Distributed representation of text

He He

(?‘ NEW YORK UNIVERSITY

January 29, 2025

1/50



Table of Contents

Review

2/50



Last week

Generative vs discriminative models for text classification
® (Multinomial) naive Bayes What's the key assumption?

3/50


https://papers.nips.cc/paper_files/paper/2001/file/7b7a53e239400a13bd6be6c91c4f6c4e-Paper.pdf

Last week

Generative vs discriminative models for text classification
® (Multinomial) naive Bayes What's the key assumption?

® Assumes conditional independence
® Very efficient in practice (closed-form solution)

3/50


https://papers.nips.cc/paper_files/paper/2001/file/7b7a53e239400a13bd6be6c91c4f6c4e-Paper.pdf

Last week

Generative vs discriminative models for text classification
® (Multinomial) naive Bayes What's the key assumption?

® Assumes conditional independence
® Very efficient in practice (closed-form solution)

® Logistic regression What's the main advantage?

3/50


https://papers.nips.cc/paper_files/paper/2001/file/7b7a53e239400a13bd6be6c91c4f6c4e-Paper.pdf

Last week

Generative vs discriminative models for text classification
® (Multinomial) naive Bayes What's the key assumption?

® Assumes conditional independence
® Very efficient in practice (closed-form solution)

® Logistic regression What's the main advantage?

® Works with all kinds of features
® Wins with more data [Ng and Jordan, 2001]

3/50


https://papers.nips.cc/paper_files/paper/2001/file/7b7a53e239400a13bd6be6c91c4f6c4e-Paper.pdf

Last week

Generative vs discriminative models for text classification
® (Multinomial) naive Bayes What's the key assumption?

® Assumes conditional independence
® Very efficient in practice (closed-form solution)

® Logistic regression What's the main advantage?

® Works with all kinds of features
® Wins with more data [Ng and Jordan, 2001]

Feature vector of text input
® BoW representation
e N-gram features (usually n < 3)

3/50


https://papers.nips.cc/paper_files/paper/2001/file/7b7a53e239400a13bd6be6c91c4f6c4e-Paper.pdf

Table of Contents

Introduction

4/50



Objective

Goal: come up with a good representation of text
e What is a representation?

5/50



Objective

Goal: come up with a good representation of text
e What is a representation?
® Feature map: ¢: text — R, e.g., BoW, handcrafted features

5/50



Objective

Goal: come up with a good representation of text
e What is a representation?
® Feature map: ¢: text — R, e.g., BoW, handcrafted features

® “Representation” often refers to learned features of the input

5/50



Objective

Goal: come up with a good representation of text
e What is a representation?
® Feature map: ¢: text — R, e.g., BoW, handcrafted features

® “Representation” often refers to learned features of the input

® What is a good representation?

5/50



Objective

Goal: come up with a good representation of text
e What is a representation?
® Feature map: ¢: text — R, e.g., BoW, handcrafted features

® “Representation” often refers to learned features of the input

® What is a good representation?

® Enables a notion of distance over text: d(¢(a), ¢(b)) is small for
semantically similar texts a and b

® Abstraction over individual words

5/50



Objective

Goal: come up with a good representation of text
e What is a representation?
® Feature map: ¢: text — R, e.g., BoW, handcrafted features

® “Representation” often refers to learned features of the input

® What is a good representation?

® Enables a notion of distance over text: d(¢(a), ¢(b)) is small for
semantically similar texts a and b

® Abstraction over individual words

® Leads to good task performance (with less training data)
® Contains useful features

5/50



Objective

Goal: come up with a good representation of text
e What is a representation?
® Feature map: ¢: text — R, e.g., BoW, handcrafted features

® “Representation” often refers to learned features of the input

® What is a good representation?

® Enables a notion of distance over text: d(¢(a), ¢(b)) is small for
semantically similar texts a and b

® Abstraction over individual words

® Leads to good task performance (with less training data)
® Contains useful features

5/50



Objective

Goal: come up with a good representation of text
e What is a representation?
® Feature map: ¢: text — R, e.g., BoW, handcrafted features

® “Representation” often refers to learned features of the input

® What is a good representation?

® Enables a notion of distance over text: d(¢(a), ¢(b)) is small for
semantically similar texts a and b

® Abstraction over individual words

® Leads to good task performance (with less training data)
® Contains useful features

-
[}

“Y What text representation have we learned?

5/50



Table of Contents

Count-based word embeddings

6/50



The distributional hypothesis

How do we come up with a representation without handcrafting features?

7750



The distributional hypothesis

How do we come up with a representation without handcrafting features?

