Pretraining and Finetuning

He He
%’4 NEW YORK UNIVERSITY

February 19, 2025

1/43

Table of Contents

Review

2/43

Last week

e Encoders: tokens to vectors
e Decoders: vectors to tokens

¢ Key difference: (autoregressive) decoders cannot look at the future

® Need causal masking
® Sequential output

3/43

Last week

e Encoders: tokens to vectors

e Decoders: vectors to tokens

Key difference: (autoregressive) decoders cannot look at the future

® Need causal masking
® Sequential output

e Can you use an encoder to generate tokens?

3/43

Last week

e Encoders: tokens to vectors

e Decoders: vectors to tokens

Key difference: (autoregressive) decoders cannot look at the future

® Need causal masking
® Sequential output

e Can you use an encoder to generate tokens?

® Can you use a decoder to encode text?

3/43

Table of Contents

Introduction

4743

Representation learning
Recap: What are good representations?
® Enable a notion of distance over text (word embeddings)
e Contains good features for downstream tasks

5/43

https://arxiv.org/abs/1704.01444

Representation learning
Recap: What are good representations?
® Enable a notion of distance over text (word embeddings)
e Contains good features for downstream tasks

Examples: negative the food is good but doesn't worth an hour wait
e Simple features (e.g. unigram BoW) require complex models.

5/43

https://arxiv.org/abs/1704.01444

Representation learning
Recap: What are good representations?
® Enable a notion of distance over text (word embeddings)
e Contains good features for downstream tasks

Examples: negative the food is good but doesn't worth an hour wait
e Simple features (e.g. unigram BoW) require complex models.
® Good features only need simple models (e.g. linear classifier) .

Figure: Sentiment neuron [Radford et al., 2017]

5/43

https://arxiv.org/abs/1704.01444

Representation learning

What can we do with good representations:
® | earning with small data: fine-tuning learned representations
® Transfer learning: one model/representation for many tasks
® Metric learning: get a similarity metric

6/43

Representation learning

What can we do with good representations:
® | earning with small data: fine-tuning learned representations
® Transfer learning: one model/representation for many tasks
® Metric learning: get a similarity metric

How to obtain such a representation:

® Training a neural network on any task gives us a representation good for that
task.

e But on which task can we learn good general representations?

6/43

What can we learn from word prediction given context?

® The cats that are raised by my sister—_______ sleeping.

7743

What can we learn from word prediction given context?

® The cats that are raised by my sister ——_ sleeping. syntax

® Jane is happy that John invited —__ friends to his birthday party.

7743

What can we learn from word prediction given context?

® The cats that are raised by my sister ——_ sleeping. syntax
® Janeis happy that John invited —__ friends to his birthday party. coreference

e isthe capital of Tanzania.

7/43

What can we learn from word prediction given context?

® The cats that are raised by my sister ——_ sleeping. syntax
® Janeis happy that John invited —__ friends to his birthday party. coreference
e isthe capital of Tanzania. knowledge

The boyis—_ because he lost his keys.

7/43

What can we learn from word prediction given context?

® The cats that are raised by my sister ——_ sleeping. syntax
® Janeis happy that John invited —__ friends to his birthday party. coreference
e isthe capital of Tanzania. knowledge
® Theboyis—_ because he lost his keys. commonsense

® John took 100 bucks to Vegas. He won 50 and then lost 100. Now he only has
to go home.

7/43

What can we learn from word prediction given context?

® The cats that are raised by my sister ——_ sleeping. syntax
® Janeis happy that John invited —__ friends to his birthday party. coreference
e isthe capital of Tanzania. knowledge
® Theboyis—_ because he lost his keys. commonsense

® John took 100 bucks to Vegas. He won 50 and then lost 100. Now he only has
to go home. numerical reasoning

7/43

What can we learn from word prediction given context?

