tasks!

7 / 43



What can we learn from word prediction given context?

• The cats that are raised by my sister sleeping. syntax

• Jane is happy that John invited friends to his birthday party.

coreference

• is the capital of Tanzania. knowledge

• The boy is because he lost his keys. commonsense

• John took 100 bucks to Vegas. He won 50 and then lost 100. Now he only has
to go home. numerical reasoning

Text contains a surprisingly large number of tasks!

7 / 43



What can we learn from word prediction given context?

• The cats that are raised by my sister sleeping. syntax

• Jane is happy that John invited friends to his birthday party. coreference

• is the capital of Tanzania.

knowledge

• The boy is because he lost his keys. commonsense

• John took 100 bucks to Vegas. He won 50 and then lost 100. Now he only has
to go home. numerical reasoning

Text contains a surprisingly large number of tasks!

7 / 43



What can we learn from word prediction given context?

• The cats that are raised by my sister sleeping. syntax

• Jane is happy that John invited friends to his birthday party. coreference

• is the capital of Tanzania. knowledge

• The boy is because he lost his keys.

commonsense

• John took 100 bucks to Vegas. He won 50 and then lost 100. Now he only has
to go home. numerical reasoning

Text contains a surprisingly large number of tasks!

7 / 43



What can we learn from word prediction given context?

• The cats that are raised by my sister sleeping. syntax

• Jane is happy that John invited friends to his birthday party. coreference

• is the capital of Tanzania. knowledge

• The boy is because he lost his keys. commonsense

• John took 100 bucks to Vegas. He won 50 and then lost 100. Now he only has
to go home.

numerical reasoning

Text contains a surprisingly large number of tasks!

7 / 43



What can we learn from word prediction given context?

• The cats that are raised by my sister sleeping. syntax

• Jane is happy that John invited friends to his birthday party. coreference

• is the capital of Tanzania. knowledge

• The boy is because he lost his keys. commonsense

• John took 100 bucks to Vegas. He won 50 and then lost 100. Now he only has
to go home. numerical reasoning

Text contains a surprisingly large number of tasks!

7 / 43



What can we learn from word prediction given context?

• The cats that are raised by my sister sleeping. syntax

• Jane is happy that John invited friends to his birthday party. coreference

• is the capital of Tanzania. knowledge

• The boy is because he lost his keys. commonsense

• John took 100 bucks to Vegas. He won 50 and then lost 100. Now he only has
to go home. numerical reasoning

Text contains a surprisingly large number of tasks!

7 / 43



Self-supervised learning for representation learning

Key idea: predict parts of the input from the rest
• No additional supervision is needed—both input and output are from the raw

text data.
• Easy to scale—massive amount of text on the Internet.
• Learned representation is general—useful for any tasks that can be performed

in textual mode.

How is this different from skip-gram / CBOW?

Approach:
• Pretrain: train a model using self-supervised learning objectives on large data.
• Finetune: update part or all of the parameters of the pretrained model on

labeled data of a downstream task.

8 / 43



Self-supervised learning for representation learning

Key idea: predict parts of the input from the rest
• No additional supervision is needed—both input and output are from the raw

text data.
• Easy to scale—massive amount of text on the Internet.
• Learned representation is general—useful for any tasks that can be performed

in textual mode.

How is this different from skip-gram / CBOW?

Approach:
• Pretrain: train a model using self-supervised learning objectives on large data.
• Finetune: update part or all of the parameters of the pretrained model on

labeled data of a downstream task.

8 / 43



Self-supervised learning for representation learning

Key idea: predict parts of the input from the rest
• No additional supervision is needed—both input and output are from the raw

text data.
• Easy to scale—massive amount of text on the Internet.
• Learned representation is general—useful for any tasks that can be performed

in textual mode.

How is this different from skip-gram / CBOW?

Approach:
• Pretrain: train a model using self-supervised learning objectives on large data.
• Finetune: update part or all of the parameters of the pretrained model on

labeled data of a downstream task.

