Neural Sequence Generation

He He

(%” NEW YORK UNIVERSITY

Febuary 12,2024

1/50



Table of Contents

Review

2/50



Last week
® We have seen two families of models for sequences modeling: RNNs and
Transformers

® They are often called encoders: take a sequence of tokens and output a
sequence of embeddings

® Each embedding is a contextualized representation of the token
® We can then use the embeddings for classification or sequence labeling

® Three building blocks for encoders:

® Multilayer perceptron
® Recurrent neural networks
® Self-attention

Which one is simplest in terms of computation?

3/50



Table of Contents

Transformers

4/50



Transformer block

4 4
,( Add & Normalize )\
( Feed Fanard ) ( Feed Fon/vard )
......... L R )
e e e Multi-head self-attention
o . ,
5| o] Laveror( B - EEE) Compute contextualized representations
3 Y N . " .
ol Positional encoding
i C S D) ® Represent the order of tokens
T == R oo
gmon: é é§ ® Residual connection and layer normalization
. B e~ ® More efficient and stable optimization
Thinking Machines

Figure: From The lllustrated
Transformer

5/50



Recap: multi-head self-attention

1) This is our 2) We embed
input sentence* each word*

X

Thinking
Machines

* |n all encoders other than #0,

we don't need embedding.

We start directly with the output
of the encoder right below this one

R

3) Split into 8 heads.
We multiply X or
R with weight matrices

W@
WoK
WoV

WK
w7V

4) Calculate attention
using the resulting
Q/K/V matrices

== Ky
T
o v

Q7K
T

7
mmmi

5) Concatenate the resulting ~ matrices,
then multiply with weight matrix W° to
produce the output of the layer

Zo

Figure: From The lllustrated Transformer

6/50



Recap: sinusoidal position embedding

Intuition: continuous approximation of binary encoding of positions (integers)

N O Ok N RO
B B, 2, O O0OO0OOoO
P B, OOFr K, OO
R O r O, O mr O

7750



Recap: sinusoidal position embedding

Intuition: continuous approximation of binary encoding of positions (integers)

P PR, PR, R, OOOOo
=, OOFKr KL, OO
P O R, O O O

N O Ol W N RO

100

7750



Recap: sinusoidal position embedding

Intuition: continuous approximation of binary encoding of positions (integers)

0: 000
1: 001
2: 010
3: 011
4: 100
5: 101
6: 110
7: 0111 I

Figure: From Amirhossein Kazemnejad's Blog

® Fach row is an embedding for a particular position
® Fach column is a sinusoidal wave with a particular frequency

100

[ sin(w;.t) ]

cos(wi.t)

sin(ws. t)
cos(ws. t)

sin(wg/a- t)

_cos(wd/z.t)_

7750



Residual connection

Motivation:
® Gradient explosion/vanishing is not RNN-specific!

¢ |t happens to all deep networks (which are hard to optimize).

8/50



Residual connection

Motivation:

Gradient explosion/vanishing is not RNN-specific!
It happens to all deep networks (which are hard to optimize).

In principle, a deep network can always represent a shallow network (by setting
higher layers to identity functions), thus it should be at least as good as the
shallow network.

For some reason, deep neural networks are bad at learning identity functions.

How can we make it easier to recover the shallow solution?

8/50



Residual connection
Solution: Deep Residual Learning for Image Recognition [He et al., 2015]

| Activation function Activation function

S = g(x) +x

Without residual connection: learn the identity function f(x) = x.

With residual connection: learn g(x) = 0 (easier).

9/50



Layer normalization
® Normalize each input sample to zero mean and unit variance [Ba et al., 2016]

® letx = (xi,...,xq) be the input vector (e.g., word embedding, previous layer
output)

—p

o

d
1 1
whereﬂ:EE Xi, 62:35 (xi — 1)

i=1 i=1

LayerNorm(x) = X

10/50



Layer normalization

® Normalize each input sample to zero mean and unit variance [Ba et al., 2016]

® letx = (xi,...,xq) be the input vector (e.g., word embedding, previous layer
output) R
LayerNorm(x) = X — N,
g
1< 1<
N o= 52— L 1)2
where [i = E;X" 6° = d;(x, i)

Layer Normalization Batch/Power Normalization

® Independent of train/inference and
batch size

Sentence Length
Sentence Length

® Robust to varying sequence length in
a batch

10/50



Why do we need layer normalization

® Main reason: training stability for deep neural networks (avoiding NaN,
diverging loss, etc.)
® Sources of instability:
® Matrix multiplication:
AD — (-1 p0-1)

Small changes accumulates multiplicatively through the layers.
® Residual connection:
A = pU=1) 4 f(h(/—l))

Small changes accumulates multiplicatively through the layers.