® The cats that are raised by my sister ——_ sleeping. syntax
® Janeis happy that John invited —__ friends to his birthday party. coreference
e isthe capital of Tanzania. knowledge
® Theboyis—_ because he lost his keys. commonsense

® John took 100 bucks to Vegas. He won 50 and then lost 100. Now he only has
to go home. numerical reasoning

Text contains a surprisingly large number of tasks!

7/43

Self-supervised learning for representation learning

Key idea: predict parts of the input from the rest

e No additional supervision is needed—both input and output are from the raw
text data.

® Easy to scale—massive amount of text on the Internet.

® Learned representation is general—useful for any tasks that can be performed
in textual mode.

8/43

Self-supervised learning for representation learning

Key idea: predict parts of the input from the rest

e No additional supervision is needed—both input and output are from the raw
text data.

® Easy to scale—massive amount of text on the Internet.

® Learned representation is general—useful for any tasks that can be performed
in textual mode.

How is this different from skip-gram / CBOW?

8/43

Self-supervised learning for representation learning

Key idea: predict parts of the input from the rest

e No additional supervision is needed—both input and output are from the raw
text data.

® Easy to scale—massive amount of text on the Internet.

® Learned representation is general—useful for any tasks that can be performed
in textual mode.

How is this different from skip-gram / CBOW?

Approach:
® Pretrain: train a model using self-supervised learning objectives on large data.

® Finetune: update part or all of the parameters of the pretrained model on
labeled data of a downstream task.

8/43

A bit of history

® Pretrain an RNN model on unlabeled data and finetune on supervised tasks [Dai
et al., 2015] [ULMFIT; Howard et al., 2018]

® Promising results on a small scale

9/43

https://arxiv.org/pdf/1511.01432.pdf
https://arxiv.org/pdf/1511.01432.pdf
https://arxiv.org/pdf/1511.01432.pdf
https://arxiv.org/abs/1802.05365
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://arxiv.org/abs/1810.04805

A bit of history

® Pretrain an RNN model on unlabeled data and finetune on supervised tasks [Dai
et al., 2015] [ULMFIT; Howard et al., 2018]

® Promising results on a small scale

® ELMo: replace static word embedding by contextual word embeddings from
pretrained bi-LSTM [Peters et al., 2018]

® Firstimpactful result in NLP

9/43

https://arxiv.org/pdf/1511.01432.pdf
https://arxiv.org/pdf/1511.01432.pdf
https://arxiv.org/pdf/1511.01432.pdf
https://arxiv.org/abs/1802.05365
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://arxiv.org/abs/1810.04805

A bit of history

® Pretrain an RNN model on unlabeled data and finetune on supervised tasks [Dai
et al., 2015] [ULMFIT; Howard et al., 2018]

® Promising results on a small scale

® ELMo: replace static word embedding by contextual word embeddings from
pretrained bi-LSTM [Peters et al., 2018]

® Firstimpactful result in NLP
® Pretrain a Transformer model and finetune on supervised tasks
® GPT [Radford et al., 2018], BERT [Devlin et al., 2018]

9/43

https://arxiv.org/pdf/1511.01432.pdf
https://arxiv.org/pdf/1511.01432.pdf
https://arxiv.org/pdf/1511.01432.pdf
https://arxiv.org/abs/1802.05365
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://arxiv.org/abs/1810.04805

A bit of history

Pretrain an RNN model on unlabeled data and finetune on supervised tasks [Dai
et al., 2015] [ULMFIT; Howard et al., 2018]

® Promising results on a small scale

ELMo: replace static word embedding by contextual word embeddings from
pretrained bi-LSTM [Peters et al., 2018]

® Firstimpactful result in NLP
® Pretrain a Transformer model and finetune on supervised tasks
® GPT [Radford et al., 2018], BERT [Devlin et al., 2018]

Scale pretrained transformer to larger data and compute

® Can directly answer user questions and solve many tasks, e.g., ChatGPT,
Claude, Deepseek-chat

9/43

https://arxiv.org/pdf/1511.01432.pdf
https://arxiv.org/pdf/1511.01432.pdf
https://arxiv.org/pdf/1511.01432.pdf
https://arxiv.org/abs/1802.05365
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://arxiv.org/abs/1810.04805

Table of Contents

Tokenization

10/43

Challenges in tokenization

We want to train models on all text on the internet. What are the challenges in
tokenization?

