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Last week

Generative vs discriminative models for text classification
• (Multinomial) naive Bayes What’s the key assumption?

• Assumes conditional independence
• Very efficient in practice (closed-form solution)

• Logistic regression What’s the main advantage?
• Works with all kinds of features
• Wins with more data [Ng and Jordan, 2001]

Feature vector of text input
• BoW representation
• N-gram features (usually n ≤ 3)
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Objective
Goal: come up with a good representation of text

• What is a representation?

• Feature map: ϕ : text → Rd , e.g., BoW, handcrafted features
• “Representation” often refers to learned features of the input

• What is a good representation?

• Enables a notion of distance over text: d(ϕ(a), ϕ(b)) is small for
semantically similar texts a and b

• Abstraction over individual words

• Leads to good task performance (with less training data)

• Contains useful features

What text representation have we learned?
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The distributional hypothesis

How do we come up with a representation without handcrafting features?

“You shall know a word by the company it keeps.” (Firth, 1957)

Word guessing! (example from Eisenstein’s book)

Everybody likes tezgüino.
We make tezgüino out of corn.
A bottle of tezgüino is on the table.
Don’t have tezgüino before you drive.

Idea: Represent a word by its neighbors.
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Step 1: Choose the context

What are the neighbors?

Example:
• word × document

• word × word
• person × movie
• note × song

Figure: Jurafsky and Martin.

Construct a matrix where
• Row and columns represent two sets of objects
• Each entry is the co-occurence counts of the two objects
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Distance functions

Now we already have a representation for each document / word!

How do we compute similarities between documents?
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Distance functions
Now we already have a representation for each document / word!

How do we compute similarities between documents?

Euclidean distance
For a, b ∈ Rd ,

d(a, b) =

√√√√ d∑
i=1

(ai − bi )2 .

Assume a and b are BoW vectors. What if b repeats each sentence in a twice?

(bi = 2ai )

9 / 50



Distance functions
Now we already have a representation for each document / word!

How do we compute similarities between documents?

Cosine similarity
For a, b ∈ Rd ,

sim(a, b) =
a · b

∥a∥∥b∥
Defines angle between two vectors (= cosα in 2D)

9 / 50



Example application: information retrieval
Given a set of documents and a query, use the BoW representation and cosine
similarity to find the most relevant document.

What are potential problems?

Q: What are good books on great battles?

Similarity may be dominated by common words!
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Step 2: Reweight counts
Key idea: upweight words that carry more information about the document

Construct a feature map ϕ : document → R|V|

TFIDF weight for token w :

ϕw (d) = count(w , d)︸ ︷︷ ︸
tf(w , d)

× log
# documents

# documents containing w︸ ︷︷ ︸
idf(w)

.

• Term frequency (TF): count of the word in the document (same as BoW)
• Reweight by inverse document frequency (IDF): how specific is the word to

any particular document
• Higher weight on frequent words that only occur in a few documents
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TFIDF example

Figure: From Jurafsky and Martin.

Why do some words have zero weights?

12 / 50



An alternative way to reweighting using pointwise mutual information

PMI(x ; y) def
= log

p(x , y)

p(x)p(y)
= log

p(x | y)
p(x)

= log
p(y | x)
p(y)

• Symmetric: PMI(x ; y) = PMI(y ; x)

• Estimates:

p̂(x | y) = count(x , y)∑
x ′∈X count(x ′, y)

how often does x occur in the neighborhood of y

p̂(x) =
count(x)∑

x ′∈X count(x ′)
how often does x occur in the corpus

• Positive PMI: PPMI(x ; y) def
= max(0, PMI(x ; y))

• Application in NLP: measure association between words
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Step 3: Dimensionality reduction

What’s the size of this matrix?

Figure: Jurafsky and Martin.

Motivation: want a lower-dimensional, dense representation for efficiency
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Step 3: Dimensionality reduction

Recall SVD: a m× n matrix Am×n (e.g., a word-document matrix), can be decomposed
to

Um×mΣm×nV
T
n×n ,

where U and V are orthogonal matrices, and Σ is a diagonal matrix.

Interpretation:
AAT = (UΣV T )(VΣUT ) = UΣ2UT .