“You shall know a word by the company it keeps.” (Firth, 1957)

7/50



The distributional hypothesis

How do we come up with a representation without handcrafting features?

“You shall know a word by the company it keeps.” (Firth, 1957)

Word guessing! (example from Eisenstein’s book)
Everybody likes tezgtino.

7/50



The distributional hypothesis

How do we come up with a representation without handcrafting features?

“You shall know a word by the company it keeps.” (Firth, 1957)

Word guessing! (example from Eisenstein’s book)
Everybody likes tezgtino.
We make tezguino out of corn.

7/50



The distributional hypothesis

How do we come up with a representation without handcrafting features?

“You shall know a word by the company it keeps.” (Firth, 1957)

Word guessing! (example from Eisenstein’s book)
Everybody likes tezgtino.
We make tezguino out of corn.
A bottle of tezguino is on the table.

7/50



The distributional hypothesis

How do we come up with a representation without handcrafting features?

“You shall know a word by the company it keeps.” (Firth, 1957)

Word guessing! (example from Eisenstein’s book)
Everybody likes tezgtino.
We make tezguino out of corn.
A bottle of tezguino is on the table.
Don't have tezguino before you drive.

7/50



The distributional hypothesis

How do we come up with a representation without handcrafting features?

“You shall know a word by the company it keeps.” (Firth, 1957)

Word guessing! (example from Eisenstein’s book)
Everybody likes tezgtino.
We make tezguino out of corn.
A bottle of tezguino is on the table.
Don't have tezguino before you drive.

Idea: Represent a word by its neighbors.

7/50



Step 1: Choose the context

What are the neighbors?

Exam o] le: As You Like It Twelfth Night Julius Caesar Henry V
battle 1 0 7 13
e word x document good 114 80 62 89
fool 36 58 1 4
wit 20 15 2 3

LN ®] The term-document matrix for four words in four Shakespeare plays. Each cell
contains the number of times the (row) word occurs in the (column) document.

Figure: Jurafsky and Martin.

8/50



Step 1: Choose the context

What are the neighbors?

Example:
e word x document
e word x word

As You Like It Twelfth Night Julius Caesar Henry V
battle 1 0 7 13
good 114 80 62 89
fool 36 58 1 4
wit 20 15 2 3

LN ®] The term-document matrix for four words in four Shakespeare plays. Each cell
contains the number of times the (row) word occurs in the (column) document.

Figure: Jurafsky and Martin.

8/50



Step 1: Choose the context

What are the neighbors?

Example:
e word x document
e word x word

® person X movie

As You Like It Twelfth Night Julius Caesar Henry V
battle 1 0 7 13
good 114 80 62 89
fool 36 58 1 4
wit 20 15 2 3

LN ®] The term-document matrix for four words in four Shakespeare plays. Each cell
contains the number of times the (row) word occurs in the (column) document.

Figure: Jurafsky and Martin.

8/50



Step 1: Choose the context

What are the neighbors?

Example:
e word x document
e word x word
® person X movie

® note x song

As You Like It Twelfth Night Julius Caesar Henry V
battle 1 0 7 13
good 114 80 62 89
fool 36 58 1 4
wit 20 15 2 3

LN ®] The term-document matrix for four words in four Shakespeare plays. Each cell
contains the number of times the (row) word occurs in the (column) document.

Figure: Jurafsky and Martin.

8/50



Step 1: Choose the context

What are the neighbors?

Example:
e word x document
e word x word
® person X movie

® note x song

Construct a matrix where

As You Like It Twelfth Night Julius Caesar Henry V
battle 1 0 7 13
good 114 80 62 89
fool 36 58 1 4
wit 20 15 2 3

LN ®] The term-document matrix for four words in four Shakespeare plays. Each cell
contains the number of times the (row) word occurs in the (column) document.

Figure: Jurafsky and Martin.

® Row and columns represent two sets of objects

® Each entry is the co-occurence counts of the two objects

8/50



Distance functions

Now we already have a representation for each document / word!

As You Like It Twelfth Night Julius Caesar Henry V

battle 1 0 7 13
good 114 80 62 89
fool 36 58 1 4
wit 20 15 2 3

IPPTNX®] The term-document matrix for four words in four Shakespeare plays. Each cell
contains the number of times the (row) word occurs in the (column) document.

How do we compute similarities between documents?

9/50



Distance functions
Now we already have a representation for each document / word!

As You Like It Twelfth Night Julius Caesar Henry V

battle 1 0 7 13
good 114 80 62 89
fool 36 58 1 4
wit 20 15 2 3

13PN W] The term-document matrix for four words in four Shakespeare plays. Each cell
contains the number of times the (row) word occurs in the (column) document.