8 / 43



A bit of history

• Pretrain an RNN model on unlabeled data and finetune on supervised tasks [Dai
et al., 2015] [ULMFiT; Howard et al., 2018]
• Promising results on a small scale

• ELMo: replace static word embedding by contextual word embeddings from
pretrained bi-LSTM [Peters et al., 2018]

• First impactful result in NLP

• Pretrain a Transformer model and finetune on supervised tasks

• GPT [Radford et al., 2018], BERT [Devlin et al., 2018]

• Scale pretrained transformer to larger data and compute

• Can directly answer user questions and solve many tasks, e.g., ChatGPT,
Claude, Deepseek-chat

9 / 43

https://arxiv.org/pdf/1511.01432.pdf
https://arxiv.org/pdf/1511.01432.pdf
https://arxiv.org/pdf/1511.01432.pdf
https://arxiv.org/abs/1802.05365
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://arxiv.org/abs/1810.04805


A bit of history

• Pretrain an RNN model on unlabeled data and finetune on supervised tasks [Dai
et al., 2015] [ULMFiT; Howard et al., 2018]
• Promising results on a small scale

• ELMo: replace static word embedding by contextual word embeddings from
pretrained bi-LSTM [Peters et al., 2018]
• First impactful result in NLP

• Pretrain a Transformer model and finetune on supervised tasks

• GPT [Radford et al., 2018], BERT [Devlin et al., 2018]

• Scale pretrained transformer to larger data and compute

• Can directly answer user questions and solve many tasks, e.g., ChatGPT,
Claude, Deepseek-chat

9 / 43

https://arxiv.org/pdf/1511.01432.pdf
https://arxiv.org/pdf/1511.01432.pdf
https://arxiv.org/pdf/1511.01432.pdf
https://arxiv.org/abs/1802.05365
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://arxiv.org/abs/1810.04805


A bit of history

• Pretrain an RNN model on unlabeled data and finetune on supervised tasks [Dai
et al., 2015] [ULMFiT; Howard et al., 2018]
• Promising results on a small scale

• ELMo: replace static word embedding by contextual word embeddings from
pretrained bi-LSTM [Peters et al., 2018]
• First impactful result in NLP

• Pretrain a Transformer model and finetune on supervised tasks
• GPT [Radford et al., 2018], BERT [Devlin et al., 2018]

• Scale pretrained transformer to larger data and compute

• Can directly answer user questions and solve many tasks, e.g., ChatGPT,
Claude, Deepseek-chat

9 / 43

https://arxiv.org/pdf/1511.01432.pdf
https://arxiv.org/pdf/1511.01432.pdf
https://arxiv.org/pdf/1511.01432.pdf
https://arxiv.org/abs/1802.05365
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://arxiv.org/abs/1810.04805


A bit of history

• Pretrain an RNN model on unlabeled data and finetune on supervised tasks [Dai
et al., 2015] [ULMFiT; Howard et al., 2018]
• Promising results on a small scale

• ELMo: replace static word embedding by contextual word embeddings from
pretrained bi-LSTM [Peters et al., 2018]
• First impactful result in NLP

• Pretrain a Transformer model and finetune on supervised tasks
• GPT [Radford et al., 2018], BERT [Devlin et al., 2018]

• Scale pretrained transformer to larger data and compute
• Can directly answer user questions and solve many tasks, e.g., ChatGPT,

Claude, Deepseek-chat

9 / 43

https://arxiv.org/pdf/1511.01432.pdf
https://arxiv.org/pdf/1511.01432.pdf
https://arxiv.org/pdf/1511.01432.pdf
https://arxiv.org/abs/1802.05365
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://arxiv.org/abs/1810.04805


Table of Contents

Review

Introduction

Tokenization

Architectures of pretrained models

Optimization

10 / 43



Challenges in tokenization

We want to train models on all text on the internet. What are the challenges in
tokenization?