• σ2
i are eigenvalues of AAT

• Connection to PCA: If columns of A have zero mean (i.e. AAT is the covariance
matrix), then columns of U are principle components of the column space of A.

15 / 50
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SVD for the word-document matrix

A =

d1 d2 · · · dn


12 5 · · · 8 US
7 10 · · · 3 gov
4 8 · · · 6 gene
9 3 · · · 7 lab

=


0.50 0.02 · · ·
0.60 0.03 · · ·
0.01 0.72 · · ·
0.02 0.84 · · ·


4×4


15 0 0 0 · · · 0
0 10 0 0 · · · 0
0 0 5 0 · · · 0
0 0 0 2 · · · 0


4×n


0.50 0.60 · · ·
0.64 0.48 · · ·
0.12 0.24 · · ·
0.36 0.12 · · ·


T

n×n

• ui are document clusters and vi are word clusters
• Take top-k components to obtain word vectors: W = UkΣk (or just Uk )
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SVD for the word-document matrix

Computing the dense word vectors:

• Run truncated SVD of the word-document matrix Am×n

• Each row of Um×kΣk corresponds to a word vector of dimension k

• Each coordinate of the word vector corresponds to a cluster of documents (i.e.,
topics such as politics, music, etc.)

17 / 50



Summary

Count-based word embeddings
1. Design the matrix, e.g. word × document, people × movie.
2. Reweight the raw counts, e.g. TFIDF, PPMI.
3. Reduce dimensionality by truncated SVD.
4. Use word/person/etc. vectors in downstream tasks.

Key idea:
• Intuition: Represent an object by its connection to other objects.
• Lexical semantics: the word meaning can be represented by the context it

occurs in.
• Linear algebra: Infer clusters (e.g., concepts, topics) using co-occurence statistics

18 / 50
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Learning word embeddings

Goal: map each word to a vector in Rd such that similar words also have similar word
vectors.

Can we directly optimize the goal by formalizing a prediction problem?
• Needs to be self-supervised since our data is unlabeled.

Distributional hypothesis: Similar words occur in similar contexts
• Predict the context given a word f : word → context
• Words that tend to occur in same contexts will have similar representation

20 / 50
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The skip-gram model

Task: given a word, predict its neighboring words within a window

The quick brown fox jumps over the lazy dog

Assume conditional independence of the context words:

p(wi−k , . . . ,wi−1,wi+1, . . . ,wi+k | wi ) =
i+k∏

j=i−k,j ̸=i

p(wj | wi )

How to model p(wj | wi )? Multiclass classification

21 / 50
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The skip-gram model

Use the softmax function to predict context words from the center word

p(wj | wi ) =
exp [ϕctx(wj) · ϕwrd(wi )]∑

w∈V exp [ϕctx(wj) · ϕwrd(wi )]

What’s the difference from multinomial logistic regression?

Implementation:

• ϕ : V → Rd . ϕ can be implemented as a dictionary from words (ids) to vectors.
• For each word w , learn two vectors.
• Learn parameters by MLE and SGD (Is the objective convex?)
• ϕwrd is taken as the word embedding
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Negative sampling
Challenge in MLE: computing the normalizer is expensive (try calculate the gradient)!

Key idea: solve a binary classification problem instead

Is the (word, context) pair real or fake?

pθ(real | w , c) =
1

1 + e−ϕctx(c)·ϕwrd(w)

Large dot product between w and c if they co-occur.
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Negative sampling: loss function

Let s(w , c) = ϕctx(c) · ϕwrd(w) be the score of the context and target word.

NLL loss:
log(1 + e−s(w ,c)) +

∑
cn∈Nw,c

log(1 + es(w ,cn))

Let ℓ(x) = log(1 + e−x), we have the loss for negative sampling

ℓ(s(w , c)) +
∑

cn∈Nw,c

ℓ(−s(w , cn))
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Fasttext

Improvements over skipgram:

• Negative sampling

• Character n-gram, e.g., <ap, app, ppl, ple, le>

s(w , c) =
∑

v∈ngram(w)

s(v , c)

• Faster to train and maintains similar quality to skipgram

• Well-maintained open source project: https://fasttext.cc

25 / 50
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The continuous bag-of-words model

Task: given the context, predict the word in the middle

The quick brown fox jumps over the lazy dog

Similary, we can use multiclass classification for the prediction

p(wi | wi−k , . . . ,wi−1,wi+1, . . . ,wi+k)

How to represent the context (input)?