How do we compute similarities between documents?

Euclidean distance
Fora,b € RY,

Assume a and b are BoW vectors. What if b repeats each sentence in a twice?
9/50



Distance functions
Now we already have a representation for each document / word!

As You Like It Twelfth Night Julius Caesar Henry V

battle 1 0 7 13
good 114 80 62 89
fool 36 58 1 4
wit 20 15 2 3

IPPTNX®] The term-document matrix for four words in four Shakespeare plays. Each cell
contains the number of times the (row) word occurs in the (column) document.

How do we compute similarities between documents?

Cosine similarity

Fora,b € RY,
a-b

allf| &

Defines angle between two vectors (= cos « in 2D)

sim(a, b) =

9/50



Example application: information retrieval

Given a set of documents and a query, use the BoW representation and cosine
similarity to find the most relevant document.

10/50



Example application: information retrieval

Given a set of documents and a query, use the BoW representation and cosine
similarity to find the most relevant document.

What are potential problems?

Q: What are good books on great battles?

As You Like It Twelfth Night Julius Caesar Henry V

battle 1 0 7 13
good 114 80 62 &9
fool 36 58 1 4
wit 20 15 2 3

|31 W] The term-document matrix for four words in four Shakespeare plays. Each cell
contains the number of times the (row) word occurs in the (column) document.

10/50



Example application: information retrieval

Given a set of documents and a query, use the BoW representation and cosine
similarity to find the most relevant document.

What are potential problems?

Q: What are good books on great battles?

As You Like It Twelfth Night Julius Caesar Henry V

battle 1 0 7 13
good 114 80 62 &9
fool 36 58 1 4
wit 20 15 2 3

|31 W] The term-document matrix for four words in four Shakespeare plays. Each cell
contains the number of times the (row) word occurs in the (column) document.

Similarity may be dominated by common words!

10/50



Step 2: Reweight counts

Key idea: upweight words that carry more information about the document
Construct a feature map ¢: document — RIV!

TFIDF weight for token w:

11/50



Step 2: Reweight counts

Key idea: upweight words that carry more information about the document
Construct a feature map ¢: document — RIV!

TFIDF weight for token w:

dw(d) = count(w, d) x
~——
tf(w, d)

® Term frequency (TF): count of the word in the document (same as BoW)

11/50



Step 2: Reweight counts
Key idea: upweight words that carry more information about the document
Construct a feature map ¢: document — RIV!
TFIDF weight for token w:

# documents

# documents containing w

tf(w, d) idffw)

ow(d) = count(w, d) x log
~——

® Term frequency (TF): count of the word in the document (same as BoW)

® Reweight by inverse document frequency (IDF): how specific is the word to
any particular document

11/50



Step 2: Reweight counts
Key idea: upweight words that carry more information about the document
Construct a feature map ¢: document — RIV!

TFIDF weight for token w:

# documents

w(d) = t(w, I — .
dw(d) _coun (,_/W d) x log # documents containing w
tf(w, d) idffw)

® Term frequency (TF): count of the word in the document (same as BoW)

® Reweight by inverse document frequency (IDF): how specific is the word to
any particular document

® Higher weight on frequent words that only occur in a few documents

11/50



TFIDF example

As You Like It Twelfth Night Julius Caesar Henry V

battle 0.074 0 022 0.28
good 0 0 0 0
fool 0.019 0.021 0.0036 0.0083
wit 0.049 0.044 0.018 0.022

A tf-idf weighted term-document matrix for four words in four Shakespeare
plays, using the counts in Fig. 6.2. For example the 0.049 value for wit in As You Like It is
the product of tf = log;((20+ 1) = 1.322 and idf = .037. Note that the idf weighting has
eliminated the importance of the ubiquitous word good and vastly reduced the impact of the
almost-ubiquitous word fool.

Figure: From Jurafsky and Martin.

Why do some words have zero weights?