® Softmax saturation: N
e 1
softmax(x); = —=—
ZI er o

Large x; drives vanishing gradients

11/50



Putting everything together

4 4
(’( Add & Normalize )\
H 4 4
H ( Feed Forward ) ( Feed Forward )
S A e 4
z: 2
4 Add & Normalize 4
= ,» La erNorm(BEEB+BEEH)
g L ’ J
g A A
J|i _ofw i
H ( Self-Attention )
: 7y 7y
AN 1 i . X LT J
POSITIONAL <> <>
ENCODING (3) o
x [N 2 |
Thinking Machines

® Add (residual connection) & Normalize (layer normalization) for the output of
self-attention and FFN (post-LN)

12/50



Pre-layer normalization

X X1

() (b)

Figure: From [Xiong et al. 2020]

® Post-LN: normalize the output of each layer
® Pre-LN: normalize the input of each layer
® Use either or both

13/50



Putting everything together

ENCODER #1

4 4
(’( Add & Normalize ) \
( Feed Forward ) ( Feed Forward )
......... L Y )
z1 [ 2
4 Add & Normalize Y
,&( LayerNorm( BEBH + BEBE]) J
: XY Y
E ( Self-Attention )
= == = == R
POSITIONAL <> <>
ENCODING () 3

X [ o NI
Thinking Machines

® Same FFN applied to each embedding

® Two layers: first layer expands the dimension (d — 4d), second layer projects it

back (4d — d)

14/50



Table of Contents

Autoregressive models

15/50



Sequence generation

® Given a sequence of contextualized embeddings, we can do classification.

16/50



Sequence generation

® Given a sequence of contextualized embeddings, we can do classification.

® What if we want to predict a sequence of tokens from the input sequence (e.g.,
machine translation)?

16/50



Sequence generation

® Given a sequence of contextualized embeddings, we can do classification.

® What if we want to predict a sequence of tokens from the input sequence (e.g.,
machine translation)?

e Sequence classification: h: V" — {0,..., K}
® Sentiment classification

16/50



Sequence generation

® Given a sequence of contextualized embeddings, we can do classification.

® What if we want to predict a sequence of tokens from the input sequence (e.g.,
machine translation)?

e Sequence classification: h: V" — {0,..., K}

® Sentiment classification

e Sequence labeling: h: V" — {0,..., K}"
® Part-of-speech tagging

16/50



Sequence generation

® Given a sequence of contextualized embeddings, we can do classification.

® What if we want to predict a sequence of tokens from the input sequence (e.g.,
machine translation)?

e Sequence classification: h: V" — {0,..., K}
® Sentiment classification

e Sequence labeling: h: V" — {0,... K}"
® Part-of-speech tagging
® Sequence generation: h: Vi1 — Vi,

® Summarization: document to summary
® |n general: sequence to sequence

16/50



Sequence generation

® Given a sequence of contextualized embeddings, we can do classification.

® What if we want to predict a sequence of tokens from the input sequence (e.g.,
machine translation)?

e Sequence classification: h: V" — {0,..., K}
® Sentiment classification

e Sequence labeling: h: V" — {0,... K}"
® Part-of-speech tagging
® Sequence generation: h: Vi1 — Vi,

® Summarization: document to summary
® |n general: sequence to sequence

16/50



Sequence generation

® Given a sequence of contextualized embeddings, we can do classification.

® What if we want to predict a sequence of tokens from the input sequence (e.g.,
machine translation)?

e Sequence classification: h: V" — {0,..., K}
® Sentiment classification

e Sequence labeling: h: V" — {0,..., K}"
® Part-of-speech tagging

® Sequence generation: h: VI — VI,
® Summarization: document to summary
® |n general: sequence to sequence

Main difference (and challenge) is that the output space is much larger.