26 / 50



The continuous bag-of-words model

The context is a sequence of words.

c = wi−k , . . . ,wi−1,wi+1, . . . ,wi+k

p(wi | c) =
exp [ϕwrd(wi ) · ϕBoW(c)]∑
w∈V exp [ϕwrd(w) · ϕBoW(c)]

=
exp

[
ϕwrd(wi ) ·

∑
w ′∈c ϕctx(w

′)
]∑

w∈V exp
[
ϕwrd(w) ·

∑
w ′∈c ϕctx(w ′)

]
• ϕBoW(c) sums over representations of each word in c

• Implementation is similar to the skip-gram model.
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Surprising observation of word embeddings

Find similar words: top-k nearest neighbors using cosine similarity

• Size of window influences the type of similarity

• Shorter window produces syntactically similar words, e.g., Hogwarts and
Sunnydale (fictional schools)

• Longer window produces topically related words, e.g., Hogwarts and
Dumbledore (Harry Porter entities)
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Semantic properties of word embeddings
Solve word analogy problems: a is to b as a’ is to what?

Figure: Parallelogram model (from J&H).

• man : woman :: king : queen
ϕwrd(man)− ϕwrd(king) ≈ ϕwrd(woman)− ϕwrd(queen)

• Caveat: must exclude the three input words
• Does not work for general relations
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Comparison

Count-based Prediction-based

matrix factorization prediction problem
fast to compute slow (with large corpus)
interpretable components hard to interprete but has intriguing prop-

erties

• Both uses the distributional hypothesis.
• Both generalize beyond text: using co-occurence between any types of objects

• Learn product embeddings from customer orders
• Learn region embeddings from images
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Evaluate word vectors

Intrinsic evaluation
• Evaluate on the proxy task (related to the learning objective)
• Word similarity/analogy datasets (e.g., WordSim-353, SimLex-999)

Extrinsic evaluation
• Evaluate on the real/downstream task we care about
• Use word vectors as features in applications, e.g., text classification.
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Summary

Key idea: formalize word representation learning as a self-supervised prediction
problem

Prediction problems:
• Skip-gram: Predict context from words
• CBOW: Predict word from context
• Other possibilities:

• Predict log p̂(word | context), e.g. GloVe
• Contextual word embeddings (later)
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Feature learning

Linear predictor with handcrafted features: h(x) = w · ϕ(x).

Can we learn features from data?

Example:
• Predict popularity of restaurants.
• Raw input: #dishes, price, wine option, zip code, #seats, size
• Decompose into subproblems:

h1([#dishes, price, wine option]) = food quality

h2([zip code]) = walkable

h3([#seats, size]) = nosie
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Predefined subproblems

#dishes

price

wine option

zip code

#seats

size

Popularity

Intermediate
features

Input
features

Output

h1

h2

h3

food quality

walkable

noise
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Learning intermediate features

#dishes

price

wine option

zip code

#seats

size

Popularity

Hidden
layer

Input
layer

Output
layer

h1

h2

h3
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Neural networks

Key idea: automatically learn the intermediate features.

Feature engineering: Manually specify ϕ(x) based on domain knowledge and learn
the weights:

f (x) = wTϕ(x).

Feature learning: Automatically learn both the features (K hidden units) and the
weights:

h(x) = [h1(x), . . . , hK (x)] , f (x) = wTh(x)
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Activation function

• How should we parametrize hi ’s?

hi (x) = σ(vTi x). (1)

• σ is the activation function.
• What might be some activation functions we want to use?

• sign function? Non-differentiable.
• Differentiable approximations: sigmoid functions.

• E.g., logistic function, hyperbolic tangent function, ReLU

• Non-linearity
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Activation Functions
• The hyperbolic tangent is a common activation function:

σ(x) = tanh (x) .
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Activation Functions
• The rectified linear (ReLU) function:

σ(x) = max(0, x).