12/50



An alternative way to reweighting using pointwise mutual information

PMI(x;y) def log p(X’y) = p(X‘y) - p(y’X)

p(ply) 8 plx) 8 p(y)

13/50



An alternative way to reweighting using pointwise mutual information

et POoy) ) Pl [X)
PMICG ) = 108 03000 =8 o)~ B p(y)

e Symmetric: PMI(x; y) = PMI(y; x)

13/50



An alternative way to reweighting using pointwise mutual information

et POoy) ) Pl [X)
PMIGGY) = 108 00 =% o) %8 py)

e Symmetric: PMI(x; y) = PMI(y; x)

® Estimates:
count
p(x|y) = (X’y)/ how often does x occur in the neighborhood of y
> e count(x’, y)
count
p(x) = (x) how often does x occur in the corpus

> e count(x’)

13/50



An alternative way to reweighting using pointwise mutual information

~log ply | x)

p(y)

PMI(x: y) % log LY _ 1o PX 1Y)

p()Ply) — F p(x)

e Symmetric: PMI(x; y) = PMI(y; x)

® Estimates:
count
p(x|y) = (X’y)/ how often does x occur in the neighborhood of y
> e count(x’, y)
count
p(x) = (x) how often does x occur in the corpus

> e count(x’)

o Positive PMI: PPMI(x; y) % max(0, PMI(x; y))

13/50



An alternative way to reweighting using pointwise mutual information

p(y | x)

def M_OP(X\)’):O
0Ip0) %8 a0 %8 p(y)

PMI(x;y) = log

e Symmetric: PMI(x; y) = PMI(y; x)

® Estimates:
. count(x, y) , ,
p(x|y) = how often does x occur in the neighborhood of y
> wex count(x’, y)
count
p(x) = (x) how often does x occur in the corpus
> e count(x’)

Positive PMI: PPMI(x; y) % max(0, PMI(x; y))

Application in NLP: measure association between words

13/50



Step 3: Dimensionality reduction

What's the size of this matrix?

As You Like It Twelfth Night Julius Caesar Henry V

battle 0.074 0 0.22 0.28
good 0 0 0 0
fool 0.019 0.021 0.0036 0.0083
wit 0.049 0.044 0.018 0.022

| pTu i EiRY A tf-idf weighted term-document matrix for four words in four Shakespeare

Figure: Jurafsky and Martin.

14/50



Step 3: Dimensionality reduction

What's the size of this matrix?

As You Like It Twelfth Night Julius Caesar Henry V
battle 0.074 0 0.22 0.28
good 0 0 0 0
fool 0.019 0.021 0.0036 0.0083
wit 0.049 0.044 0.018 0.022

| pTu i EiRY A tf-idf weighted term-document matrix for four words in four Shakespeare

Figure: Jurafsky and Martin.

Motivation: want a lower-dimensional, dense representation for efficiency

14/50



Step 3: Dimensionality reduction

Recall SVD: a m x n matrix A, xn (e.g., @ word-document matrix), can be decomposed
to
UmxmZmxn Vi,

nxn»

where U and V are orthogonal matrices, and X is a diagonal matrix.

15/50



Step 3: Dimensionality reduction

Recall SVD: a m x n matrix A, xn (e.g., @ word-document matrix), can be decomposed

to
UnmxmZmxn V.

nxn»

where U and V are orthogonal matrices, and X is a diagonal matrix.

Interpretation:
AAT = (UZVvT)(vZUuT) = Ux?uT.

2

* o2 are eigenvalues of AAT

e Connection to PCA: If columns of A have zero mean (i.e. AAT is the covariance

matrix), then columns of U are principle components of the column space of A.

15/50



SVD for the word-document matrix

d  da
12 5

A_| 7 10
4 8
9 3

us
gov
gene

lab

~N o woo X

16/50



SVD for the word-document matrix

0.50
0.60
0.01
0.02

0.02
0.03
0.72
0.84

di
12

o 01 O O

N O O O

gov

gene

O O O O

lab

4xn

0.50
0.64
0.12
0.36

0.60
0.48
0.24
0.12

nxn

16/50



SVD for the word-document matrix

di

12

A= 7

4

9

050 0.02 --- 15
1060 0.03 --- 0
1001 072 --- 0
0.02 084 --- 0

o 01 O O

N O O O

dn

8 us

31 gov

6 | gene

7 lab
0 0.50 0.60 T
0 0.64 0.48
0 0.12 0.24
0/,.,\036 012 ---/

® y; are document clusters and v; are word clusters
® Take top-k components to obtain word vectors: W = U,X (or just Uy)

16/50



SVD for the word-document matrix

Computing the dense word vectors:

® Run truncated SVD of the word-document matrix A, xn
® Each row of U« XL« corresponds to a word vector of dimension k

® Each coordinate of the word vector corresponds to a cluster of documents (i.e.,
topics such as politics, music, etc.)

17/50



Summary

Count-based word embeddings

1.

Design the matrix, e.g. word x document, people x movie.

2. Reweight the raw counts, e.g. TFIDF, PPMI.
3.
4

. Use word/person/etc. vectors in downstream tasks.

