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Last week

e Encoders: tokens to vectors

e Decoders: vectors to tokens

Key difference: (autoregressive) decoders cannot look at the future

® Need causal masking
® Sequential output

e Can you use an encoder to generate tokens?

® Can you use a decoder to encode text?
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Representation learning
Recap: What are good representations?
® Enable a notion of distance over text (word embeddings)
e Contains good features for downstream tasks

5/43


https://arxiv.org/abs/1704.01444

Representation learning
Recap: What are good representations?
® Enable a notion of distance over text (word embeddings)
e Contains good features for downstream tasks

Examples: negative the food is good but doesn't worth an hour wait
e Simple features (e.g. unigram BoW) require complex models.

5/43


https://arxiv.org/abs/1704.01444

Representation learning
Recap: What are good representations?
® Enable a notion of distance over text (word embeddings)
e Contains good features for downstream tasks

Examples: negative the food is good but doesn't worth an hour wait
e Simple features (e.g. unigram BoW) require complex models.
® Good features only need simple models (e.g. linear classifier) .

Figure: Sentiment neuron [Radford et al., 2017]
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Representation learning

What can we do with good representations:
® | earning with small data: fine-tuning learned representations
® Transfer learning: one model/representation for many tasks
® Metric learning: get a similarity metric
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Representation learning

What can we do with good representations:
® | earning with small data: fine-tuning learned representations
® Transfer learning: one model/representation for many tasks
® Metric learning: get a similarity metric

How to obtain such a representation:

® Training a neural network on any task gives us a representation good for that
task.

e But on which task can we learn good general representations?
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What can we learn from word prediction given context?

® The cats that are raised by my sister—_______ sleeping.
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What can we learn from word prediction given context?

® The cats that are raised by my sister ——_ sleeping. syntax
® Janeis happy that John invited —__ friends to his birthday party. coreference
e isthe capital of Tanzania. knowledge
® Theboyis—_ because he lost his keys. commonsense

® John took 100 bucks to Vegas. He won 50 and then lost 100. Now he only has
to go home. numerical reasoning

Text contains a surprisingly large number of tasks!
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Self-supervised learning for representation learning

Key idea: predict parts of the input from the rest

e No additional supervision is needed—both input and output are from the raw
text data.

® Easy to scale—massive amount of text on the Internet.

® Learned representation is general—useful for any tasks that can be performed
in textual mode.
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Self-supervised learning for representation learning

Key idea: predict parts of the input from the rest

e No additional supervision is needed—both input and output are from the raw
text data.

® Easy to scale—massive amount of text on the Internet.

® Learned representation is general—useful for any tasks that can be performed
in textual mode.

How is this different from skip-gram / CBOW?

Approach:
® Pretrain: train a model using self-supervised learning objectives on large data.

® Finetune: update part or all of the parameters of the pretrained model on
labeled data of a downstream task.
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A bit of history

® Pretrain an RNN model on unlabeled data and finetune on supervised tasks [Dai
et al., 2015] [ULMFIT; Howard et al., 2018]

® Promising results on a small scale
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A bit of history

Pretrain an RNN model on unlabeled data and finetune on supervised tasks [Dai
et al., 2015] [ULMFIT; Howard et al., 2018]

® Promising results on a small scale

ELMo: replace static word embedding by contextual word embeddings from
pretrained bi-LSTM [Peters et al., 2018]

® Firstimpactful result in NLP
® Pretrain a Transformer model and finetune on supervised tasks
® GPT [Radford et al., 2018], BERT [Devlin et al., 2018]

Scale pretrained transformer to larger data and compute

® Can directly answer user questions and solve many tasks, e.g., ChatGPT,
Claude, Deepseek-chat
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Challenges in tokenization

We want to train models on all text on the internet. What are the challenges in
tokenization?
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Challenges in tokenization

We want to train models on all text on the internet. What are the challenges in
tokenization?