16/50



Reduce generation to classification

Setup:
® Input: x € V7, e.g. Le Programme a ate mis en application
e Output: y € V7, e.g., The program has been implemented

17/50



Reduce generation to classification

Setup:
® Input: x € V7, e.g. Le Programme a ate mis en application
e Output: y € V7, e.g., The program has been implemented

Consider a probabilistic model p(y | x)
e Can we reduce it to classification?

17/50



Reduce generation to classification

Setup:
® Input: x € V7, e.g. Le Programme a ate mis en application
e Output: y € V7, e.g., The program has been implemented

Consider a probabilistic model p(y | x)
® Can we reduce it to classification?
e Decompose the problem using chain rule of probability

p(y | x) =pla | x)p(y2 | y1,x) ... p(Ym | Ym—1,---

m
=TI pUi | y<i %)
i=1

7y17X)

17/50



Reduce generation to classification

Setup:
® Input: x € V7, e.g. Le Programme a ate mis en application
e Output: y € V7, e.g., The program has been implemented

Consider a probabilistic model p(y | x)
® Can we reduce it to classification?
e Decompose the problem using chain rule of probability

p(y | x) =pla | x)p(y2 | y1,x) ... p(Ym | Ym—1,---

m
=TI p(il y<i;x)

i=1

7y17X)

® We only need to model the next word distribution p(y; | y<i, x) now.

17/50



Autoregressive generation vy
(I
We want to model the next word distribution p(y; | y-i, x).
® Input: a sequence of tokens (prefix and )
® Qutput: the next word from the output vocabulary

18/50



Autoregressive generation

We want to model the next word distribution p(y; | y-i, x).
® Input: a sequence of tokens (prefix and )
® Qutput: the next word from the output vocabulary

Reduce generation to a sequence of classification problems:

1. — The

18/50



Autoregressive generation

We want to model the next word distribution p(y; | y-i, x).
® Input: a sequence of tokens (prefix and )
® Qutput: the next word from the output vocabulary

Reduce generation to a sequence of classification problems:
1. — The
2. , The — program

18/50



Autoregressive generation

We want to model the next word distribution p(y; | y-i, x).
® Input: a sequence of tokens (prefix and )
® Qutput: the next word from the output vocabulary

Reduce generation to a sequence of classification problems:
1. — The
2. , The — program
3. , The program — has

18/50



Autoregressive generation

We want to model the next word distribution p(y; | y-i, x).
® Input: a sequence of tokens (prefix and )
® Qutput: the next word from the output vocabulary

Reduce generation to a sequence of classification problems:
1. — The

2. , The — program

3. , The program — has

4

, The program has — been

18/50



Autoregressive generation

We want to model the next word distribution p(y; | y-i, x).
® Input: a sequence of tokens (prefix and )

® Qutput: the next word from the output vocabulary

Reduce generation to a sequence of classification problems:
1. — The

, The — program

, The program — has

, The program has — been

vk W

18/50



Autoregressive generation

We want to model the next word distribution p(y; | y-i, x).
® Input: a sequence of tokens (prefix and )

® Qutput: the next word from the output vocabulary

Reduce generation to a sequence of classification problems:
1. — The

, The — program

, The program — has

, The program has — been

vk W

18/50



Autoregressive generation

We want to model the next word distribution p(y; | y-i, x).
® Input: a sequence of tokens (prefix and )
® Qutput: the next word from the output vocabulary

Reduce generation to a sequence of classification problems:
1. — The € Vo
, The — program
, The program — has

, The program has — been

vk W

We know how to solve each sequence classification problem!

18/50



The encoder-decoder architecture
We need a new module for autoregressive generation:

Input

>

Encoder —

State

—>

Decoder

—>

Output

Figure: 10.6.1 from d2l.ai

19/50



The encoder-decoder architecture
We need a new module for autoregressive generation:

Input

>

Encoder |—

State —

Decoder

—>

Output

Figure: 10.6.1 from d2l.ai

® The encoder reads the input:

Encoder(xi, ...

 Xn) = [h1, ...

where h; € R? are hidden states / embeddings.

s hn]

19/50



The encoder-decoder architecture
We need a new module for autoregressive generation:

Input

>

® The encoder reads the input:

Encoder

—>|

State

>

Decoder

—>

Output

Figure: 10.6.1 from d2l.ai

Encoder(xi, ...