11743

Challenges in tokenization

We want to train models on all text on the internet. What are the challenges in
tokenization?

® Along tail of rare words
Neologism, terminologies, misspelling, informal text, etc.

e A mixture of multiple natural languages, programming languages, special
symbols

Low-resource language, math equations, code-switching, emoji, etc.

e Efficiency
Trade-off between vocab size and sequence length, latency

11743

Subword tokenization

The most widely adopted solution: decomposing words into subword units

® Along tail of rare words
bioorthogonal —> bio ##ortho ##gonal

12/43

Subword tokenization

The most widely adopted solution: decomposing words into subword units

® Along tail of rare words
bioorthogonal —> bio ##ortho ##gonal

e A mixture of multiple natural languages, programming languages, special
symbols
Donaudampfschifffahrtsgesellschaft — Donaudampf ##schiff ##fahrts
#itgesellschaft (German compound noun meaning "Danube steamship
company”)

12/43

Subword tokenization

The most widely adopted solution: decomposing words into subword units

® Along tail of rare words
bioorthogonal —> bio ##ortho ##gonal

e A mixture of multiple natural languages, programming languages, special
symbols

Donaudampfschifffahrtsgesellschaft — Donaudampf ##schiff ##fahrts
#itgesellschaft (German compound noun meaning "Danube steamship
company”)

e Efficiency

Balancing granularity and efficiency: reducing token count without losing
meaning

12/43

Byte pair encoding (BPE)
What is a “token"?

e A sequence of characters that carries some meaning and re-occurs in a corpora
® Can we find these character units based on their frequency?

13/43

Byte pair encoding (BPE)

What is a “token"?
e A sequence of characters that carries some meaning and re-occurs in a corpora
® Can we find these character units based on their frequency?

BPE:

® Origin: a compression algorithm that iteratively replace the most common
character sequences by a single symbol, e.g., un — A

e Start with individual characters as tokens

® Merge the most frequent pair of tokens and treat them as a single token
® Update the input with the new token and repeat the process

e Qutput: tokenized text and a set of merge rules

13/43

BPE Example (Step-by-Step)
Initial Sequence:
e Words: banana, band, ban
e |nitial tokenization (by character):
® banana
®band
®ban

14/43

BPE Example (Step-by-Step)
Initial Sequence:
e Words: banana, band, ban

e |nitial tokenization (by character):

®banana
®band
®ban

Step 1: Count Pairs
® What is the most frequent pair:

14/43

BPE Example (Step-by-Step)
Initial Sequence:
e Words: banana, band, ban
e |nitial tokenization (by character):
® banana
®band
®ban

Step 1: Count Pairs
® What is the most frequent pair: a n

14/43

BPE Example (Step-by-Step)
Initial Sequence:
e Words: banana, band, ban
e |nitial tokenization (by character):
® banana
®band
®ban

Step 1: Count Pairs
® What is the most frequent pair: a n

Step 2: Merge
® New mergerule: a,n — an
® Updated tokenization:
®banana—
®band—

®ban—
14/43

BPE Example (Step-by-Step)

Step 3: Count Pairs Again
® Updated tokenization:

® b an an a
®ban d
® b an

® Most frequent pair: b an

Step 4: Merge
® New merge rule: b, an — ban
® Updated tokenization:

® ban an a
® ban d
® ban

15/43

BPE: practicalities

® Repeat the process until the desired number of merges or vocabulary size is
reached (a hyperparameter to decide). Typically vocabulary sizes are 32-64K.

® Break ties deterministically, e.g., lexicographical order, occurrence in the corpus
etc.

