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Last week

• We have seen two families of models for sequences modeling: RNNs and
Transformers

• They are often called encoders: take a sequence of tokens and output a
sequence of embeddings

• Each embedding is a contextualized representation of the token

• We can then use the embeddings for classi!cation or sequence labeling

• Three building blocks for encoders:
• Multilayer perceptron
• Recurrent neural networks
• Self-attention

Which one is simplest in terms of computation?
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Transformer block

Figure: From The Illustrated
Transformer

• Multi-head self-attention
• Compute contextualized representations

• Positional encoding
• Represent the order of tokens

• Residual connection and layer normalization
• More e"cient and stable optimization
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Recap: multi-head self-attention

Figure: From The Illustrated Transformer
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Recap: sinusoidal position embedding

Intuition: continuous approximation of binary encoding of positions (integers)

Figure: From Amirhossein Kazemnejad’s Blog

• Each row is an embedding for a particular position
• Each column is a sinusoidal wave with a particular frequency
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Residual connection

Motivation:
• Gradient explosion/vanishing is not RNN-speci!c!

• It happens to all deep networks (which are hard to optimize).

• In principle, a deep network can always represent a shallow network (by setting
higher layers to identity functions), thus it should be at least as good as the
shallow network.

• For some reason, deep neural networks are bad at learning identity functions.

• How can we make it easier to recover the shallow solution?
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Residual connection
Solution: Deep Residual Learning for Image Recognition [He et al., 2015]

Without residual connection: learn the identity function f (x) = x .

With residual connection: learn g(x) = 0 (easier).
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Layer normalization
• Normalize each input sample to zero mean and unit variance [Ba et al., 2016]
• Let x = (x1, . . . , xd) be the input vector (e.g., word embedding, previous layer
output)

LayerNorm(x) =
x → µ̂

ω̂
,

where µ̂ =
1
d

d∑

i=1

xi , ω̂2 =
1
d

d∑

i=1

(xi → µ̂)2

• Independent of train/inference and
batch size

• Robust to varying sequence length in
a batch
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Why do we need layer normalization

• Main reason: training stability for deep neural networks (avoiding NaN,
diverging loss, etc.)

• Sources of instability:
• Matrix multiplication:

h
(l) = W

(l→1)
h
(l→1)

Small changes accumulates multiplicatively through the layers.
• Residual connection:

h
(l) = h

(l→1) + f (h(l→1))

Small changes accumulates multiplicatively through the layers.
• Softmax saturation:

softmax(x)i =
e
xi

∑
i e

xi

Large xi drives vanishing gradients
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Putting everything together

• Add (residual connection) & Normalize (layer normalization) for the output of
self-attention and FFN (post-LN)
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Pre-layer normalization

Figure: From [Xiong et al. 2020]

• Post-LN: normalize the output of each layer
• Pre-LN: normalize the input of each layer
• Use either or both
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Putting everything together

• Same FFN applied to each embedding
• Two layers: !rst layer expands the dimension (d ↑ 4d ), second layer projects it
back (4d ↑ d )
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Sequence generation

• Given a sequence of contextualized embeddings, we can do classi!cation.

• What if we want to predict a sequence of tokens from the input sequence (e.g.,
machine translation)?

• Sequence classi!cation: h : Vn ↑ {0, . . . ,K}

• Sentiment classi!cation

• Sequence labeling: h : Vn ↑ {0, . . . ,K}n

• Part-of-speech tagging

• Sequence generation: h : Vn
in ↑ Vm

out

• Summarization: document to summary
• In general: sequence to sequence

Main di#erence (and challenge) is that the output space is much larger.
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Reduce generation to classi!cation

Setup:
• Input: x ↓ Vn

in, e.g. Le Programme a ate mis en application
• Output: y ↓ Vm

out, e.g., The program has been implemented

Consider a probabilistic model p(y | x)