Reduce dimensionality by truncated SVD.

Key idea:

® Intuition: Represent an object by its connection to other objects.

® | exical semantics: the word meaning can be represented by the context it

occursin.

® Linear algebra: Infer clusters (e.g., concepts, topics) using co-occurence statistics

18/50



Table of Contents

Prediction-based word embeddings

19/50



Learning word embeddings

Goal: map each word to a vector in RY such that similar words also have similar word
vectors.

20/50



Learning word embeddings

Goal: map each word to a vector in RY such that similar words also have similar word
vectors.

Can we directly optimize the goal by formalizing a prediction problem?
® Needs to be self-supervised since our data is unlabeled.

20/50



Learning word embeddings

Goal: map each word to a vector in RY such that similar words also have similar word
vectors.

Can we directly optimize the goal by formalizing a prediction problem?
® Needs to be self-supervised since our data is unlabeled.

Distributional hypothesis: Similar words occur in similar contexts
® Predict the context given a word f: word — context
® \Words that tend to occur in same contexts will have similar representation

20/50



The skip-gram model

Task: given a word, predict its neighboring words within a window

The quick brown fox jumps over the lazy dog

21/50



The skip-gram model

Task: given a word, predict its neighboring words within a window
The quick brown fox jumps over the lazy dog
Assume conditional independence of the context words:
i+k

P(Wiiey s Wi 1, Wity Wik [ wi) =[] p(w; | w)
j=i—kjti

21/50



The skip-gram model

Task: given a word, predict its neighboring words within a window
The quick brown fox jumps over the lazy dog
Assume conditional independence of the context words:
i+k
P(Wiiey s Wi 1, Wity Wik [ wi) =[] p(w; | w)

J=i—kj#i

How to model p(w; | w;)?

21/50



The skip-gram model

Task: given a word, predict its neighboring words within a window
The quick brown fox jumps over the lazy dog
Assume conditional independence of the context words:
i+k
P(Wiiey s Wi 1, Wity Wik [ wi) =[] p(w; | w)

j=i—kj#i

How to model p(w; | w;)? Multiclass classification

21/50



The skip-gram model

Use the softmax function to predict context words from the center word

exp [(bctx( VV_/) * Owrd ( Wi)]
wey €Xp [Perx(W)) - dwrd(wi)]

p(wj\w,-)zz

22/50



The skip-gram model

Use the softmax function to predict context words from the center word

exp [dex (W) - duwra(w))]
wey €Xp [Perx(W)) - dwrd(wi)]

p(wj\w,-)zz

% What's the difference from multinomial logistic regression?

22/50



The skip-gram model

Use the softmax function to predict context words from the center word

exp [Pex (W) - Pwra(wi)]
wey €Xp [Perx(W)) - dwrd(wi)]

P(Wj\Wi)ZZ

% What's the difference from multinomial logistic regression?

Implementation:
* ¢:V — R ¢ can be implemented as a dictionary from words (ids) to vectors.

22/50



The skip-gram model

Use the softmax function to predict context words from the center word

exp [¢ctx(“ﬁ) : ()wrd(Wi)]
wey €Xp [Perx(W)) - dwrd(wi)]

P(Wj\Wi)ZZ

% What's the difference from multinomial logistic regression?

Implementation:

* ¢:V — R ¢ can be implemented as a dictionary from words (ids) to vectors.

e For each word w, learn two vectors.

22/50



The skip-gram model

Use the softmax function to predict context words from the center word

exp [¢ctx(“ﬁ) : ()wrd(Wi)]
wey €Xp [Perx(W)) - dwrd(wi)]

P(Wj\Wi)ZZ

Y What'’s the difference from multinomial logistic regression?

Implementation:

* ¢:V — R ¢ can be implemented as a dictionary from words (ids) to vectors.

e For each word w, learn two vectors.

® Learn parameters by MLE and SGD (Is the objective convex?)

22/50



The skip-gram model

Use the softmax function to predict context words from the center word

exp [¢Ctx(Wj) : ()Wrd(Wi)]
wey €Xp [Perx(W)) - dwrd(wi)]

P(Wj\Wi)ZZ

Y What'’s the difference from multinomial logistic regression?

Implementation:

* ¢:V — R ¢ can be implemented as a dictionary from words (ids) to vectors.

® For each word w, learn two vectors.
® Learn parameters by MLE and SGD (Is the objective convex?)
® ourq is taken as the word embedding

22/50



Negative sampling
Challenge in MLE: computing the normalizer is expensive (try calculate the gradient)!