® Use bytes as the initial tokens (adopted by GPT-2)

® Variants: instead of merging the pair with the largest frequency, WordPiece
merges the pair that maximizes the log likelihood of the training data, i.e.
Merge a, bif
log p(a, b) — log p(a)p(b)

is the largest among all pairs

16/43

Table of Contents

Architectures of pretrained models

17743

Types of pretrained models

® Encoder models, e.g., BERT

® Encode text into vector representations that can be used for downstream
classification tasks

18/43

Types of pretrained models

® Encoder models, e.g., BERT

® Encode text into vector representations that can be used for downstream
classification tasks

® Encoder-decoder models, e.g., T5

® Encode input text into vector representations and generate text
conditioned on the input

18/43

Types of pretrained models

® Encoder models, e.g., BERT

® Encode text into vector representations that can be used for downstream
classification tasks

® Encoder-decoder models, e.g., T5

® Encode input text into vector representations and generate text
conditioned on the input

® Decoder models, e.g., GPT-2
® Read in text (prefix) and continue to generate text

18/43

Types of pretrained models

® Encoder models, e.g., BERT

® Encode text into vector representations that can be used for downstream
classification tasks

® Encoder-decoder models, e.g., T5

® Encode input text into vector representations and generate text
conditioned on the input

® Decoder models, e.g., GPT-2
® Read in text (prefix) and continue to generate text

18/43

Types of pretrained models

® Encoder models, e.g., BERT

® Encode text into vector representations that can be used for downstream
classification tasks

® Encoder-decoder models, e.g., T5

® Encode input text into vector representations and generate text
conditioned on the input

® Decoder models, e.g., GPT-2
® Read in text (prefix) and continue to generate text

Current pretrained models are all transformer based.

18/43

Encoder models

An encoder takes a sequence of tokens and output their contextualized
representations:
hi,..., h, = Encoder(xy, ..., xp)

We can then use hy, ..., h, for other tasks.

19/43

Encoder models

An encoder takes a sequence of tokens and output their contextualized
representations:

hi,..., h, = Encoder(xy, ..., xp)

We can then use hy, ..., h, for other tasks.
How do we train an Encoder?

® Use any supervised task: y = f(hi,..., hy)

® Use self-supervised learning: predict a word from its context

19/43

Masked language modeling

? language processing is ?

20/43

Masked language modeling
? language processing is ?
Learning objective (MLE):

max Z log p(x; | x_j; 0)

X€ED,i~Pmask

® x:asequence of tokens sampled from a corpus D
natural language processing is fun
® Pmask: Mask generator
Sample two positions uniformly at random, e.g., 1 and 5
® x_;: noisy version fo x where x; is corrupted
[MASK] language processing is [MASK]

20/43

BERT: objective

°* Masked language modeling:

® Randomly sample 15% tokens as prediction targets
® Replace the target tokens by [MASK] or a random token, or leave it
unchanged

cats are cute — cats [MASK]/is/are cute
® | ater work has shown that just use [MASK] is sufficient

21/43

BERT: objective

°* Masked language modeling:

® Randomly sample 15% tokens as prediction targets
® Replace the target tokens by [MASK] or a random token, or leave it
unchanged

cats are cute — cats [MASK]/is/are cute
® | ater work has shown that just use [MASK] is sufficient
* Next sentence prediction: predict whether a pair of sentences are consecutive

max Z log p(y | x, xn; 0)
X~D,Xp~ Prext

® x,: either the sentence following x or a randomly sampled sentence
® y: binary label of whether x, follows x
® | ater work has shown that this objective is not necessary

21/43

BERT: architecture

Input @ m @ m{ cute ” [SEP] Wm[likes M play 1 [##ing ” [SEP] 1

Token

Embeddings ‘E[GLS] Emy H Edﬂg ‘ Eis ‘ Ecute ‘ E[SEP] | Ehe ‘ E\ikes | Ep\ay ‘ Ening ‘ E[SEP]
+ + + + + + + + + + +