• Can we reduce it to classi!cation?
• Decompose the problem using chain rule of probability

p(y | x) = p(y1 | x)p(y2 | y1, x) . . . p(ym | ym→1, . . . , y1, x)

=
m∏

i=1

p(yi | y<i , x)

• We only need to model the next word distribution p(yi | y<i , x) now.
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Autoregressive generation

We want to model the next word distribution p(yi | y<i , x).
• Input: a sequence of tokens (pre!x and input)
• Output: the next word from the output vocabulary

Reduce generation to a sequence of classi!cation problems:

1. Le Programme a ate mis en application↑ The
2. Le Programme a ate mis en application, The↑ program
3. Le Programme a ate mis en application, The program↑ has
4. Le Programme a ate mis en application, The program has↑ been
5. ...

We know how to solve each sequence classi!cation problem!

18 / 50
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The encoder-decoder architecture
We need a new module for autoregressive generation:

Figure: 10.6.1 from d2l.ai

• The encoder reads the input:

Encoder(x1, . . . , xn) = [h1, . . . , hn]

where hi ↓ Rd are hidden states / embeddings.
• The decoder writes the output:

Decoder(h1, . . . , hn) = [y1, . . . , ym]

.
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Autoregressive generative models

Generating sequences one token at a time from left to right

Encoder(x1, . . . , xn) = [h1, . . . , hn]

1. Decoder([h1, . . . , hn]) ↑ y1

2. Decoder([h1, . . . , hn], y1) ↑ y2

3. Decoder([h1, . . . , hn], y1, y2) ↑ y3

4. Decoder([h1, . . . , hn], y1, y2, y3) ↑ y4

5. ...
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Autoregressive generative models

Is this the only way of modeling and generating text?

We want to learn p(y | x)
• Decompose the probability using chain rule of probability

p(y | x) = p(y1 | x)p(y2 | y1, x) . . . p(ym | ym→1, . . . , y1, x)

=
m∏

i=1

p(yi | y<i , x)

• But we don’t have to decompose it from left to right

Alternatives: reverse / right to left, parallel (non-autoregressive or di#usion models)
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RNN encoder-decoder model

Figure: 10.7.1 from d2l.ai

• The encoder embeds the input recurrently and produce a context vector

ht = RNNEncoder(xt , ht→1), c = f (h1, . . . , hn)

• The decoder produce the output states recurrently and map them to
distributions over the output vocabulary

st = RNNDecoder([yt→1; c] , st→1), p(yt | y<t , x) = softmax(Linear(st))

23 / 50
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Bi-directional RNN encoder

The [Forbes]?? building is at 60 Fifth Ave.

We may want the hidden state to summarize both left and right context

Figure: 10.4.1 from d2l.ai

• Use two RNNs, one encode from left
to right, the other from right to left

• Concatenate hidden states from the
two RNNs

ht = [
↔→
ht ;

→↑
ht ]

ot = Wht + b

24 / 50
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Multilayer RNN

Figure: 10.3.1 from d2l.ai

• Increase model capacity (scaling up)

• Inputs to layer 1 are words

• Inputs to layer j are outputs from
layer j → 1

• Typically 2–4 layers

25 / 50
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Encoder-decoder attention: motivation

Recall that the context vector summarizes the input:

st = RNNDecoder([yt→1; c] , st→1)

Should we use the same context vector for every decoding step?

Le Programme a ate mis en application

The Program has beenimplemented

We may want to “look at” di#erent parts of the input during decoding.

26 / 50
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Encoder-decoder attention: motivation

Gradient vanishing for long distance dependence

Figure: From Sequence to Sequence Learning with Neural Networks [Sutskever et al., 2014]

We may want gradient to $ow more directly from input to output
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Encoder-decoder attention: formalization

Recall that attention interacts pairs of tokens.

Decoder: Which input tokens are most relevant for generating the next output token?