® The decoder writes the output:

Decoder(hy, ...

 Xn) = [h1, ...

where h; € R? are hidden states / embeddings.

vhn) =D,

7ym]

19/50



Autoregressive generative models

Generating sequences one token at a time from left to right
Encoder( ) =[h1,..., hp)
. Decoder([hy, ..., ha]) = y1

(

. Decoder([h1, ..., hnl,v1) = v

. Decoder([h1, ..., hn],y1.y2) = »3
(

. Decoder([h1, ..., hal, y1,y2,y3) = ya

A W N =

20/50



Autoregressive generative models

Is this the only way of modeling and generating text?

21/50



Autoregressive generative models

Is this the only way of modeling and generating text?

We want to learn p(y | x)
e Decompose the probability using chain rule of probability

p(y | x)=pOa | xX)p(y2 | y1,%) . p(Ym | Ym—1,---s¥1,X)

m
=[] pWil y<i.%)
i=1
e But we don't have to decompose it from left to right

Alternatives: reverse / right to left, parallel (nhon-autoregressive or diffusion models)
2Lt &L= 2_
—>
s

21/50



Table of Contents

Encoder-decoder models

22/50



RNN encoder-decoder model

Encoder Decoder

lls regardent . <eos>

BRI

are  watching

<bos> s regardent

Figure: 10.7.1 from d2l.ai

® The encoder embeds the input recurrently and produce a context vector

h: = RNNEncoder(x¢, hi—1), ¢ = f(hy,...,hp)

23/50



RNN encoder-decoder model

Encoder Decoder

lls regardent . <eos>

PR ]

are  watching

<bos> s regardent

Figure: 10.7.1 from d2l.ai

® The encoder embeds the input recurrently and produce a context vector
h: = RNNEncoder(x¢, ht—1), ¢ = f(h1,...,hn)=ha
=Z i /n

® The decoder produce the recurrently and map them to
distributions over the output vocabulary

= RNNDecoder([y;—1; c] , ), p(vt | y<t,x) = softmax(Linear(s,))

23/50



Bi-directional RNN encoder

The [Forbes],» building is at 60 Fifth Ave.

24/50



Bi-directional RNN encoder

The [Forbes],» building is at 60 Fifth Ave.

We may want the hidden state to summarize both left and right context

24/50



Bi-directional RNN encoder

The [Forbes],» building is at 60 Fifth Ave.

We may want the hidden state to summarize both left and right context

e Use two RNNSs, one encode from left
to right, the other from right to left

e Concatenate hidden states from the

two RNNs
%
hy = [ﬁ, ht]
O = l4/77t + b

Figure: 10.4.1 from d2l.ai

24/50



Multilayer RNN

® Increase model capacity (scaling up)

Inputs to layer 1 are words

Inputs to layer j are outputs from
layer j — 1

Typically 2-4 layers

Figure: 10.3.1 from d2l.ai

25/50



Encoder-decoder attention: motivation

Recall that the context vector summarizes the input:

st = RNNDecoder([y¢—1; c], st—1)

Should we use the same context vector for every decoding step?

26/50



Encoder-decoder attention: motivation

Recall that the context vector summarizes the input:

st = RNNDecoder([y¢—1; c], st—1)

Should we use the same context vector for every decoding step?

Le Programme a ate mis en application

The Program has beenimplemented

We may want to “look at” different parts of the input during decoding.

26/50



Encoder-decoder attention: motivation

Gradient vanishing for long distance dependence

> <

P
[ N o N N S

T

A B C <EOS> w

1|

X —>
< —> /> N
—>

Figure: From Sequence to Sequence Learning with Neural Networks [Sutskever et al., 2014]

27/50



Encoder-decoder attention: motivation

Gradient vanishing for long distance dependence
Y
!
X

Figure: From Sequence to Sequence Learning with Neural Networks [Sutskever et al., 2014]

—— /<

?
G S s o B e s

LT 1T 1

A B C <EOS>

s —>

We may want gradient to flow more directly from input to output

27/50



Encoder-decoder attention: formalization

Recall that attention interacts pairs of tokens.