Segment

=N | U TN S NN S T N RN
+ + + + + + + + + + +

Position

Eveaanes | & || B[B || &][B |l & &][5 |[& || & |[By |

® Tokenization: wordpiece (similar to byte pair encoding) (see details)

22/43

https://huggingface.co/learn/nlp-course/chapter6/6?fw=pt

BERT: architecture

Input @ m @ m{ cute ” [SEP] Wm[likes M play 1 [##ing ” [SEP] 1

Token

Embeddings E[GL-S] Emy Edcg Eis H Ecute‘ E[SEP] Ehe E\ikes Ep\ay Ening E[SEP]
+ + + + + + + + + + +

Segment

=N | U TN S NN S T N RN
+ + + + + + + + + + +

Position

Eveaanes | & || B[B || &][B |l & &][5 |[& || & |[By |

® Tokenization: wordpiece (similar to byte pair encoding) (see details)
e [CLS]: first token of all sequences; used for next sentence prediction

22/43

https://huggingface.co/learn/nlp-course/chapter6/6?fw=pt

BERT: architecture

Input @ m @ m{ cute ” [SEP] Wm[likes M play 1 [##ing ” [SEP] 1

Token

Embeddings E[GL-S] Emy Edcg Eis H Ecute‘ E[SEP] Ehe E\ikes Ep\ay Ening E[SEP]
+ + + + + + + + + + +

Segment

=N | U TN S NN S T N RN
+ + + + + + + + + + +

Position

Eveaanes | & || B[B || &][B |l & &][5 |[& || & |[By |

® Tokenization: wordpiece (similar to byte pair encoding) (see details)
e [CLS]: first token of all sequences; used for next sentence prediction
e Distinguish two sentences in a pair: [SEP] and segment embedding

22/43

https://huggingface.co/learn/nlp-course/chapter6/6?fw=pt

BERT: architecture

Input @ m @ m{ cute ” [SEP] Wm[likes M play 1 [##ing ” [SEP] 1

Token

Embeddings E[GL-S] Emy Edcg Eis H Ecute‘ E[SEP] Ehe E\ikes Ep\ay Ening E[SEP]
+ + + + + + + + + + +

Segment

=N | U TN S NN S T N RN
+ + + + + + + + + + +

Position

Eveaanes | & || B[B || &][B |l & &][5 |[& || & |[By |

® Tokenization: wordpiece (similar to byte pair encoding) (see details)
e [CLS]: first token of all sequences; used for next sentence prediction
e Distinguish two sentences in a pair: [SEP] and segment embedding
® |earned position embedding

22/43

https://huggingface.co/learn/nlp-course/chapter6/6?fw=pt

BERT: architecture

Input @ m @ m{ cute ” [SEP] Wm[likes M play 1 [##ing ” [SEP] 1

Token

Embeddings E[GL-S] Emy Edcg Eis H Ecute‘ E[SEP] Ehe E\ikes Ep\ay Ening E[SEP]
+ + + + + + + + + + +

Segment

=N | U TN S NN S T N RN
+ + + + + + + + + + +

Position

Eveaanes | & || B[B || &][B |l & &][5 |[& || & |[By |

® Tokenization: wordpiece (similar to byte pair encoding) (see details)

e [CLS]: first token of all sequences; used for next sentence prediction
e Distinguish two sentences in a pair: [SEP] and segment embedding

® |earned position embedding

® 12 (base; 110M params) or 24 (large; 340M params) layer Transformer

22/43

https://huggingface.co/learn/nlp-course/chapter6/6?fw=pt

Finetuning BERT
Classification tasks: Add a linear layer (randomly initialized) on top of the [CLS]
embedding
p(y | x) = softmax(Whcis) + b)

Class
Label

[

Sentence 1 Sentence 2 Single Sentence
(a) Sentence Pair Classification Tasks: (b) Single Sentence Classification Tasks:
MNLI, QQP, QNLI, STS-B, MRPC, SST-2, CoLA
RTE, SWAG