• Query: decoder states st→1

• Key: encoder states h1, . . . , hn

• Value: encoder states h1, . . . , hn

• Attention context: ct =
∑n

i=1 ε(st→1, hi )hi

• Next state: st = RNNDecoder([yt→1; ct ] , st→1)

• Dynamic context vector instead of a !xed
one

28 / 50



Encoder-decoder attention: formalization

Recall that attention interacts pairs of tokens.

Decoder: Which input tokens are most relevant for generating the next output token?

• Query: decoder states st→1

• Key: encoder states h1, . . . , hn

• Value: encoder states h1, . . . , hn

• Attention context: ct =
∑n

i=1 ε(st→1, hi )hi

• Next state: st = RNNDecoder([yt→1; ct ] , st→1)

• Dynamic context vector instead of a !xed
one

28 / 50



Encoder-decoder attention: formalization

Recall that attention interacts pairs of tokens.

Decoder: Which input tokens are most relevant for generating the next output token?

• Query: decoder states st→1

• Key: encoder states h1, . . . , hn

• Value: encoder states h1, . . . , hn

• Attention context: ct =
∑n

i=1 ε(st→1, hi )hi

• Next state: st = RNNDecoder([yt→1; ct ] , st→1)

• Dynamic context vector instead of a !xed
one

28 / 50



Encoder-decoder attention: formalization

Recall that attention interacts pairs of tokens.

Decoder: Which input tokens are most relevant for generating the next output token?

• Query: decoder states st→1

• Key: encoder states h1, . . . , hn

• Value: encoder states h1, . . . , hn

• Attention context: ct =
∑n

i=1 ε(st→1, hi )hi

• Next state: st = RNNDecoder([yt→1; ct ] , st→1)

• Dynamic context vector instead of a !xed
one

28 / 50



Encoder-decoder attention: formalization

Recall that attention interacts pairs of tokens.

Decoder: Which input tokens are most relevant for generating the next output token?

• Query: decoder states st→1

• Key: encoder states h1, . . . , hn

• Value: encoder states h1, . . . , hn

• Attention context: ct =
∑n

i=1 ε(st→1, hi )hi

• Next state: st = RNNDecoder([yt→1; ct ] , st→1)

• Dynamic context vector instead of a !xed
one

28 / 50



Encoder-decoder attention: formalization

Recall that attention interacts pairs of tokens.

Decoder: Which input tokens are most relevant for generating the next output token?

• Query: decoder states st→1

• Key: encoder states h1, . . . , hn

• Value: encoder states h1, . . . , hn

• Attention context: ct =
∑n

i=1 ε(st→1, hi )hi

• Next state: st = RNNDecoder([yt→1; ct ] , st→1)

• Dynamic context vector instead of a !xed
one

28 / 50



Encoder-decoder attention: formalization

Recall that attention interacts pairs of tokens.

Decoder: Which input tokens are most relevant for generating the next output token?

• Query: decoder states st→1

• Key: encoder states h1, . . . , hn

• Value: encoder states h1, . . . , hn

• Attention context: ct =
∑n

i=1 ε(st→1, hi )hi

• Next state: st = RNNDecoder([yt→1; ct ] , st→1)
• Dynamic context vector instead of a !xed
one

28 / 50



Encoder-decoder attention: formalization

Recall that attention interacts pairs of tokens.

Decoder: Which input tokens are most relevant for generating the next output token?

• Query: decoder states st→1

• Key: encoder states h1, . . . , hn

• Value: encoder states h1, . . . , hn

• Attention context: ct =
∑n

i=1 ε(st→1, hi )hi

• Next state: st = RNNDecoder([yt→1; ct ] , st→1)
• Dynamic context vector instead of a !xed
one

28 / 50

St-1 St

St- 1 j
G

&

hi

Ni nu



Summary so far

The outputs of an encoder can be used by (linear) classi!ers for classi!cation,
sequence labeling, etc.

A decoder is used to generate a sequence of symbols.

