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Basic information

® [nstructor: He He
® TAs: Xiang Pan, Haitian Jiang, Arun Purohit

® You can find all information about this course on the website:
https://nyu-cs2590.github.io/spring2025/.

® Best way to communicate with us is through Campuswire
(https://campuswire.com/p/GDE4D5420).

® Let us know if you have accessibility needs.

e Pdf slides will be uploaded before the lecture.
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What we expect you to know

® Linear algebra: vector space, vector norm, dot product, gradient etc.
® Probability and statistics: conditional probability, expectation, Bayes rule etc.

e Basic machine learning: loss function, gradient descent, logistic regression,
neural networks etc.

® Programming: Python, Numpy, HPC, and deep learning libraries (Pytorch,
Huggingface etc.)
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Grading

® Assighment (60%): 4 assignments (written + coding questions), each counting
15%

® Quizzes (15%): to encourage attendence to guest lectures, we will have an
online quiz about each lecture.

® Final exam (25%): there will be an online exam through Gradescope.
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Early rule-based systems: the Georgetown-IBM experiment

® The Russian-English machine translation program:
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® Avocabulary of 250 words

® Using 6 grammar rules, e.g.,

If first code is 110, is third code associated with preceding
complete word equal to 21? If so, reverse order of appearance of
words in output (i.e., word carrying 21 should follow that carrying
110)---otherwise, retain order.

6/60



Limitations of early systems

® Optimism in the 50's and 60's: working on tasks that were too complex at that
time
“Within the very near future—much less than twenty-five years—we shall have the

technical capability of substituting machines for any and all human functions in
organizations.”

® Disappointing results due to
® Limited computation: hardware has limited speed and memory
® Combinatorial explosion: algorithms are intractable in realistic settings
® Underestimated complexity: ambiguity, commonsense knowledge,
multimodality, etc.
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The rise of statistical learning in the 80’s

® Notable progress in MT from IBM (neglected knowlege of linguistics).

°* HMMs widely used for speech recognition.

“Every time | fire a linguist, the performance of the speech recognizer goes
up.”—Frederick Jelinek.

® The paradigm shift: expert knowledge + rules — data + features

e Statistical learning became the main driving force of NLP.
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The deep learning tsunami

Before deep learning (circa 2015), NLP is mostly about structured prediction and
feature engineering.

e Neural networks can automatically learn good features/representations for a
task

The paradigm shift: features — network architectures + embeddings

All NLP models are neural networks nowadays.
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Models and data getting larger

® Since around 2018, Transformer-based pretrained models have become the
foundation models.

® Pretraining on large data provides useful representations for many downstream
tasks.

® The paradigm shift: architecture design — transfer learning (fine-tuning)

® More recently, large-scale language modeling enables models with general
capabilities (e.g., ChatGPT by OpenAl).

® The paradigm shift: transfer learning — “elicitation”
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Structure of the course

® Module 1: supervised learning
How to formalize NLP tasks?

® Word vectors, RNNs, Transformers, encoders and decoders

® Module 2: representation learning
How to learn general representations of text without annotation?

® Pretraining and finetuning (BERT, GPT, T5)

® Module 3: large language models
Can a single model solve all tasks?

® Scaling, alignment (SFT, RLHF, DPO), evaluation

® Guest lectures on advanced topics
® RAG, agents, open-source LLMs
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Why is natural language hard?
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Why is natural language hard?

® Discrete
® How to define metrics?

Iwork at NYU. vs |work for NYU.
This is good. vs Thisis actually good.

® How to define transformations?

The food is okay. — The food is awesome!
They made a brief return to Cambridge. —  They returned.

® |n general, it's hard to represent text as mathematical objects.
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Why is natural language hard?

® Compositional
® The whole is built from parts (chars, words, sentences, paragraphs,
documents...)
® How to generalize when we don't see all possible combinations?
® Can't brute force! E.g., Lake et al., 2018
Vocabulary:
{jump, walk, turn, once, twice, left, right, before, after, and}
Sentences:
jump
jump left
jump left and walk right
jump left after walk right once before turn left twice
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http://proceedings.mlr.press/v80/lake18a/lake18a.pdf

Why is natural language hard?

® Sparse
® How to handle the long tail?
® Zipf's law: word frequency ralnk
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® Many linguistic phenomena follow Zipf's law, e.g.,
BoA's financial assistant Erica: The bank “learned [that] there are over 2,000
different ways to ask us to move money.”"

1https://www.aiqudo.com/2®19/@6/28/voicefsuccessfstoryfericafbankfamerica/
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Why is natural language hard?