23/43

Finetuning BERT

Sequence labeling tasks: Add linear layers (randomly initialized) on top of every token

p(yi | x) = softmax(Wh; + b)

Start/End Span

BERT

el EEE- &

Tok Tok Tok

Question Paragraph

(c) Question Answering Tasks:
SQUAD v1.1

0 BPER o
- a8

BERT

el)e] - 5]
ey
[

Single Sentence

(d) Single Sentence Tagging Tasks:
CoNLL-2003 NER

24/43

Finetuning BERT

® Finetune all parameters (both the newly added layer and the pretrained weights)
® Use a small learning rate (e.g., 1e-5)

® Train for a small number of epochs (e.g, 3 epochs)

® |ed to SOTA results on many NLU tasks

"""} How to generate text from BERT?

25/43

Encoder-decoder models

An encoder-decoder model encodes input text to a sequence of contextualized
representations, and decodes a sequence of tokens autoregressively.

hi,..., hy, = Encoder(xy, ..., xn)
Si,...,Sm = Decoder(yo,...,¥Ym—1,h1,...,hn)
p(yi | x, y<i) = softmax(Ws; + b)

26/43

Encoder-decoder models

An encoder-decoder model encodes input text to a sequence of contextualized
representations, and decodes a sequence of tokens autoregressively.

hi,..., hy, = Encoder(xy, ..., xn)
Si,...,Sm = Decoder(yo,...,¥Ym—1,h1,...,hn)
p(yi | x, y<i) = softmax(Ws; + b)

How do we train the encoder-decoder?

e Use any supervised task, e.g., machine translation
® Use self-supervised learning: predict text spans from their context

26/43

Masked language modeling using an encoder-decoder

Input: text with corrupted spans
Output: recovered spans

Original text

Thank you fef inviting me to your party Jast week.

Inputs

Thank you <X> me to your party <Y> week.

Targets
<X> for inviting <Y> last <z>

Compare with encoder-only models:
® Encoder: predict single tokens based on encoder representation
® Encoder-decoder: predict a sequence of tokens (flexibility in objective design)

27/43

T5: objective
® First train on unlabele data by masked language modeling
® Predict corrupted spans as a sequence
® Then continue training by supervised multitask learning

® Formulate tasks as text-to-text format using a prefix to denote the task
® Mixing examples from different datasets when constructing batches

["translate English to German: That is good."

“cola sentence: The
course is jumping well."

"Das ist gut."
"not acceptable"

“3.8"

on the grass. sentence2: A rhino

"stsb sentencel: The rhino grazed
is grazing in a field."

"six people hospitalized after J

dispatched emergency crews tuesday to a storm in attala county."

survey the damage after an onslaught
of severe weather in mississippi.."

[“summarize: state authorities

e Jointly training with the two objectives works slightly worse

28/43

T5: finetune

® Formulate the task in text-to-text format
® Fine-tune all parameters (similar to BERT fine-tuning)

® Advantages over encoder models: unified modeling of many different tasks
including text generation

29/43

Decoder-only models

A decoder-only model predicts the next token given the prefix autoregressively.

S1,...,Sm = Decoder(yo, ..., Ym-1, 1, ...

p(yi | y<i) = softmax(Ws; + b)
(A prefix of y can be the input.)

the brown fox Jjumped END

N N N I |

Decoder

T 1T 1 1

START the brown fox jumped

(more on lancsuase models later)

30/43

Generative Pretraining (GPT)

® Model: 12 layer decoder-only transformer
® Objective: next word prediction

max > Y " logp(yi | y<i)

yeD i

® Finetuning: auxiliary LM objective Liask + ALw (next word prediction on labeled
task data)