RNN encoder decoder model:
• Basic unit is an RNN (or its variants like LSTM)
• Make it more expressive: bi-directional, multilayer RNN
• Encoder-decoder attention helps the model learn input-output dependencies
more easily

• Bi-directional LSTM is the go-to architecture for NLP tasks until around 2017

29 / 50



Transformer encoder decoder model

Figure: From illustrated transformer

• Stack the tranformer block (typically 12–24 layers)
• Decoder has an additional encoder-decoder multi-head attention layer
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Encoder-decoder attention in Transformer

Figure: From illustrated transformer

TransformerEncoder(x1, . . . , xn) = [h1, . . . , hn] = Henc (1)

Kencdec = HencW
K (2)

Vencdec = HencW
V (3)

DecoderSelfAttention(y1, . . . , yt) = [s1, . . . , st ] (4)

qt = stW
Q

(5)
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Training

We are given a dataset D =
{
(x (i), y (i))

}N

i=1 of input and output sequences

Maximum likelihood estimation:

max
∑

(x ,y)↑D

m∑

j=1

log p(yj | y<j , x ; ϑ)

What is the pre!x y<j?

Use the groundtruth pre!x (teacher forcing)

33 / 50
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Start and end symbols

Which one is more likely?

p(The | Le Programme a ate mis en application)
p(The program has been implemented | Le Programme a ate mis en application)

Use sequence start and end symbols to model sequence length

• Le Programme a ate mis en application↑ <s> The ... </s>

34 / 50
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Decoder attention masking for transformers

Recall that the output of self-attention depends on all tokens y1, . . . ym.
But the decoder is supposed to model p(yt | y<t , x).
It should not look at the “future” (yt+1, . . . , ym)!

How do we !x the decoder self-attention?
• Mathematically, changing the input values and keys su"ces.
• Practically, set a(si , sj) to → inf for all j > i and for i = 1, . . . ,m.

mask =





0 →↗ →↗ · · · →↗
0 0 →↗ · · · →↗
0 0 0 · · · →↗
...

...
...

. . . →↗
0 0 0 · · · 0
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Inference

Suppose we have a trained model p(y | x ; ϑ).

The model de!nes a probability distribution over all possible sequences.

But we want to output a single sequence.

The decoding problem: How do we predict a sequence from the model?

37 / 50
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Inference

Argmax decoding:
ŷ = argmax

y↑Vn
out

p(y | x ; ϑ)

• Return the most likely sequence
• But exact search is intractable

Approximate search:
• Greedy decoding: return the most likely symbol at each step

yt = argmax
y↑Vout

p(y | x , ŷ<t ; ϑ)

When to stop?
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ŷ = argmax

y↑Vn
out

p(y | x ; ϑ)

• Return the most likely sequence
• But exact search is intractable

Approximate search:
• Greedy decoding: return the most likely symbol at each step

yt = argmax
y↑Vout

p(y | x , ŷ<t ; ϑ)
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Approximate decoding: beam search

Beam search: maintain k (beam size) highest-scored partial solutions at every step

score(y1, . . . , yt) =
t∑

i=1

log pω(yi | y<i )

• At each step, we have a set of k partial hypotheses (pre!xes)

• Use the autoregressive model, we can expand all hypotheses by one more token
(how many hypotheses do we have now?)

• Evaluate the score of all hypotheses and keep the top k
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Beam search example

Figure: Figure from Chris Manning

Stop when all hypotheses in the beam has terminated or when hitting a limit of
number of steps.
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Beam search example

Figure: Figure from Chris Manning

Stop when all hypotheses in the beam has terminated or when hitting a limit of
number of steps.
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Is argmax the right decoding objective?
High likelihood can be correlated with low quality outputs! [Zhang et al., 2020]
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Is argmax the right decoding objective?

In practice, argmax decoding has been observed to lead to
• Repetitive generations, e.g., “..., was conducted by researchers from the Universidad
Nacional Autonoma de Mexico (UNAM) and the Universidad Nacional Autonoma de
Mexico (UNAM/Universidad Nacional Autonoma de Mexico/Universidad Nacional
Autonoma de Mexico/Universidad Nacional Autonoma...”