• Efficient backpropogation, sparsity, avoiding vanishing gradient
• Work well empirically.
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Activation Functions
• The dying ReLU problem: neurons become inactive
• Solution: allow small gradients when the neuron is not active

• Still need to tune the hyperparameter α
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Activation Functions
• GELU: smooth transition around the origin

GELU(x) = x · Φ(x)

Φ(x) is the CDF of the normal distribution

4 2 0 2 4
x

0

1

2

3

4

5

GE
LU

(x
)

GELU Activation Function
GELU(x)

• Downside? More compute (but negligible)
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Multilayer perceptron / Feed-forward neural networks
• Wider: more hidden units.
• Deeper: more hidden layers.

x1

x2

...

xd−1

xd

score

Hidden
layers

Input
layer

Output
layer
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Multilayer Perceptron: Standard Recipe
• Each subsequent hidden layer takes the output o ∈ Rm of previous layer and

produces
h(j)(o(j−1)) = σ

(
W (j)o(j−1) + b(j)

)
, for j = 2, . . . , L

where W (j) ∈ Rm×m, b(j) ∈ Rm.

• Last layer is an affine mapping (no activation function):

a(o(L)) = W (L+1)o(L) + b(L+1),

where W (L+1) ∈ Rk×m and b(L+1) ∈ Rk .
• The full neural network function is given by the composition of layers:

f (x) =
(
a ◦ h(L) ◦ · · · ◦ h(1)

)
(x) (2)
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Computation graphs
(adpated from David Rosenberg’s slides)

Function as a node that takes in inputs and produces outputs.

• Typical computation graph: • Broken out into components:
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Compose multiple functions
(adpated from David Rosenberg’s slides)

Compose two functions g : Rp → Rn and f : Rn → Rm: c = f (g(a))

• Derivative: How does change in aj affect ci?

∂ci
∂aj

=
n∑

k=1

∂ci
∂bk

∂bk
∂aj

.

• Visualize the multivariable chain rule:
• Sum changes induced on all paths from aj to ci .
• Changes on one path is the product of changes across each node.
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Computation graph example
(adpated from David Rosenberg’s slides)

(What is this graph computing?)

∂ℓ

∂r
= 2r

∂ℓ

∂ŷ
=

∂ℓ

∂r

∂r

∂ŷ
= (2r) (−1) = −2r

∂ℓ

∂b
=

∂ℓ

∂ŷ

∂ŷ

∂b
= (−2r) (1) = −2r

∂ℓ

∂wj
=

∂ℓ

∂ŷ

∂ŷ

∂wj
= (−2r) xj = −2rxj

Computing the derivatives in certain order allows us to save compute!
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∂ŷ
= (2r) (−1) = −2r

∂ℓ

∂b
=

∂ℓ

∂ŷ
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∂ŷ

∂wj
= (−2r) xj = −2rxj

Computing the derivatives in certain order allows us to save compute!

47 / 50



Computation graph example
(adpated from David Rosenberg’s slides)

(What is this graph computing?)

∂ℓ

∂r
= 2r

∂ℓ

∂ŷ
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∂ŷ
= (2r) (−1) = −2r

∂ℓ

∂b
=

∂ℓ

∂ŷ
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Backpropogation

Backpropogation = chain rule + dynamic programming on a computation graph

Forward pass

• Topological order: every node appears before its children
• For each node, compute the output given the input (from its parents).

. . . fi fj . . .

a b = fi (a) c = fj(b)
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Backpropogation

Backward pass

• Reverse topological order: every node appear after its children
• For each node, compute the partial derivative of its output w.r.t. its input,

multiplied by the partial derivative from its children (chain rule).

. . . fi fj . . .

a b = fi (a) c = fj(b)

gi = gj · ∂b
∂a = ∂J

∂a gj =
∂J
∂b
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Summary

Key idea in neural nets: feature/representation learning

Building blocks:
• Input layer: raw features (no learnable parameters)
• Hidden layer: perceptron + nonlinear activation function
• Output layer: linear (+ transformation, e.g. softmax)

Optimization:
• Optimize by SGD (implemented by back-propogation)
• Objective is non-convex, may not reach a global minimum
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