31/43

Generative Pretraining (GPT): task-specific finetuning

Text Task e -
Classification | Start | Text | Extract ”——{ Transformer |—-| Linear ‘
Entailment | Start | Premise | Delim | Hypothesis | Extract ”——{ Transformer |—-| Linear ‘
©)
Feed Forward | Start | Text 1 | Delim | Text 2 | Extract ”——{ Transformer
Similarity Linear
12x — -
| Start | Text 2 | Delim | Text 1 |Extrac! H—-{ Transformer
® -
| Start | Context | Delim | Answer 1 | Extract |i|—-(Transformer |—>| Linear
Self Attention
Multiple Choice| Start | Context | Delim | Answer 2 | Extract| Transformer Linear
Text & Position Embed | Start | Context | Delim | Answer N | Extract ﬂ—»{ Transformer H Linear

® Single input: linear on top of extract

e Multiple input: process each input separately then aggregate

32/43

Ablation studies of GPT

Architecture, pretraining, finetuning: which is critical?

Method Avg. Score CoLA SST2 MRPC STSB QQP MNLI QNLI RTE

(mc) (acc) (F1) (pc) (F1) (acc) (acc) (acc)
Transformer w/ aux LM (full) 74.7 454 91.3 82.3 82.0 70.3 81.8 88.1 56.0
Transformer w/o pre-training 59.9 18.9 84.0 794 30.9 65.5 757 712 53.8
Transformer w/o aux LM 75.0 479 92.0 84.9 83.2 69.8 81.1 86.9 54.4
LSTM w/ aux LM 69.1 30.3 90.5 832 71.8 68.1 73.7 81.1 54.6

e Auxiliary objective only helps on larger datasets (MNLI, QQP)
® Pretrained transformer > pretrained LSTM (single layer) > non-pretrained

transformer

33/43

Compare with BERT

System MNLI-(m/mm) QQP QNLI SST2 CoLA STS-B MRPC RTE Average
392k 363k 108k 67k 8.5k 5.7k 3.5k 2.5k -
Pre-OpenAl SOTA 80.6/80.1 66.1 823 932 35.0 81.0 86.0 61.7 74.0
BiLSTM+ELMo+Attn 76.4/76.1 64.8 79.8 90.4 36.0 733 84.9 56.8 71.0
OpenAl GPT 82.1/81.4 70.3 87.4 91.3 454 80.0 82.3 56.0 75.1
BERTsaAsE 84.6/83.4 712 90.5 93.5 52.1 85.8 88.9 66.4 79.6
BERTLARGE 86.7/85.9 72.1 92.7 94.9 60.5 86.5 89.3 70.1 82.1

Table 1: GLUE Test results, scored by the evaluation server (https://gluebenchmark.com/leaderboard).
The number below each task denotes the number of training examples. The “Average” column is slightly different
than the official GLUE score, since we exclude the problematic WNLI set.> BERT and OpenAl GPT are single-
model, single task. F1 scores are reported for QQP and MRPC, Spearman correlations are reported for STS-B, and

accuracy scores are reported for the other tasks. We exclude entries that use BERT as one of their components.

Medium-sized encoder models tend to work better than decoder-only models when

finetuned

34/43

Encoder-only vs decoder-only models: attention

Decoder-only Encoder-only

35/43

Encoder-only vs decoder-only models: attention

Decoder-only Encoder-only

Encoder-only models provides better embeddings due to bidirectional attention.

35/43

Encoder-only vs decoder-only models: generation

Decoder-only models can make predictions through generation without finetuning

36/43

Encoder-only vs decoder-only models: generation

Decoder-only models can make predictions through generation without finetuning

e [—— Heuristics for zero-shot prediction:

~—— winograd schema resolution
o | Imguistc acceptabity ® Sentiment classification: [example] + very +
. —— question answering

T Lotermer {positive, negative} prompting

o
EY

® | inguistic acceptability: thresholding on log
probabilities

IS
IS

Relative Task Performance

e Multiple choice: predicting the answer with
the highest log probabilities

o
N

o | Scaling trend: zero-shot performance increases
e #ot pretrining upcates o during pretraining

36/43

Encoder-only vs decoder-only models: training efficiency

On each sequence:

® Encoder-only models are trained on 15% (mask rate) of the tokens
® Decoder-only models are trained on all tokens

37/43

Encoder-only vs decoder-only models: training efficiency

On each sequence:

® Encoder-only models are trained on 15% (mask rate) of the tokens
® Decoder-only models are trained on all tokens

What about encoder-decoder models?