23/50



Negative sampling
Challenge in MLE: computing the normalizer is expensive (try calculate the gradient)!

Key idea: solve a binary classification problem instead

Is the (word, context) pair real or fake?

positive examples + negative examples -

w Cpos w Cneg w Cneg
apricot tablespoon apricot aardvark apricot seven
apricot of apricot my apricot forever
apricot jam apricot where  apricot dear

apricot a apricot coaxial apricot if

23/50



Negative sampling

Challenge in MLE: computing the normalizer is expensive (try calculate the gradient)!

Key idea: solve a binary classification problem instead

Is the (word, context) pair real or fake?

positive examples + negative examples -
w Cpos w Cneg w Cneg
apricot tablespoon apricot aardvark apricot seven
apricot of apricot my apricot forever
apricot jam apricot where  apricot dear
apricot a apricot coaxial apricot if

1

po(real | w,c) =

1+ e—%ex(€) wra(w)
Large dot product between w and c if they co-occur.

23/50



Negative sampling: loss function

Let s(w, ¢) = ¢cx(€) - dwra(w) be the score of the context and target word.

NLL loss:
log(1 + e*s(W’C)) + Z log(1 + es(W’C"))
CnE/V@,C

Let £(x) = log(1 + e™*), we have the loss for negative sampling

Us(w, )+ > U(-s(w,cn))

Cne./\/w,c

24/50



Fasttext

Improvements over skipgram:

® Negative sampling
® Character n-gram, e.g., <ap, app, ppl, ple, le>
s(w,c) = Z s(v, ¢)
vengram(w)
® Faster to train and maintains similar quality to skipgram

® \Well-maintained open source project: https://fasttext.cc

25/50


https://fasttext.cc

The continuous bag-of-words model

Task: given the context, predict the word in the middle
The quick brown fox jumps over the lazy dog

Similary, we can use multiclass classification for the prediction

P(Wi | Wik, ooy W1, Wig1, ..., Witk)

How to represent the context (input)?

26/50



The continuous bag-of-words model

The context is a sequence of words.

C=Wikyeooy Wi—1, Wit1,..., Witk

exp [¢wrd(Wi) : ¢BOW(C)]
Zwev exp [¢wrd(W) : ¢BOW(C)]

p(w; | ¢) =

27/50



The continuous bag-of-words model

The context is a sequence of words.

C= W[y s Wi_1, Wig1,..., Witk

exp [¢Wrd(Wi) : d’BoW(C)]
Zwev exp [¢wrd(W) : ¢BOW(C)]
exp [¢wrd(Wi) . ZW/EC ¢ctX(WI)]

p(wi | €) =

T ey &P (D (W) - 2 e eax(w)]

® ¢sow(c) sums over representations of each word in ¢
® |Implementation is similar to the skip-gram model.

27/50



Surprising observation of word embeddings

Find similar words: top-k nearest neighbors using cosine similarity

® Size of window influences the type of similarity

® Shorter window produces syntactically similar words, e.g., Hogwarts and
Sunnydale (fictional schools)

® |onger window produces topically related words, e.g., Hogwarts and
Dumbledore (Harry Porter entities)

28/50



Semantic properties of word embeddings

Solve word analogy problems: ais to b as a' is to what?
tree

apFﬂe Q.______—_—_——————D;S)

i

grape

Figure: Parallelogram model (from J&H).

® man:woman : king : queen

¢wrd(man) - ward(king) ~ ¢wrd(Woman) - ward(queen)
® Caveat: must exclude the three input words
® Does not work for general relations

29/50



Comparison

Count-based Prediction-based

matrix factorization prediction problem

fast to compute slow (with large corpus)

interpretable components hard to interprete but has intriguing prop-
erties

® Both uses the distributional hypothesis.
e Both generalize beyond text: using co-occurence between any types of objects

® | earn product embeddings from customer orders
® | earn region embeddings from images

30/50



Evaluate word vectors

Intrinsic evaluation
® Evaluate on the proxy task (related to the learning objective)
® Word similarity/analogy datasets (e.g., WordSim-353, SimLex-999)

Extrinsic evaluation
® Evaluate on the real/downstream task we care about
e Use word vectors as features in applications, e.g., text classification.

31/50



Summary

Key idea: formalize word representation learning as a self-supervised prediction
problem

Prediction problems:
e Skip-gram: Predict context from words
e CBOW: Predict word from context
® Other possibilities:

® Predict log p(word | context), e.g. GloVe
® Contextual word embeddings (later)

32/50



Table of Contents

Neural networks

33/50



Feature learning

Linear predictor with Sh(x)=w-

Can we |earn features from data?