°* Ambiguous
® How to interpret meaning in context?

Bass: fish? guitar? frequency? (word sense disambiguiation)

I shot an elephant in my pajamas: who is in the pajamas? (PP
attachment)

The spirit is willing, but the flesh is weak.
— The vodka is strong but the meat is rotten. (machine translation)
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Example: spam filter

® Writing rules
Contains “Viagra”
Contains “Rolex”
Subject line is all caps

® Learning from data

1. Collect emails labeled as spam or non-spam
2. Design features, e.g., first word of the subject, nouns in the main text
3. Learn a binary classifier
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Example: spam filter

® Writing rules
Contains “Viagra”
Contains “Rolex”
Subject line is all caps

® Learning from data

1. Collect emails labeled as spam or non-spam
2. Design features, e.g., first word of the subject, nouns in the main text

3. Learn a binary classifier

"7} Pros and cons of each approach?
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Key challenges in machine learning

® Availability of large amounts of (annotated) data
® Data collection: scraping, crowdsourcing, expert annotation

® Quality control: data quality can have large impact on the final model
(garbage in garbage out)

® Don't take it for granted: always check the data source!
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Key challenges in machine learning

® Availability of large amounts of (annotated) data
® Data collection: scraping, crowdsourcing, expert annotation

® Quality control: data quality can have large impact on the final model
(garbage in garbage out)

® Don't take it for granted: always check the data source!

“* How would you collect a dataset for the spam filtering task?
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Key challenges in machine learning

® Generalize to unseen samples
® We want to build a model: h: X (input space) — ) (output space)

® |tis easy to achieve high accuracy on the training set.

® But we want the model to perform well on unseen data, too.

What should be the learning objective?
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Risk minimization

® Assume a data generating distribution D over X x Y (e.g., spam writers and
non-spam writers)
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Risk minimization

® Assume a data generating distribution D over X x Y (e.g., spam writers and
non-spam writers)

m
i=

® We have access to a training set: m samples from D, {(x(’),y(’))}
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Risk minimization

® Assume a data generating distribution D over X x Y (e.g., spam writers and
non-spam writers)

m

® We have access to a training set: m samples from D, {(x("),y("))}i:1

® We can measure the goodness of a prediction h(x) by comparing it against the
groundtruth y using some loss function L
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Risk minimization

Assume a data generating distribution D over X x ) (e.g., spam writers and
non-spam writers)

® We have access to a training set: m samples from D, {(x("),y("))}:.il

® We can measure the goodness of a prediction h(x) by comparing it against the
groundtruth y using some loss function L

Our goal is to minimize the expected loss over D (risk):
minimize E(, y.p [L(h,x,y)] ,

but it cannot be computed (why?).
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Empirical risk minimization (ERM)

® |nstead, we minimize the average loss on the training set (empirical risk)

1 Z . .
Lo = OO
minimize  — ;1 L(h,x\", y\")
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Empirical risk minimization (ERM)
® |nstead, we minimize the average loss on the training set (empirical risk)
1 m
inimi il L(h. x ()
minimize - Zl (h,x\"y\")
¢ |n the limit of infinite samples, empirical risk converges to risk (LLN).

® Key question: does small empirical risk imply small risk?

® Trivial solution to (unconstrained) ERM: memorize the data points
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Overfitting vs underfitting

® Problem:; extrapolate information from one part of the input space to
unobserved parts!
® training set — test set

e Solution: constrain the prediction function to a subset, i.e. a hypothesis space
he™H.
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Overfitting vs underfitting

Problem: extrapolate information from one part of the input space to
unobserved parts!

® training set — test set

Solution: constrain the prediction function to a subset, i.e. a hypothesis space
he™H.

Trade-off between complexity of H and generalization

Question for us: how to choose a good H for certain domains/tasks
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Summary

1. Obtain training data Dyain = {(x(f),y(’))}7:1.
2. Choose aloss function L and a hypothesis class H (domain knowledge).