• A long tail of rare words
Neologism, terminologies, misspelling, informal text, etc.

• A mixture of multiple natural languages, programming languages, special
symbols
Low-resource language, math equations, code-switching, emoji, etc.

• Efficiency
Trade-off between vocab size and sequence length, latency

11 / 43



Challenges in tokenization

We want to train models on all text on the internet. What are the challenges in
tokenization?

• A long tail of rare words
Neologism, terminologies, misspelling, informal text, etc.

• A mixture of multiple natural languages, programming languages, special
symbols
Low-resource language, math equations, code-switching, emoji, etc.

• Efficiency
Trade-off between vocab size and sequence length, latency

11 / 43



Subword tokenization

The most widely adopted solution: decomposing words into subword units

• A long tail of rare words
bioorthogonal→ bio ##ortho ##gonal

• A mixture of multiple natural languages, programming languages, special
symbols
Donaudampfschifffahrtsgesellschaft→ Donaudampf ##schiff ##fahrts

##gesellschaft (German compound noun meaning ”Danube steamship
company”)

• Efficiency
Balancing granularity and efficiency: reducing token count without losing
meaning

12 / 43



Subword tokenization

The most widely adopted solution: decomposing words into subword units

• A long tail of rare words
bioorthogonal→ bio ##ortho ##gonal

• A mixture of multiple natural languages, programming languages, special
symbols
Donaudampfschifffahrtsgesellschaft→ Donaudampf ##schiff ##fahrts

##gesellschaft (German compound noun meaning ”Danube steamship
company”)

• Efficiency
Balancing granularity and efficiency: reducing token count without losing
meaning

12 / 43



Subword tokenization

The most widely adopted solution: decomposing words into subword units

• A long tail of rare words
bioorthogonal→ bio ##ortho ##gonal

• A mixture of multiple natural languages, programming languages, special
symbols
Donaudampfschifffahrtsgesellschaft→ Donaudampf ##schiff ##fahrts

##gesellschaft (German compound noun meaning ”Danube steamship
company”)

• Efficiency
Balancing granularity and efficiency: reducing token count without losing
meaning

12 / 43



Byte pair encoding (BPE)

What is a “token”?
• A sequence of characters that carries some meaning and re-occurs in a corpora
• Can we find these character units based on their frequency?

BPE:
• Origin: a compression algorithm that iteratively replace the most common

character sequences by a single symbol, e.g., un→ A

• Start with individual characters as tokens
• Merge the most frequent pair of tokens and treat them as a single token
• Update the input with the new token and repeat the process
• Output: tokenized text and a set of merge rules

13 / 43



Byte pair encoding (BPE)

What is a “token”?
• A sequence of characters that carries some meaning and re-occurs in a corpora
• Can we find these character units based on their frequency?

BPE:
• Origin: a compression algorithm that iteratively replace the most common

character sequences by a single symbol, e.g., un→ A

• Start with individual characters as tokens
• Merge the most frequent pair of tokens and treat them as a single token
• Update the input with the new token and repeat the process
• Output: tokenized text and a set of merge rules

13 / 43



BPE Example (Step-by-Step)
Initial Sequence:

• Words: banana, band, ban
• Initial tokenization (by character):

• b a n a n a
• b a n d
• b a n

Step 1: Count Pairs
• What is the most frequent pair: a n

Step 2: Merge
• New merge rule: a, n→ an

• Updated tokenization:
• b a n a n a→
• b a n d→
• b a n→

14 / 43



BPE Example (Step-by-Step)
Initial Sequence:

• Words: banana, band, ban
• Initial tokenization (by character):

• b a n a n a
• b a n d
• b a n

Step 1: Count Pairs
• What is the most frequent pair:

a n

Step 2: Merge
• New merge rule: a, n→ an

• Updated tokenization:
• b a n a n a→
• b a n d→
• b a n→

14 / 43



BPE Example (Step-by-Step)
Initial Sequence:

• Words: banana, band, ban
• Initial tokenization (by character):

• b a n a n a
• b a n d
• b a n

Step 1: Count Pairs
• What is the most frequent pair: a n

Step 2: Merge
• New merge rule: a, n→ an

• Updated tokenization:
• b a n a n a→
• b a n d→
• b a n→

14 / 43



BPE Example (Step-by-Step)
Initial Sequence:

• Words: banana, band, ban
• Initial tokenization (by character):

• b a n a n a
• b a n d
• b a n

Step 1: Count Pairs
• What is the most frequent pair: a n

Step 2: Merge
• New merge rule: a, n→ an

• Updated tokenization:
• b a n a n a→
• b a n d→
• b a n→

14 / 43



BPE Example (Step-by-Step)

Step 3: Count Pairs Again
• Updated tokenization:

• b an an a
• b an d
• b an

• Most frequent pair: b an

Step 4: Merge
• New merge rule: b, an→ ban

• Updated tokenization:
• ban an a
• ban d
• ban

15 / 43



BPE: practicalities

• Repeat the process until the desired number of merges or vocabulary size is
reached (a hyperparameter to decide). Typically vocabulary sizes are 32-64K.

• Break ties deterministically, e.g., lexicographical order, occurrence in the corpus
etc.

• Use bytes as the initial tokens (adopted by GPT-2)

• Variants: instead of merging the pair with the largest frequency, WordPiece
merges the pair that maximizes the log likelihood of the training data, i.e.
Merge a, b if

log p(a, b)− log p(a)p(b)

is the largest among all pairs

16 / 43



Table of Contents

Review

Introduction

Tokenization

Architectures of pretrained models

Optimization

17 / 43



Types of pretrained models

• Encoder models, e.g., BERT
• Encode text into vector representations that can be used for downstream

classification tasks

• Encoder-decoder models, e.g., T5

• Encode input text into vector representations and generate text
conditioned on the input

• Decoder models, e.g., GPT-2

• Read in text (prefix) and continue to generate text

Current pretrained models are all transformer based.

18 / 43



Types of pretrained models

• Encoder models, e.g., BERT
• Encode text into vector representations that can be used for downstream

classification tasks

• Encoder-decoder models, e.g., T5
• Encode input text into vector representations and generate text

conditioned on the input

• Decoder models, e.g., GPT-2

• Read in text (prefix) and continue to generate text

Current pretrained models are all transformer based.

18 / 43



Types of pretrained models

• Encoder models, e.g., BERT
• Encode text into vector representations that can be used for downstream

classification tasks

• Encoder-decoder models, e.g., T5
• Encode input text into vector representations and generate text

conditioned on the input

• Decoder models, e.g., GPT-2
• Read in text (prefix) and continue to generate text

Current pretrained models are all transformer based.

18 / 43



Types of pretrained models

• Encoder models, e.g., BERT
• Encode text into vector representations that can be used for downstream

classification tasks

• Encoder-decoder models, e.g., T5
• Encode input text into vector representations and generate text

conditioned on the input

• Decoder models, e.g., GPT-2
• Read in text (prefix) and continue to generate text

Current pretrained models are all transformer based.

18 / 43



Types of pretrained models

• Encoder models, e.g., BERT
• Encode text into vector representations that can be used for downstream

classification tasks

• Encoder-decoder models, e.g., T5
• Encode input text into vector representations and generate text

conditioned on the input

• Decoder models, e.g., GPT-2
• Read in text (prefix) and continue to generate text

Current pretrained models are all transformer based.

18 / 43



Encoder models

An encoder takes a sequence of tokens and output their contextualized
representations:

h1, . . . , hn = Encoder(x1, . . . , xn)

We can then use h1, . . . , hn for other tasks.