34/50



Feature learning

Linear predictor with Dh(x)=w-
Can we learn features from data?

Example:
® Predict popularity of restaurants.
® Raw input: #dishes, price, wine option, zip code, #seats, size
® Decompose into subproblems:
hy([#dishes, price, wine option]) = food quality

ha([zip code]) = walkable

hs([#seats, size]) = nosie

34/50



Predefined subproblems

Input Intermediate Output
features features
#dishes —
price — \ !
> food quality
wine option — 2 —— Popularity
zip code — b .
/ noise
#seats —— /

size —

35/50



Learning intermediate features

Input Hidden Output
layer layer layer

#dishes —

price — \ 1
wine option —— h ,
— Popularity
zip code — hs
#seats —

size —

36/50



Neural networks

Key idea: automatically learn the intermediate features.

Feature engineering: Manually specify ¢(x) based on domain knowledge and learn
the weights:

f(x) = wT¢(x).

Feature learning: Automatically learn both the features (K hidden units) and the
weights:

h(x) = [ (X),..., hk(x)], f(x)=wTh(x)

37/50



Activation function

® How should we parametrize h;'s?

38/50



Activation function

® How should we parametrize h;'s?

hi(x) = o (v, x). (1)

1

® o is the activation function.

38/50



Activation function

® How should we parametrize h;'s?

hi(x) = o (v, x). (1)

1

® o is the activation function.
® What might be some activation functions we want to use?

38/50



Activation function

® How should we parametrize h;'s?

hi(x) = o (v, x). (1)

1

® o is the activation function.
® What might be some activation functions we want to use?
® sign function? Non-differentiable.

38/50



Activation function

® How should we parametrize h;'s?

hi(x) = o (v, x). (1)

1

® o is the activation function.
® What might be some activation functions we want to use?

® sign function? Non-differentiable.
® Differentiable approximations: sigmoid functions.

® E.g., logistic function, hyperbolic tangent function, ReLU

38/50



Activation function

® How should we parametrize h;'s?

hi(x) = o (v, x). (1)

1

® o is the activation function.
® What might be some activation functions we want to use?

® sign function? Non-differentiable.
® Differentiable approximations: sigmoid functions.

® E.g., logistic function, hyperbolic tangent function, ReLU
® Non-linearity

38/50



Activation Functions

® The hyperbolic tangent is a common activation function:

Output

0.5-

0.0-

05-

o(x) = tanh (x).

Activation_Function
=== Tanh

39/50



Activation Functions
® The rectified linear (ReLU) function:
o(x) = max(0, x).
e Efficient backpropogation, sparsity, avoiding vanishing gradient

® Work well empirically.

Output o
g

0.25 -

00
Input x
40/50



Activation Functions

® The dying ReLU problem: neurons become inactive
® Solution: allow small gradients when the neuron is not active

® Still need to tune the hyperparameter «

Output

RelU and its Variants with Formulas

ReLU: f(x) = max(0, x)

—— Leaky RelU: fix) =x if x= 0, else ax, a=0.1
—— ELU: fix)=xifx= 0, else ale*-1),a=1.0

41/50



Activation Functions

® GELU: smooth transition around the origin

GELU(x) = x - 9(x)

®(x) is the CDF of the normal distribution

GELU Activation Function

1 — GELU(x)

42/50



Activation Functions

® GELU: smooth transition around the origin

GELU(x) = x - 9(x)

®(x) is the CDF of the normal distribution

e Downside?

GELU Activation Function

1 — GELU(x)

42/50



Activation Functions
® GELU: smooth transition around the origin

GELU(x) = x - 9(x)
®(x) is the CDF of the normal distribution

GELU Activation Function

51 — GELU(x)

“a -2 0 2 4
X

® Downside? More compute (but negligible)
42/50



Multilayer perceptron / Feed-forward neural networks
® Wider: more hidden units.
® Deeper: more hidden layers.