® Along tail of rare words
Neologism, terminologies, misspelling, informal text, etc.

e A mixture of multiple natural languages, programming languages, special
symbols

Low-resource language, math equations, code-switching, emoji, etc.

e Efficiency
Trade-off between vocab size and sequence length, latency
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Subword tokenization

The most widely adopted solution: decomposing words into subword units

® Along tail of rare words
bioorthogonal —> bio ##ortho ##gonal

e A mixture of multiple natural languages, programming languages, special
symbols

Donaudampfschifffahrtsgesellschaft — Donaudampf ##schiff ##fahrts
#itgesellschaft (German compound noun meaning "Danube steamship
company”)

e Efficiency

Balancing granularity and efficiency: reducing token count without losing
meaning
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Byte pair encoding (BPE)
What is a “token"?

e A sequence of characters that carries some meaning and re-occurs in a corpora
® Can we find these character units based on their frequency?
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Byte pair encoding (BPE)

What is a “token"?
e A sequence of characters that carries some meaning and re-occurs in a corpora
® Can we find these character units based on their frequency?

BPE:

® Origin: a compression algorithm that iteratively replace the most common
character sequences by a single symbol, e.g., un — A

e Start with individual characters as tokens

® Merge the most frequent pair of tokens and treat them as a single token
® Update the input with the new token and repeat the process

e Qutput: tokenized text and a set of merge rules
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BPE Example (Step-by-Step)
Initial Sequence:
e Words: banana, band, ban
e |nitial tokenization (by character):
® banana
®band
®ban
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BPE Example (Step-by-Step)
Initial Sequence:
e Words: banana, band, ban
e |nitial tokenization (by character):
® banana
®band
®ban

Step 1: Count Pairs
® What is the most frequent pair: a n

Step 2: Merge
® New mergerule: a,n — an
® Updated tokenization:
®banana—
®band—

®ban—
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BPE Example (Step-by-Step)

Step 3: Count Pairs Again
® Updated tokenization:

® b an an a
®ban d
® b an

® Most frequent pair: b an

Step 4: Merge
® New merge rule: b, an — ban
® Updated tokenization:

® ban an a
® ban d
® ban
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BPE: practicalities

® Repeat the process until the desired number of merges or vocabulary size is
reached (a hyperparameter to decide). Typically vocabulary sizes are 32-64K.

® Break ties deterministically, e.g., lexicographical order, occurrence in the corpus
etc.

® Use bytes as the initial tokens (adopted by GPT-2)

® Variants: instead of merging the pair with the largest frequency, WordPiece
merges the pair that maximizes the log likelihood of the training data, i.e.
Merge a, bif
log p(a, b) — log p(a)p(b)

is the largest among all pairs
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Types of pretrained models

® Encoder models, e.g., BERT

® Encode text into vector representations that can be used for downstream
classification tasks
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Types of pretrained models

® Encoder models, e.g., BERT

® Encode text into vector representations that can be used for downstream
classification tasks

® Encoder-decoder models, e.g., T5

® Encode input text into vector representations and generate text
conditioned on the input

® Decoder models, e.g., GPT-2
® Read in text (prefix) and continue to generate text

Current pretrained models are all transformer based.
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Encoder models

An encoder takes a sequence of tokens and output their contextualized
representations:
hi,..., h, = Encoder(xy, ..., xp)

We can then use hy, ..., h, for other tasks.
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Encoder models

An encoder takes a sequence of tokens and output their contextualized
representations:

hi,..., h, = Encoder(xy, ..., xp)

We can then use hy, ..., h, for other tasks.
How do we train an Encoder?

® Use any supervised task: y = f(hi,..., hy)

® Use self-supervised learning: predict a word from its context
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Masked language modeling

? language processing is ?
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Masked language modeling
? language processing is ?
Learning objective (MLE):

max Z log p(x; | x_j; 0)

X€ED,i~Pmask

® x:asequence of tokens sampled from a corpus D
natural language processing is fun
® Pmask: Mask generator
Sample two positions uniformly at random, e.g., 1 and 5
® x_;: noisy version fo x where x; is corrupted
[MASK] language processing is [MASK]
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BERT: objective

°* Masked language modeling:

® Randomly sample 15% tokens as prediction targets
® Replace the target tokens by [MASK] or a random token, or leave it
unchanged

cats are cute — cats [MASK]/is/are cute
® | ater work has shown that just use [MASK] is sufficient
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BERT: objective

°* Masked language modeling:

® Randomly sample 15% tokens as prediction targets
® Replace the target tokens by [MASK] or a random token, or leave it
unchanged

cats are cute — cats [MASK]/is/are cute
® | ater work has shown that just use [MASK] is sufficient
* Next sentence prediction: predict whether a pair of sentences are consecutive

max Z log p(y | x, xn; 0)
X~D,Xp~ Prext

® x,: either the sentence following x or a randomly sampled sentence
® y: binary label of whether x, follows x
® | ater work has shown that this objective is not necessary
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BERT: architecture

Input @ m @ m{ cute ” [SEP] Wm[ likes M play 1 [ ##ing ” [SEP] 1

Token

Embeddings ‘E[GLS] Emy H Edﬂg ‘ Eis ‘ Ecute ‘ E[SEP] | Ehe ‘ E\ikes | Ep\ay ‘ Ening ‘ E[SEP]
+ + + + + + + + + + +

Segment

=N | U TN S NN S T N RN
+ + + + + + + + + + +

Position

Eveaanes | & || B[ B || & ][ B |l & & ][5 |[ & || & |[ By |

® Tokenization: wordpiece (similar to byte pair encoding) (see details)
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® Tokenization: wordpiece (similar to byte pair encoding) (see details)
e [CLS]: first token of all sequences; used for next sentence prediction
e Distinguish two sentences in a pair: [SEP] and segment embedding
® |earned position embedding
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® Tokenization: wordpiece (similar to byte pair encoding) (see details)

e [CLS]: first token of all sequences; used for next sentence prediction
e Distinguish two sentences in a pair: [SEP] and segment embedding

® |earned position embedding

® 12 (base; 110M params) or 24 (large; 340M params) layer Transformer
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Finetuning BERT
Classification tasks: Add a linear layer (randomly initialized) on top of the [CLS]
embedding
p(y | x) = softmax(Whcis) + b)

Class
Label

[

Sentence 1 Sentence 2 Single Sentence
(a) Sentence Pair Classification Tasks: (b) Single Sentence Classification Tasks:
MNLI, QQP, QNLI, STS-B, MRPC, SST-2, CoLA
RTE, SWAG
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Finetuning BERT

Sequence labeling tasks: Add linear layers (randomly initialized) on top of every token

p(yi | x) = softmax(Wh; + b)

Start/End Span

BERT

el EEE- &

Tok Tok Tok

Question Paragraph

(c) Question Answering Tasks:
SQUAD v1.1

0  BPER o
- a8

BERT

el )e] - 5]
ey
[

Single Sentence

(d) Single Sentence Tagging Tasks:
CoNLL-2003 NER
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Finetuning BERT

® Finetune all parameters (both the newly added layer and the pretrained weights)
® Use a small learning rate (e.g., 1e-5)

® Train for a small number of epochs (e.g, 3 epochs)

® |ed to SOTA results on many NLU tasks

"""} How to generate text from BERT?
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Encoder-decoder models

An encoder-decoder model encodes input text to a sequence of contextualized
representations, and decodes a sequence of tokens autoregressively.

hi,..., hy, = Encoder(xy, ..., xn)
Si,...,Sm = Decoder(yo,...,¥Ym—1,h1,...,hn)
p(yi | x, y<i) = softmax(Ws; + b)
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Encoder-decoder models

An encoder-decoder model encodes input text to a sequence of contextualized
representations, and decodes a sequence of tokens autoregressively.

hi,..., hy, = Encoder(xy, ..., xn)
Si,...,Sm = Decoder(yo,...,¥Ym—1,h1,...,hn)
p(yi | x, y<i) = softmax(Ws; + b)

How do we train the encoder-decoder?

e Use any supervised task, e.g., machine translation
® Use self-supervised learning: predict text spans from their context
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Masked language modeling using an encoder-decoder

Input: text with corrupted spans
Output: recovered spans

Original text

Thank you fef inviting me to your party Jast week.

Inputs

Thank you <X> me to your party <Y> week.

Targets
<X> for inviting <Y> last <z>

Compare with encoder-only models:
® Encoder: predict single tokens based on encoder representation
® Encoder-decoder: predict a sequence of tokens (flexibility in objective design)
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T5: objective
® First train on unlabele data by masked language modeling
® Predict corrupted spans as a sequence
® Then continue training by supervised multitask learning

® Formulate tasks as text-to-text format using a prefix to denote the task
® Mixing examples from different datasets when constructing batches

["translate English to German: That is good."

“cola sentence: The
course is jumping well."