Decoder: Which input tokens are most relevant for generating the next output token?

28/50



Encoder-decoder attention: formalization

Recall that attention interacts pairs of tokens.

Decoder: Which input tokens are most relevant for generating the next output token?

® Query: decoder states s;_1

28/50



Encoder-decoder attention: formalization

Recall that attention interacts pairs of tokens.

Decoder: Which input tokens are most relevant for generating the next output token?

® Query: decoder states s;_1

e Key: encoder states hy,..., h,

28/50



Encoder-decoder attention: formalization

Recall that attention interacts pairs of tokens.

Decoder: Which input tokens are most relevant for generating the next output token?

® Query: decoder states s;_1
e Key: encoder states hy,..., h,

® Value: encoder states hy, ..., h,

28/50



Encoder-decoder attention: formalization

Recall that attention interacts pairs of tokens.
Decoder: Which input tokens are most relevant for generating the next output token?

® Query: decoder states s;_1
e Key: encoder states hy, ..., h,
® Value: encoder states hy, ..., h,

e Attention context: ¢; = > 1, a(s;—1, hi)h;

28/50



Encoder-decoder attention: formalization

Recall that attention interacts pairs of tokens.

Decoder: Which input tokens are most relevant for generating the next output token?

® Query: decoder states s;_1

e Key: encoder states hy, ..., h,

Value: encoder states hy, ..., h,

Attention context: ¢; = >.7_; a(st—1, hi)h;

® Next state: s; = RNNDecoder([y:—1; ¢/], St—1)

28/50



Encoder-decoder attention: formalization

Recall that attention interacts pairs of tokens.

Decoder: Which input tokens are most relevant for generating the next output token?

® Query: decoder states s;_1

e Key: encoder states hy, ..., h,

Value: encoder states hy, ..., h,

Attention context: ¢; = >.7_; a(st—1, hi)h;

® Next state: s; = RNNDecoder([y:—1; ¢/], St—1)

o context vector instead of a fixed
one

28/50



Encoder-decoder attention: formalization

Recall that attention interacts pairs of tokens.
Decoder: Which input tokens are most relevant for generating the next output token?

_

® Query: decoder states s;_1

Key: encoder states hy, ..., h,

Value: encoder states hy, ..., h,

i

D)

Attention context: ¢; = >.7_; a(st—1, hi)h;

?\ NN o
« e
e Next state: s; = RNNDecoder([y:—1; 1], st—1)

o context vector instead of a fixed
one

28/50



Summary so far

The outputs of an encoder can be used by (linear) classifiers for classification,
sequence labeling, etc.

A decoder is used to generate a sequence of symbols.

RNN encoder decoder model:
® Basic unitis an RNN (or its variants like LSTM)
® Make it more expressive: bi-directional, multilayer RNN

® Encoder-decoder attention helps the model learn input-output dependencies
more easily

e Bi-directional LSTM is the go-to architecture for NLP tasks until around 2017

29/50



bnk

Transformer encoder decoder model ?Lﬂ\\cf-’) ?%’\ > the)

Softmax

[ e ) | =~ —— 9“1& W{W 2t b)

LY
1t (Creed Forward ) (Feedforward ) | i o
=8 K r S
5] H 4 +
z { T SO T ) »C ‘Add & Normalize D
: D iE| ) )
\( ______ Y Y Se"memmn —F 3 E i (Creedroward ) (FeedFoward )
1 1 FECI AN e
K»( Add & Normalize D) i g A Add & Normalize ]
| Zy T x yy
2|+ (reedForward ) (FeedForward ) j:( Encoder-Decoder Attention )1
e z S —_— *
NG 'Add & Normalize D) e N ‘Add & Normalize . )
Wi L) 1 H
' C Self-Attention D) ' C Self-Attention

:‘\‘|_||| A 8> +he. bevk

Thinking Machines

Figure: From illustrated transformer

e Stack the tranformer block (typically 12-24 layers)
® Decoder has an additional encoder-decoder multi-head attention layer

30/50



Encoder-decoder attention in Transformer

f

( Linear + Softmax )

Kencdec  Vencdec
{ ENCODER ) N [ DECODER J
Y 4

{ ENCODER ] ( DECODER J

Figure: From illustrated transformer

TransformerEncoder(x, . .., x,) = [h1, ..., hn] = Henc
Kencdec = Henc WK
Vencdec = Henc WV