How do we train an Encoder?
• Use any supervised task: y = f (h1, . . . , hn)

• Use self-supervised learning: predict a word from its context

19 / 43



Encoder models

An encoder takes a sequence of tokens and output their contextualized
representations:

h1, . . . , hn = Encoder(x1, . . . , xn)

We can then use h1, . . . , hn for other tasks.

How do we train an Encoder?
• Use any supervised task: y = f (h1, . . . , hn)

• Use self-supervised learning: predict a word from its context

19 / 43



Masked language modeling

? language processing is ?

Learning objective (MLE):

max
∑

x∈D,i∼pmask

log p(xi | x−i ; θ)

• x : a sequence of tokens sampled from a corpus D
natural language processing is fun

• pmask: mask generator
Sample two positions uniformly at random, e.g., 1 and 5

• x−i : noisy version fo x where xi is corrupted
[MASK] language processing is [MASK]

20 / 43



Masked language modeling

? language processing is ?

Learning objective (MLE):

max
∑

x∈D,i∼pmask

log p(xi | x−i ; θ)

• x : a sequence of tokens sampled from a corpus D
natural language processing is fun

• pmask: mask generator
Sample two positions uniformly at random, e.g., 1 and 5

• x−i : noisy version fo x where xi is corrupted
[MASK] language processing is [MASK]

20 / 43



BERT: objective

• Masked language modeling:
• Randomly sample 15% tokens as prediction targets
• Replace the target tokens by [MASK] or a random token, or leave it

unchanged
cats are cute → cats [MASK]/is/are cute

• Later work has shown that just use [MASK] is sufficient

• Next sentence prediction: predict whether a pair of sentences are consecutive

max
∑

x∼D,xn∼pnext

log p(y | x , xn; θ)

• xn: either the sentence following x or a randomly sampled sentence
• y : binary label of whether xn follows x
• Later work has shown that this objective is not necessary

21 / 43



BERT: objective

• Masked language modeling:
• Randomly sample 15% tokens as prediction targets
• Replace the target tokens by [MASK] or a random token, or leave it

unchanged
cats are cute → cats [MASK]/is/are cute

• Later work has shown that just use [MASK] is sufficient
• Next sentence prediction: predict whether a pair of sentences are consecutive

max
∑

x∼D,xn∼pnext

log p(y | x , xn; θ)

• xn: either the sentence following x or a randomly sampled sentence
• y : binary label of whether xn follows x
• Later work has shown that this objective is not necessary

21 / 43



BERT: architecture

• Tokenization: wordpiece (similar to byte pair encoding) (see details)

• [CLS]: first token of all sequences; used for next sentence prediction
• Distinguish two sentences in a pair: [SEP] and segment embedding
• Learned position embedding
• 12 (base; 110M params) or 24 (large; 340M params) layer Transformer

22 / 43

https://huggingface.co/learn/nlp-course/chapter6/6?fw=pt


BERT: architecture

• Tokenization: wordpiece (similar to byte pair encoding) (see details)
• [CLS]: first token of all sequences; used for next sentence prediction

• Distinguish two sentences in a pair: [SEP] and segment embedding
• Learned position embedding
• 12 (base; 110M params) or 24 (large; 340M params) layer Transformer

22 / 43

https://huggingface.co/learn/nlp-course/chapter6/6?fw=pt


BERT: architecture

• Tokenization: wordpiece (similar to byte pair encoding) (see details)
• [CLS]: first token of all sequences; used for next sentence prediction
• Distinguish two sentences in a pair: [SEP] and segment embedding

• Learned position embedding
• 12 (base; 110M params) or 24 (large; 340M params) layer Transformer

22 / 43

https://huggingface.co/learn/nlp-course/chapter6/6?fw=pt


BERT: architecture

• Tokenization: wordpiece (similar to byte pair encoding) (see details)
• [CLS]: first token of all sequences; used for next sentence prediction
• Distinguish two sentences in a pair: [SEP] and segment embedding
• Learned position embedding