"Das ist gut."
"not acceptable"

“3.8"

on the grass. sentence2: A rhino

"stsb sentencel: The rhino grazed
is grazing in a field."

"six people hospitalized after J

dispatched emergency crews tuesday to a storm in attala county."

survey the damage after an onslaught
of severe weather in mississippi.."

[ “summarize: state authorities

e Jointly training with the two objectives works slightly worse
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T5: finetune

® Formulate the task in text-to-text format
® Fine-tune all parameters (similar to BERT fine-tuning)

® Advantages over encoder models: unified modeling of many different tasks
including text generation
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Decoder-only models

A decoder-only model predicts the next token given the prefix autoregressively.

S1,...,Sm = Decoder(yo, ..., Ym-1, 1, ...

p(yi | y<i) = softmax(Ws; + b)
(A prefix of y can be the input.)

the brown fox Jjumped END

N N N I |

Decoder

T 1T 1 1

START the brown fox jumped

(more on lancsuase models later)
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Generative Pretraining (GPT)

® Model: 12 layer decoder-only transformer
® Objective: next word prediction

max > Y " logp(yi | y<i)

yeD i

® Finetuning: auxiliary LM objective Liask + ALw (next word prediction on labeled
task data)
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Generative Pretraining (GPT): task-specific finetuning

Text Task e -
Classification | Start | Text | Extract ”——{ Transformer |—-| Linear ‘
Entailment | Start | Premise | Delim | Hypothesis | Extract ”——{ Transformer |—-| Linear ‘
©)
Feed Forward | Start | Text 1 | Delim | Text 2 | Extract ”——{ Transformer
Similarity Linear
12x — -
| Start | Text 2 | Delim | Text 1 |Extrac! H—-{ Transformer
® -
| Start | Context | Delim | Answer 1 | Extract |i|—-( Transformer |—>| Linear
Self Attention
Multiple Choice| Start | Context | Delim | Answer 2 | Extract| Transformer Linear
Text & Position Embed | Start | Context | Delim | Answer N | Extract ﬂ—»{ Transformer H Linear

® Single input: linear on top of extract

e Multiple input: process each input separately then aggregate
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Ablation studies of GPT

Architecture, pretraining, finetuning: which is critical?

Method Avg. Score  CoLA SST2 MRPC STSB QQP MNLI QNLI RTE

(mc) (acc) (F1) (pc) (F1) (acc) (acc) (acc)
Transformer w/ aux LM (full) 74.7 454 91.3 82.3 82.0 70.3 81.8 88.1 56.0
Transformer w/o pre-training 59.9 18.9 84.0 794 30.9 65.5 757 712 53.8
Transformer w/o aux LM 75.0 479 92.0 84.9 83.2 69.8 81.1 86.9 54.4
LSTM w/ aux LM 69.1 30.3 90.5 832 71.8 68.1 73.7 81.1 54.6

e Auxiliary objective only helps on larger datasets (MNLI, QQP)
® Pretrained transformer > pretrained LSTM (single layer) > non-pretrained

transformer
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Compare with BERT

System MNLI-(m/mm) QQP QNLI SST2 CoLA STS-B MRPC RTE  Average
392k 363k 108k 67k 8.5k 5.7k 3.5k 2.5k -
Pre-OpenAl SOTA 80.6/80.1 66.1 823 932 35.0 81.0 86.0 61.7 74.0
BiLSTM+ELMo+Attn 76.4/76.1 64.8 79.8 90.4 36.0 733 84.9 56.8 71.0
OpenAl GPT 82.1/81.4 70.3 87.4 91.3 454 80.0 82.3 56.0 75.1
BERTsaAsE 84.6/83.4 712 90.5 93.5 52.1 85.8 88.9 66.4 79.6
BERTLARGE 86.7/85.9 72.1 92.7 94.9 60.5 86.5 89.3 70.1 82.1

Table 1: GLUE Test results, scored by the evaluation server (https://gluebenchmark.com/leaderboard).
The number below each task denotes the number of training examples. The “Average” column is slightly different
than the official GLUE score, since we exclude the problematic WNLI set.> BERT and OpenAl GPT are single-
model, single task. F1 scores are reported for QQP and MRPC, Spearman correlations are reported for STS-B, and

accuracy scores are reported for the other tasks. We exclude entries that use BERT as one of their components.