31/50



Encoder-decoder attention in Transformer

f

( Linear + Softmax )

Kencdec  Vencdec
[ ENCODER ) — ( DECODER J
L) L

ENCODER ) ( DECODER J

Figure: From illustrated transformer

TransformerEncoder(x, . .., x,) = [h1, ..., hy] = Henc (1)
Kencdec = Henc W 2)

Vencdec = Henc W 3)

DecoderSelfAttention(y1, ..., yt) = [s1,. .., St] (4)
ge = s:W¥? (5)

31/50



Table of Contents

Training

32/50



Training

We are given a dataset D = {(x("),y("))}ll.\l:1 of input and output sequences

Maximum likelihood estimation:

m
max Z Zlogp(yj

(x,y)€D j=1

Y<j, Xs 0)

33/50



Training

We are given a dataset D = {(x("),y("))}ll.\l:1 of input and output sequences

Maximum likelihood estimation:

max Z Z|ng(yj|)/<jax?9)

(x,y)€D j=1

What is the prefix y.;?

e 9

¥

33/50



Training

We are given a dataset D = {(x("),y("))}ll.vz1 of input and output sequences

Maximum likelihood estimation:

max log p(yj | y<j,x: 0)
(X§D le i J ?anl"m ’ Pl ‘Acm)
e

What is the prefix y;? \ dewdsy

Use the groundtruth prefix (teacher forcing) 4 - - En-‘

33/50



Start and end symbols

Which one is more likely?

p(The | Le Programme a ate mis en application)

p= =

p(The program has been implemented | Le Programme a ate mis en application)

Pltha( - )s PLprojmo~| cha -y oo L Plahel -

34/50



Start and end symbols

Which one is more likely?

p(The | Le Programme a ate mis en application)
p(The program has been implemented | Le Programme a ate mis en application)

Use sequence start and end symbols to model sequence length

® |e Programme a ate mis en application — <s>The ... </s>

34/50



Decoder attention masking for transformers

Recall that the output of self-attention depends on all tokens yi, ... ym.
But the decoder is supposed to model p(y: | y<¢, x).
It should not look at the “future” (y11, .- -, Ym)!

35/50



Decoder attention masking for transformers

Recall that the output of self-attention depends on all tokens yi, ... ym.
But the decoder is supposed to model p(y: | y<¢, x).
It should not look at the “future” (y11, .- -, Ym)!

How do we fix the decoder self-attention?
® Mathematically, changing the input values and keys suffices.

® Practically, set a(s;, s;) to —inf forall j > iandfori=1,..., m.
0 —00 —00 -+ —00
0 0 —oo -+ —©
mask f— 0 0 O R — 00
. .

35/50



Table of Contents

Inference

36/50



Inference

Suppose we have a trained model p(y | x; 6).

P17
The model defines a probability distribution over all possible sequences.
But we want to output a single sequence.

The decoding problem: How do we predict a sequence from the model?

37/50



Inference

Argmax decoding:

y =argmaxp(y | x; 6)
Y&V out

® Return the most likely sequence
® But exact search is intractable

38/50



Inference

Argmax decoding:

y =argmaxp(y | x; 6)
YEVou

® Return the most likely sequence
® But exact search is intractable

Approximate search:
e Greedy decoding: return the at each step

Yt = arg maxp(y | X7}/}<t; 0)
ye

When to stop? </¢>

38/50



Approximate decoding: beam search

Beam search: maintain k (beam size) highest-scored partial solutions at every step

score(yy, . .., Z log po(yi | y<i)
=1

® At each step, we have a set of k partial hypotheses (prefixes)

® Use the autoregressive model, we can expa I hypotheses by one more token
(how many hypotheses do we have now?)

e Evaluate the score of all hypotheses and keep the top@

39/50



4.0 4.8

tart ‘ in
pie with

-4.3
-3.4 -4.5 III::III
-3.3 -3.7 tart
with a 46
on ‘ one -5.0
-3.5 4.3

n < IV l -V ' Figure: Figure from Chris Manning
-~
~

IV

wn

40/50



Beam search example

-4.0 4.8

tart ‘ in |
pie with | 43
tart
25 ' with a 26
on ‘ one -5.0
tart
5.3

Figure: Figure from Chris Manning

Stop when all hypotheses in the beam has terminated or when hitting a limit of

number of steps.