Input Hidden Output
layer layers layer
X1 ——
\
Xy —— \

P — — — Score

Xd—1 ——

X4 —

43/50



Multilayer Perceptron: Standard Recipe

® Each subsequent hidden layer takes the output o € R of previous layer and
produces

W (U D) = & (W(J‘)OU*U v b<f>) forj=2,...,1L

where WU) ¢ Rmxm p() ¢ Rm,

44/50



Multilayer Perceptron: Standard Recipe

® Each subsequent hidden layer takes the output o € R of previous layer and
produces

) (oU) =& <W(J')o(f*1) + bU)) ,forj=2,...,L

where WU) € R™*m, pU) € R™.
e | ast layer is an affine mapping (no activation function):

a(o(D) = WL L) 4 p(Lt1).

where W(L+1) ¢ Rkxm gnd p(L+1) ¢ RK,

44/50



Multilayer Perceptron: Standard Recipe

® Each subsequent hidden layer takes the output o € R of previous layer and
produces
A (U1 = o (WU)OU*” + b(J')) forj=2,...,L

where WU) € R™*m, pU) € R™.
e | ast layer is an affine mapping (no activation function):

a(o(D) = WL L) 4 p(Lt1).

where W+ ¢ Rkxm and p(L+1) ¢ R,
® The full neural network function is given by the composition of layers:

f(x) = (aoh(L)o~-~oh(1)) (x) (2)

44/50



Computation graphs

(adpated from David Rosenberg’s slides)

Function as a node that takes in inputs and produces outputs.

® Typical computation graph:

a—(q)—t

4 R"

e Broken out into components:

a, b,
Q
¢ L,
a b
A "

45/50



Compose multiple functions
(adpated from David Rosenberg’s slides)
Compose two functions g : R? — R"and f : R” — R™: ¢ = f(g(a))

b,
a, A <
C
OGSO
N C;..
a
P L
L L

46/50



Compose multiple functions
(adpated from David Rosenberg’s slides)
Compose two functions g : R? — R"and f : R” — R™: ¢ = f(g(a))

b,
a, A <
OEB O,
. c.
Qa
P L
[N . "
e beR <<k

® Derivative: How does change in a; affect ¢;?

46/50



Compose multiple functions

(adpated from David Rosenberg’s slides)

Compose two functions g : R? — R"and f : R” — R™: ¢ = f(g(a))

b,
a, A <
OEB O,
' c.
Qa
P L —
[N . "
e bek ek

® Derivative: How does change in a; affect ¢;?

dc; " dc; dby

6aj N k:labk 8aj'

46/50



Compose multiple functions

(adpated from David Rosenberg’s slides)

Compose two functions g : R? — R"and f : R” — R™: ¢ = f(g(a))

b,
al A <
T X
' c.
Qa
P L —
[N . ..
e bek ek

® Derivative: How does change in a; affect ¢;?

dc; " dc; dby

6aj N kjlabk Oaj'

e \jsualize the multivariable chain rule:

® Sum changes induced on all paths from a; to c;.
® Changes on one path is the product of changes across each node.

46/50



Computation graph example

(adpated from David Rosenberg’s slides)

W \ /Q
b —L)-4-¢-)
Y

(What is this graph computing?)

47750



Computation graph example

(adpated from David Rosenberg’s slides)

W R /Q
b —L)-4-¢-)
Y

(What is this graph computing?)

o
ob
ov

Iw;

ooy -
ot 0y

apow; (=2r) X = —2n
j

47750



Computation graph example

(adpated from David Rosenberg’s slides)

w R /Q
b )-8 -

A
14 0l Oy
e . 9 _ IO (any1) = —or
(What is this graph computing?) ob Jy ob
ov ol 9y
= L = (=2r)x = -2
dw, = oyow - 2N = 72

Computing the derivatives in certain order allows us to save compute!

47750



Computation graph example

(adpated from David Rosenberg’s slides)

w R /Q
b )-8 -

Y

(What is this graph computing?)

ov
5
of
b
ot
aw;

2r
g; =(2r)(-1) = —2r
ot dy
or oy _
@Biwj = (=2r)x; = —2rx;

Computing the derivatives in certain order allows us to save compute!

47750



Backpropogation

Backpropogation = chain rule + dynamic programming on a computation graph

48/50



Backpropogation

Backpropogation = chain rule + dynamic programming on a computation graph

Forward pass

® Topological order: every node appears before its children
® For each node, compute the output given the input (from its parents).

48/50



Backpropogation

Backward pass

® Reverse topological order: every node appear after its children

® For each node, compute the partial derivative of its output w.r.t. its input,
multiplied by the partial derivative from its children (chain rule).

. — .. 0b _ 0J . 9J
8 =& 92~ aa & = 3b

49/50



Summary

Key idea in neural nets: feature/representation learning

Building blocks:
e |nput layer: raw features (no learnable parameters)
e Hidden layer: perceptron + nonlinear activation function
e Qutput layer: linear (+ transformation, e.g. softmax)

Optimization:
® Optimize by SGD (implemented by back-propogation)
® Objective is non-convex, may not reach a global minimum

50/50



	Review
	Introduction
	Count-based word embeddings
	Prediction-based word embeddings
	Neural networks