• 12 (base; 110M params) or 24 (large; 340M params) layer Transformer

22 / 43

https://huggingface.co/learn/nlp-course/chapter6/6?fw=pt


BERT: architecture

• Tokenization: wordpiece (similar to byte pair encoding) (see details)
• [CLS]: first token of all sequences; used for next sentence prediction
• Distinguish two sentences in a pair: [SEP] and segment embedding
• Learned position embedding
• 12 (base; 110M params) or 24 (large; 340M params) layer Transformer

22 / 43

https://huggingface.co/learn/nlp-course/chapter6/6?fw=pt


Finetuning BERT
Classification tasks: Add a linear layer (randomly initialized) on top of the [CLS]

embedding
p(y | x) = softmax(Wh[CLS] + b)

23 / 43



Finetuning BERT
Sequence labeling tasks: Add linear layers (randomly initialized) on top of every token

p(yi | x) = softmax(Whi + b)

24 / 43



Finetuning BERT

• Finetune all parameters (both the newly added layer and the pretrained weights)
• Use a small learning rate (e.g., 1e-5)
• Train for a small number of epochs (e.g, 3 epochs)
• Led to SOTA results on many NLU tasks

How to generate text from BERT?

25 / 43



Encoder-decoder models

An encoder-decoder model encodes input text to a sequence of contextualized
representations, and decodes a sequence of tokens autoregressively.

h1, . . . , hn = Encoder(x1, . . . , xn)

s1, . . . , sm = Decoder(y0, . . . , ym−1, h1, . . . , hn)

p(yi | x , y<i ) = softmax(Wsi + b)

How do we train the encoder-decoder?

• Use any supervised task, e.g., machine translation
• Use self-supervised learning: predict text spans from their context

26 / 43



Encoder-decoder models

An encoder-decoder model encodes input text to a sequence of contextualized
representations, and decodes a sequence of tokens autoregressively.

h1, . . . , hn = Encoder(x1, . . . , xn)

s1, . . . , sm = Decoder(y0, . . . , ym−1, h1, . . . , hn)

p(yi | x , y<i ) = softmax(Wsi + b)

How do we train the encoder-decoder?

• Use any supervised task, e.g., machine translation
• Use self-supervised learning: predict text spans from their context

26 / 43



Masked language modeling using an encoder-decoder
Input: text with corrupted spans
Output: recovered spans

Compare with encoder-only models:
• Encoder: predict single tokens based on encoder representation
• Encoder-decoder: predict a sequence of tokens (flexibility in objective design)

27 / 43



T5: objective
• First train on unlabele data by masked language modeling

• Predict corrupted spans as a sequence
• Then continue training by supervised multitask learning

• Formulate tasks as text-to-text format using a prefix to denote the task
• Mixing examples from different datasets when constructing batches

• Jointly training with the two objectives works slightly worse
28 / 43



T5: finetune

• Formulate the task in text-to-text format
• Fine-tune all parameters (similar to BERT fine-tuning)
• Advantages over encoder models: unified modeling of many different tasks

including text generation

29 / 43



Decoder-only models
A decoder-only model predicts the next token given the prefix autoregressively.

s1, . . . , sm = Decoder(y0, . . . , ym−1, h1, . . . , hn)

p(yi | y<i ) = softmax(Wsi + b)

(A prefix of y can be the input.)

Decoder

START the brown fox jumped

the brown fox jumped END

(more on language models later) 30 / 43



Generative Pretraining (GPT)

• Model: 12 layer decoder-only transformer
• Objective: next word prediction

max
∑
y∈D

∑
i

log p(yi | y<i )

• Finetuning: auxiliary LM objective Ltask + λLLM (next word prediction on labeled
task data)

31 / 43



Generative Pretraining (GPT): task-specific finetuning

• Single input: linear on top of extract
• Multiple input: process each input separately then aggregate

32 / 43



Ablation studies of GPT

Architecture, pretraining, finetuning: which is critical?