40/50



Is argmax the right decoding objective?
High likelihood can be correlated with low quality outputs! [Zhang et al., 2020]

3.0

can still get a live link to...

25
H
£
820
3
5
E1s
H
10
-225 -200 -175 -150 -125 -100 -75 =50 =-25
10 p(x)
Context Continuation log p(x) Classification
.. mental Tough O’Rourke Tough apology assessment category of virtue from Boser’ Blog here. It’s got -177 Nonsense
215213‘11;"“3 Falc:nos ha;/e started letters and images on it and is utterly ...
© season. 18 under new ... team afloat and looks closer to the 2010 Atlanta Falcons. Starting cornerback Desmond Trufant was one -74 Reasonable
head coach Dan Quinn. t the top pl s on the 2014
Quarterback Matt Ryan has the ... of the top players on the
... team in the thick of the NFC South race. The Atlanta Falcons have started the 2015 season 4-0 under new -14 Repetition
head coach Dan Quinn. Quarter...
.. answer from a female administratoria llallushoss @rahpx Sandra PJ Jenniea nightiopq HamidF daroyqg -229 Nonsense
They have changed the phone menu $) ..
to try to deflect us to email, but you ... message or call on line, so I suppose they are just using that as an excuse. Yet they are still telling people -86 Reasonable
can still get a live ... to change their telephone number...
... link to a phone number here. They have changed the phone menu to try to deflect us to email, but you -23 Repetition

41/50



Is argmax the right decoding objective?

In practice, argmax decoding has been observed to lead to

® Repetitive generations, e.g., “..., was conducted by researchers from the Universidad
Nacional Autonoma de Mexico (UNAM) and the Universidad Nacional Autonoma de
Mexico (UNAM/Universidad Nacional Autonoma de Mexico/Universidad Nacional
Autonoma de Mexico/Universidad Nacional Autonoma...”

® Empty or extremely short translations with large beam size in MT

42/50



Is argmax the right decoding objective?

In practice, argmax decoding has been observed to lead to

® Repetitive generations, e.g., “..., was conducted by researchers from the Universidad
Nacional Autonoma de Mexico (UNAM) and the Universidad Nacional Autonoma de
Mexico (UNAM/Universidad Nacional Autonoma de Mexico/Universidad Nacional
Autonoma de Mexico/Universidad Nacional Autonoma...”

® Empty or extremely short translations with large beam size in MT

Hypotheses:

® Models don't fit the data well
But problem doesn’t go away with larger model and data

® Distribution shift during inference (more on this later)
Need more evidence

® Training data contains repetition

42/50



Sampling-based decoding

If we have learned a perfect p(y | x), shouldn't we just sample from it?

43/50



Sampling-based decoding

If we have learned a perfect p(y | x), shouldn't we just sample from it?

Sampling is easy for autoregressive models:
® While output is not EOS

e Sample next word from p(- | prefix, input; )
® Append the word to prefix

43/50



Sampling-based decoding

If we have learned a perfect p(y | x), shouldn't we just sample from it?

Sampling is easy for autoregressive models:

® While output is not EOS
e Sample next word from p(- | prefix, input; 6)
® Append the word to prefix

Standard sampling often produces non-sensical sentences:

They were cattle called Bolivian Cavalleros; they live in a remote desert uninterrupted by town,
and they speak huge, beautiful, paradisiacal Bolivian linguistic thing.

Idea: modify the learned distrubtion pg before sampling to avoid bad generations

43/50



Tempered sampling

Intuition: concentrate probability mass on highly likely sequences

Scale scores (from the linear layer) before the softmax layer:

p(y: = w | y<t, x) o< exp (score(w))

q(y: = w | y<t,x) < exp (score(w)/T) where T € (0, +00)

44/50



Tempered sampling

Intuition: concentrate probability mass on highly likely sequences

Scale scores (from the linear layer) before the softmax layer:

p(y: = w | y<t, x) o< exp (score(w))

q(y: = w | y<t,x) < exp (score(w)/T) where T € (0, +00)

® What happendswhen T — 0and T — +4o00?
® Does it change the rank of y according to likelihood?