Medium-sized encoder models tend to work better than decoder-only models when

finetuned
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Encoder-only vs decoder-only models: attention

Decoder-only Encoder-only
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Encoder-only vs decoder-only models: attention

Decoder-only Encoder-only

Encoder-only models provides better embeddings due to bidirectional attention.
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Encoder-only vs decoder-only models: generation

Decoder-only models can make predictions through generation without finetuning
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Encoder-only vs decoder-only models: generation

Decoder-only models can make predictions through generation without finetuning

e [ —— Heuristics for zero-shot prediction:

~—— winograd schema resolution
o | Imguistc acceptabity ® Sentiment classification: [example] + very +
. —— question answering

T Lotermer {positive, negative}  prompting

o
EY

® | inguistic acceptability: thresholding on log
probabilities

IS
IS

Relative Task Performance

e Multiple choice: predicting the answer with
the highest log probabilities

o
N

o | Scaling trend: zero-shot performance increases
e #ot pretrining upcates o during pretraining
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Encoder-only vs decoder-only models: training efficiency

On each sequence:

® Encoder-only models are trained on 15% (mask rate) of the tokens
® Decoder-only models are trained on all tokens
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Encoder-only vs decoder-only models: training efficiency

On each sequence:

® Encoder-only models are trained on 15% (mask rate) of the tokens
® Decoder-only models are trained on all tokens

What about encoder-decoder models?

® Flexibility on encoder design, e.g., full attention on input context
¢ |imited advantage on long-form generation tasks over decoder-only model
® More resource available for decoder-only models
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Optimization for pretraining

What are challenges of optimization in pretraining?

e Numerical stability (no NaN and diverging losses)
initialization, normalization, learning rate schedule

® Memory efficiency (work with billions of parameters)
mixed precision, gradient accumulation
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Adam optimizer

Key ideas:
® Momentum

® Motivation: having an inertia of moving in the same direction — reduce
oscillation
® How: maintain a "memory” (moving average) of past updates

40/43



Adam optimizer

Key ideas:
°* Momentum
® Motivation: having an inertia of moving in the same direction — reduce

oscillation
® How: maintain a "memory” (moving average) of past updates

e Adaptive step size for each parameter
® [ntuition:
flat regions (gradient changing slowly) — take larger steps
steep regions (gradient changing fast) — take smaller steps
® Handle sparse features well (e.g., rare words embeddings aren't updated
often)
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Adam optimizer
e Compute gradient g;
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Adam optimizer

e Compute gradient g;
e Update first order moments (mean)

my = Bime_1 + (1 — p1)8ge (1)
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Adam optimizer

e Compute gradient g;
e Update first order moments (mean)

my = fime—1+ (1 — 51)gt (1)
e Update second order moments (variance)
vi = Bave—1 + (1 — 52)&2 (2)
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Adam optimizer

e Compute gradient g;
e Update first order moments (mean)

my = fime—1+ (1 — 51)gt (1)
e Update second order moments (variance)
vi = Bave—1 + (1 — /62)g1,~2 (2)

e Correct bias in moment estimates

41/43



Adam optimizer

e Compute gradient g;
e Update first order moments (mean)

my = fime—1+ (1 — 51)gt
e Update second order moments (variance)
vi = Bave—1 + (1 — /62)g152

e Correct bias in moment estimates

® Update parameters

4
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e Compute gradient g;
e Update first order moments (mean)
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e Update second order moments (variance)
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e Correct bias in moment estimates

® Update parameters
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Adam optimizer

e Compute gradient g;
e Update first order moments (mean)

my = fime—1+ (1 — 51)gt
e Update second order moments (variance)
vi = Bave—1 + (1 — 52)gt2

e Correct bias in moment estimates

® Update parameters

") What is the memory cost of SGD vs Adam?

4
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Learning rate schedule

® Warmup: don't want to start with large learning rate for stability

® Decay: reducing learning rate as model converges
linear (used by BERT), cosine, exponential

Linear Decay with Warmup Cosine Decay with Warmup
10 1.0
08 08
206 £os
2 &
£y =
g £
Soa Soa
02 02
0.0 00
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Training Step Training Step
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Gradient accumulation
Simulate large batch training with limited GPU memory
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Figure: From Harshit Sharma
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https://medium.com/@harshit158/gradient-accumulation-307de7599e87
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