® Flexibility on encoder design, e.g., full attention on input context
¢ |imited advantage on long-form generation tasks over decoder-only model
® More resource available for decoder-only models

37/43

Table of Contents

Optimization

38/43

Optimization for pretraining

What are challenges of optimization in pretraining?

e Numerical stability (no NaN and diverging losses)
initialization, normalization, learning rate schedule

® Memory efficiency (work with billions of parameters)
mixed precision, gradient accumulation

39/43

Adam optimizer

Key ideas:
® Momentum

® Motivation: having an inertia of moving in the same direction — reduce
oscillation
® How: maintain a "memory” (moving average) of past updates

40/43

Adam optimizer

Key ideas:
°* Momentum
® Motivation: having an inertia of moving in the same direction — reduce

oscillation
® How: maintain a "memory” (moving average) of past updates

e Adaptive step size for each parameter
® [ntuition:
flat regions (gradient changing slowly) — take larger steps
steep regions (gradient changing fast) — take smaller steps
® Handle sparse features well (e.g., rare words embeddings aren't updated
often)

40/43

Adam optimizer
e Compute gradient g;

41/43

Adam optimizer

e Compute gradient g;
e Update first order moments (mean)

my = Bime_1 + (1 — p1)8ge (1)

41/43

Adam optimizer

e Compute gradient g;
e Update first order moments (mean)

my = fime—1+ (1 — 51)gt (1)
e Update second order moments (variance)
vi = Bave—1 + (1 — 52)&2 (2)

41/43

Adam optimizer

e Compute gradient g;
e Update first order moments (mean)

my = fime—1+ (1 — 51)gt (1)
e Update second order moments (variance)
vi = Bave—1 + (1 — /62)g1,~2 (2)

e Correct bias in moment estimates

41/43

Adam optimizer

e Compute gradient g;
e Update first order moments (mean)

my = fime—1+ (1 — 51)gt
e Update second order moments (variance)
vi = Bave—1 + (1 — /62)g152

e Correct bias in moment estimates

® Update parameters

4

41/43

Adam optimizer

e Compute gradient g;
e Update first order moments (mean)

my = fime—1+ (1 — 51)gt
e Update second order moments (variance)
vi = Bave—1 + (1 — /62)g152

e Correct bias in moment estimates

® Update parameters

4

41/43

Adam optimizer

e Compute gradient g;
e Update first order moments (mean)

my = fime—1+ (1 — 51)gt
e Update second order moments (variance)
vi = Bave—1 + (1 — 52)gt2

e Correct bias in moment estimates

® Update parameters

") What is the memory cost of SGD vs Adam?

4

41/43

Learning rate schedule

® Warmup: don't want to start with large learning rate for stability

® Decay: reducing learning rate as model converges
linear (used by BERT), cosine, exponential

Linear Decay with Warmup Cosine Decay with Warmup
10 1.0
08 08
206 £os
2 &
£y =
g £
Soa Soa
02 02
0.0 00
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Training Step Training Step

42/43

Gradient accumulation
Simulate large batch training with limited GPU memory

=25 GRRIENTS
oL P
B L 11 S Yo . 1O M/—.:FD

NEER %an‘WﬂOM\T%N@

a |
- 1 I GRAOIENTS

by 12 N g |

Baen 22 == m——— | |

4|

a

SLa/Ay
BNHZ LsD O L 1FD

Figure: From Harshit Sharma

43/43

https://medium.com/@harshit158/gradient-accumulation-307de7599e87

	Review
	Introduction
	Tokenization
	Architectures of pretrained models
	Optimization