• Auxiliary objective only helps on larger datasets (MNLI, QQP)
• Pretrained transformer > pretrained LSTM (single layer) > non-pretrained

transformer

33 / 43



Compare with BERT

Medium-sized encoder models tend to work better than decoder-only models when
finetuned

34 / 43



Encoder-only vs decoder-only models: attention

Decoder-only Encoder-only

Encoder-only models provides better embeddings due to bidirectional attention.

35 / 43



Encoder-only vs decoder-only models: attention

Decoder-only Encoder-only

Encoder-only models provides better embeddings due to bidirectional attention.

35 / 43



Encoder-only vs decoder-only models: generation

Decoder-only models can make predictions through generation without finetuning

Heuristics for zero-shot prediction:
• Sentiment classification: [example] + very +

{positive, negative} prompting
• Linguistic acceptability: thresholding on log

probabilities
• Multiple choice: predicting the answer with

the highest log probabilities
Scaling trend: zero-shot performance increases
during pretraining

36 / 43



Encoder-only vs decoder-only models: generation

Decoder-only models can make predictions through generation without finetuning

Heuristics for zero-shot prediction:
• Sentiment classification: [example] + very +
{positive, negative} prompting

• Linguistic acceptability: thresholding on log
probabilities

• Multiple choice: predicting the answer with
the highest log probabilities

Scaling trend: zero-shot performance increases
during pretraining

36 / 43



Encoder-only vs decoder-only models: training efficiency

On each sequence:

• Encoder-only models are trained on 15% (mask rate) of the tokens
• Decoder-only models are trained on all tokens

What about encoder-decoder models?

• Flexibility on encoder design, e.g., full attention on input context
• Limited advantage on long-form generation tasks over decoder-only model
• More resource available for decoder-only models

37 / 43



Encoder-only vs decoder-only models: training efficiency

On each sequence:

• Encoder-only models are trained on 15% (mask rate) of the tokens
• Decoder-only models are trained on all tokens

What about encoder-decoder models?

• Flexibility on encoder design, e.g., full attention on input context
• Limited advantage on long-form generation tasks over decoder-only model
• More resource available for decoder-only models

37 / 43



Table of Contents

Review

Introduction

Tokenization

Architectures of pretrained models

Optimization

38 / 43



Optimization for pretraining

What are challenges of optimization in pretraining?

• Numerical stability (no NaN and diverging losses)
initialization, normalization, learning rate schedule

• Memory efficiency (work with billions of parameters)
mixed precision, gradient accumulation

39 / 43



Adam optimizer

Key ideas:
• Momentum

• Motivation: having an inertia of moving in the same direction → reduce
oscillation

• How: maintain a ”memory” (moving average) of past updates

• Adaptive step size for each parameter
• Intuition:

flat regions (gradient changing slowly) → take larger steps
steep regions (gradient changing fast) → take smaller steps

• Handle sparse features well (e.g., rare words embeddings aren’t updated
often)

40 / 43



Adam optimizer

Key ideas:
• Momentum

• Motivation: having an inertia of moving in the same direction → reduce
oscillation

• How: maintain a ”memory” (moving average) of past updates

• Adaptive step size for each parameter
• Intuition:

flat regions (gradient changing slowly) → take larger steps
steep regions (gradient changing fast) → take smaller steps

• Handle sparse features well (e.g., rare words embeddings aren’t updated
often)

40 / 43



Adam optimizer
• Compute gradient gt

• Update first order moments (mean)

mt = β1mt−1 + (1− β1)gt (1)

• Update second order moments (variance)

vt = β2vt−1 + (1− β2)g
2
t (2)

• Correct bias in moment estimates

m̂t =
mt

1− βt
1

, v̂t =
vt

1− βt
2

(3)

• Update parameters

θt = θt−1 − η
m̂t√
v̂t + ϵ

(4)

What is the memory cost of SGD vs Adam?