• Empty or extremely short translations with large beam size in MT

Hypotheses:
• Models don’t !t the data well
But problem doesn’t go away with larger model and data

• Distribution shift during inference (more on this later)
Need more evidence

• Training data contains repetition
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Sampling-based decoding

If we have learned a perfect p(y | x), shouldn’t we just sample from it?

Sampling is easy for autoregressive models:
• While output is not EOS

• Sample next word from p(· | pre!x, input; ϑ)
• Append the word to pre!x

Standard sampling often produces non-sensical sentences:
They were cattle called Bolivian Cavalleros; they live in a remote desert uninterrupted by town,
and they speak huge, beautiful, paradisiacal Bolivian linguistic thing.

Idea: modify the learned distrubtion pω before sampling to avoid bad generations
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Tempered sampling

Intuition: concentrate probability mass on highly likely sequences

Scale scores (from the linear layer) before the softmax layer:

p(yt = w | y<t , x) ↘ exp (score(w))

q(yt = w | y<t , x) ↘ exp (score(w)/T ) where T ↓ (0,+↗)

• What happends when T ↑ 0 and T ↑ +↗?
• Does it change the rank of y according to likelihood?
• Typically we chooose T ↓ (0, 1), which makes the distribution more peaky.
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Truncated sampling

Another way to focus on highly likely sequences: truncate the tail of the distribution

Top-k sampling:
• Rank all tokens w ↓ V by p(yt = w | y<t , x)

• Only keep the top k of those and renormalize the distribution

E#ect of k :
• Large k : more diverse but possibly degenerate outputs
• Small k : more generic but safe outputs
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Truncated sampling
Which k to choose?

Figure: From the nucleus sampling paper by Holtzman et al., 2020

Using a single k on di#erent next word distributions may be suboptimal
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Truncated sampling
Top-p sampling:

• Rank all tokens w ↓ V by p(yt = w | y<t , x)

• Keep only tokens in the top p probability mass and renormalize the distribution
• The corresponding k is dynamic:

• Start with k = 1, increment until the cumulative probability mass > p

Figure: From Xiang Li’s slides
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Contrastive Decoding
• Problem: Greedy or beam search decoding can lead to repetitive or bland
outputs.

• Key Idea: Such errors are more prominent in weaker/smaller models, so we can
use a weaker model to penalize such errors [Li et al., 2023]
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Contrastive Decoding

• Vanilla CD score:

log pstrong(yt | y<t)︸ ︷︷ ︸
standard likelihood

→ log pweak(yt | y<t)︸ ︷︷ ︸
weak model penalty

,

• Remove (-inf score) implausible tokens xi ↓ V where

pstrong(xi | x<i ) < εmax
w↑V

pstrong(w | x<i )

Avoid low probability tokens that happen to have large contrast score
• Run beam search using CD score

49 / 50
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Decoding in practice

• Can combine di#erent tricks (e.g., temperature + beam search, temperature +
top-k )

• Use beam search with small beam size for tasks where there exists a correct
answer, e.g. machine translation

• Use top-k or top-p for open-ended generation, e.g. story generation, chit-chat
dialogue

• As models getting better/larger, sampling-based methods tend to work better

50 / 50



Exposure bias
Problem with teacher forcing:

• During training, the model only sees groundtruth pre!x
• During inference, the model sees generated pre!x, which may deviate from the
training pre!x distribution

• When this happends, the model behavior is underspeci!ed.
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Exposure bias

Solutions:
• Avoid deviating from the training pre!x distribution

• Better modeling: reduce errors at each step
• Better decoding: stay within the high likelihood region (later)

• Teaching the model how to behave on out-of-distribution pre!x
• Better learning: updating models based on the goodness of the generated
sequence
additional supervision required
computationally more expensive
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