¢ Typically we chooose T € (0, 1), which makes the distribution\more peaky.

44/50



Truncated sampling

Another way to focus on highly likely sequences: truncate the tail of the distribution

Top-k sampling:
e Rank all tokens w € V by p(y: = w | y<t, x)
® Only keep the top k of those and renormalize the distribution

Effect of k:
® Large k: more but possibly degenerate outputs
® Small k: more generic but outputs

45/50



Truncated sampling
Which k to choose?

0.8
L —
cooling I
warm W
onl
heating I
fresh |
. cold |
_— —— — warming |
1 at the pizza while it  was still b
urning |
cooking |

baking |

Peaked o

going |

Distribution
n't|

Distribution

Figure: From the nucleus sampling paper by Holtzman et al., 2020

Using a single k on different next word distributions may be suboptimal
46/50



Truncated sampling
Top-p sampling:
¢ Rank all tokens w € V by p(y: = w | y<t, x)
e Keep only tokens in the top p probability mass and renormalize the distribution

® The corresponding k is dynamic:
® Start with k = 1, increment until the cumulative probability mass > p

Ptl(Yt =w |{y}<t) Ptz(yt =w [{y}<t) Pts(yt =w |[{y}<t)
E = | —

Figure: From Xiang Li's slides

47750



Contrastive Decoding

® Problem: Greedy or beam search decoding can lead to repetitive or bland
outputs.

® Key Idea: Such errors are more prominent in weaker/smaller models, so we can
use a weaker model to penalize such errors [Li et al., 2023]

Pexp  0.27 Hawaii next token prediction
Expert 0.18 the -
0.16 Honolulu
0.10 1961 Contrastive Decoding
(GPT-2 XL) 002 Washington 108 Pexe — 108 Pasia
1961 4,13
Hawaii 2.34
.08 Honolulu /" Honolulu 0.65
0.04 Washington Washington -0.73
0.04 the
0.001 1961

7Y Barack Obama was born in Honolulu, Hawaii. He was
bornin

Continuations:
: Hawaii. He was born in Hawaii. He was born in Hawaii.

: Washington, D.C., to Barack Obama and Michelle
Robinson..

: 1961 to a Kenyan father, Barack Hussein Obama and a
mother of American descent, Stanley Ann Dunham..

48/50



Contrastive Decoding

® Vanilla CD score:

log pstrong(Vt | Y<t) — l0g pweak(yt | y<t)s

standard likelihood weak model penalty

® Remove (-inf score) implausible tokens x; € V where
Pstrong(Xi | X<i) <« meaf}( Pstrong(W | X<i)
w

Avoid low probability tokens that happen to have large contrast score
® Run beam search using CD score

49/50



Decoding in practice

® Can combine different tricks (e.g., temperature + beam search, temperature +
top-k)

e Use beam search with small beam size for tasks where there exists a correct
answer, e.g. machine translation

® Use top-k or top-p for open-ended generation, e.g. story generation, chit-chat
dialogue

® As models getting better/larger, sampling-based methods tend to work better

50/50



Exposure bias
Problem with teacher forcing:
® During training, the model only sees groundtruth prefix
e During inference, the model sees generated prefix, which may deviate from the
training prefix distribution
® When this happends, the model behavior is underspecified.

— training trajectory
— Ty expected trajectory

51/50



Exposure bias

Solutions:
¢ Avoid deviating from the training prefix distribution

® Better modeling: reduce errors at each step
® Better decoding: stay within the high likelihood region (later)

52/50



Exposure bias

Solutions:
¢ Avoid deviating from the training prefix distribution
® Better modeling: reduce errors at each step
® Better decoding: stay within the high likelihood region (later)
® Teaching the model how to behave on out-of-distribution prefix

® Better learning: updating models based on the goodness of the generated
sequence

52/50



Exposure bias

Solutions:
¢ Avoid deviating from the training prefix distribution
® Better modeling: reduce errors at each step
® Better decoding: stay within the high likelihood region (later)
® Teaching the model how to behave on out-of-distribution prefix
® Better learning: updating models based on the goodness of the generated

sequence
additional supervision required
computationally more expensive

52/50