41 / 43



Adam optimizer
• Compute gradient gt
• Update first order moments (mean)

mt = β1mt−1 + (1− β1)gt (1)

• Update second order moments (variance)

vt = β2vt−1 + (1− β2)g
2
t (2)

• Correct bias in moment estimates

m̂t =
mt

1− βt
1

, v̂t =
vt

1− βt
2

(3)

• Update parameters

θt = θt−1 − η
m̂t√
v̂t + ϵ

(4)

What is the memory cost of SGD vs Adam?

41 / 43



Adam optimizer
• Compute gradient gt
• Update first order moments (mean)

mt = β1mt−1 + (1− β1)gt (1)

• Update second order moments (variance)

vt = β2vt−1 + (1− β2)g
2
t (2)

• Correct bias in moment estimates

m̂t =
mt

1− βt
1

, v̂t =
vt

1− βt
2

(3)

• Update parameters

θt = θt−1 − η
m̂t√
v̂t + ϵ

(4)

What is the memory cost of SGD vs Adam?

41 / 43



Adam optimizer
• Compute gradient gt
• Update first order moments (mean)

mt = β1mt−1 + (1− β1)gt (1)

• Update second order moments (variance)

vt = β2vt−1 + (1− β2)g
2
t (2)

• Correct bias in moment estimates

m̂t =
mt

1− βt
1

, v̂t =
vt

1− βt
2

(3)

• Update parameters

θt = θt−1 − η
m̂t√
v̂t + ϵ

(4)

What is the memory cost of SGD vs Adam?

41 / 43



Adam optimizer
• Compute gradient gt
• Update first order moments (mean)

mt = β1mt−1 + (1− β1)gt (1)

• Update second order moments (variance)

vt = β2vt−1 + (1− β2)g
2
t (2)

• Correct bias in moment estimates

m̂t =
mt

1− βt
1

, v̂t =
vt

1− βt
2

(3)

• Update parameters

θt = θt−1 − η
m̂t√
v̂t + ϵ

(4)

What is the memory cost of SGD vs Adam?

41 / 43



Adam optimizer
• Compute gradient gt
• Update first order moments (mean)

mt = β1mt−1 + (1− β1)gt (1)

• Update second order moments (variance)

vt = β2vt−1 + (1− β2)g
2
t (2)

• Correct bias in moment estimates

m̂t =
mt

1− βt
1

, v̂t =
vt

1− βt
2

(3)

• Update parameters

θt = θt−1 − η
m̂t√
v̂t + ϵ

(4)

What is the memory cost of SGD vs Adam?

41 / 43



Adam optimizer
• Compute gradient gt
• Update first order moments (mean)

mt = β1mt−1 + (1− β1)gt (1)

• Update second order moments (variance)

vt = β2vt−1 + (1− β2)g
2
t (2)

• Correct bias in moment estimates

m̂t =
mt

1− βt
1

, v̂t =
vt

1− βt
2

(3)

• Update parameters

θt = θt−1 − η
m̂t√
v̂t + ϵ

(4)

What is the memory cost of SGD vs Adam?

41 / 43



Learning rate schedule

• Warmup: don’t want to start with large learning rate for stability

• Decay: reducing learning rate as model converges
linear (used by BERT), cosine, exponential

0 2000 4000 6000 8000 10000
Training Step

0.0

0.2

0.4

0.6

0.8

1.0

Le
ar

ni
ng

 R
at

e

Linear Decay with Warmup

0 2000 4000 6000 8000 10000
Training Step

0.0

0.2

0.4

0.6

0.8

1.0

Le
ar

ni
ng

 R
at

e

Cosine Decay with Warmup

42 / 43



Gradient accumulation

Simulate large batch training with limited GPU memory

Figure: From Harshit Sharma

43 / 43

https://medium.com/@harshit158/gradient-accumulation-307de7599e87

	Review
	Introduction
	Tokenization
	Architectures of pretrained models
	Optimization