3. Learn a predictor by minimizing the empirical risk (optimization).
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Formalization

Task: binary classification x € X,y € {+1,—1}

Model: f,,: X — R parametrized by w € R?
® Qutput a score for each example

Prediction: sign(fy(x))
® Positive scores are mapped to the positive class

Loss functions: quantify the goodness of the model output £, (x) given y

24/60



Zero-one loss
First idea: check if the prediction is the same as the label

L(x,y, fw) = I[sign(fw(x)) # y] =T | yfw(x) <0
—
margin

== Zero_One

Loss(m)
™

Margin0m=y1(x)
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Zero-one loss
First idea: check if the prediction is the same as the label

L(x,y, fw) = I[sign(fw(x)) # y] =T | yfw(x) <0
—
margin

== Zero_One

Loss(m)
~

Margin0m=yf(x)

Problem: not differentiable
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Hinge loss
L(X,% fw) = max(l - ny(X)a O)

== Zero_One

== Hinge

Loss(m)

1- \
0-

(IJ
Margin m=yf(x)

® A (sub)differentiable upperbound of the zero-one loss

® Not differentiable at margin = 1 (use subgradients)
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Logistic loss

L(x,y, fy) = log(1 + e V()

== Zero_One
== Hinge

w== Logistic

Loss(m)
N

Margin0m=yf(x)

e Differentiable

® Always wants more margin (loss is never 0)
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Summary

1. Obtain training data Dyain = {(x(f),y(’))}7:1.
2. Choose aloss function L and a hypothesis class H (domain knowledge).

3. Learn a predictor by minimizing the empirical risk (optimization).
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Stochastic gradient descent

e Gradient descent (GD) for ERM

w—w —nVy Z L(xD, y() w)
i=1

training set loss
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Stochastic gradient descent

e Gradient descent (GD) for ERM

w—w —nVy Z L(xD, y() w)
i=1

training set loss

e Stochastic gradient descent (SGD): take noisy but faster updates
w < w—nVy L(x,y, fuw)
———

example loss
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GD vs SGD

Figure: Minimize 1.25(x + 6)2 + (y — 8)2. Example from “Understanding Machine Learning:
From Theory to Algorithms”

SGD step is noisier closer to the optimum—need to reduce step size gradually.
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SGD summary

Each update is efficient in both time and space

Can be slow to converge

Popular in large-scale ML, including non-convex problems

® |n practice,
® Randomly sample examples.
® Fixed or diminishing step sizes, e.g. 1/t, 1/+/t.
® Stop when objective does not improve.

® Our main optimization techinque
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Summary

® Choose hypothesis class based on domain knowledge
® Learning algorithm: empirical risk minimization

® Optimization: stochastic gradient descent
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Text classification

® |nput: text (sentence, paragraph, document)
® Predict the category or property of the input text

® Sentiment classification: Is the review positive or negative?
® Spam detection: Is the email/message spam or not?

® Hate speech detection: Is the tweet/post toxic or not?

® Stance classification: Is the opinion liberal or conservative?
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Text classification

® |nput: text (sentence, paragraph, document)

® Predict the category or property of the input text
® Sentiment classification: Is the review positive or negative?
® Spam detection: Is the email/message spam or not?

® Hate speech detection: Is the tweet/post toxic or not?
® Stance classification: Is the opinion liberal or conservative?
e Predict the relation of two pieces of text

® Textual entailment (HW1): does the premise entail the hypothesis?
Premise: The dogs are running in the park.
Hypothesis: There are dogs in the park.

® Paraphrase detection: are the two sentences paraphrases?
Sentence 1: The dogs are in the park.
Sentence 2: There are dogs in the park.

34/60



Intuition

® Example: sentiment classification for movie reviews

Action. Comedy. Suspense. This movie has it all. The Plot goes that 4 would be
professional thieves are invited to take part in a heist in a small town in Montana. every
type of crime movie archetype character is here. Frank, the master mind. Carlos, the
weapons expert. Max, the explosives expert. Nick, the safe cracker and Ray, the car
man. Our 4 characters meet up at the train station and from the beginning none of
them like or trust one another. Added to the mix is the fact that Frank is gone and they
are not sure why they have called together. Now Frank is being taken back to New Jersey
by the 2 detectives but soon escapes on foot and tries to make his way back to the guys
who are having all sorts of problems of their own. Truly a great film loaded with laughs
and great acting. Just an overall good movie for anyone looking for a laugh or
something a little different
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® Example: sentiment classification for movie reviews

Action. Comedy. Suspense. This movie has it all. The Plot goes that 4 would be
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® Idea: count the number of positive/negative words
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Intuition

® Example: sentiment classification for movie reviews

Action. Comedy. Suspense. This movie has it all. The Plot goes that 4 would be
professional thieves are invited to take part in a heist in a small town in Montana. every
type of crime movie archetype character is here. Frank, the master mind. Carlos, the
weapons expert. Max, the explosives expert. Nick, the safe cracker and Ray, the car
man. Our 4 characters meet up at the train station and from the beginning none of
them like or trust one another. Added to the mix is the fact that Frank is gone and they
are not sure why they have called together. Now Frank is being taken back to New Jersey
by the 2 detectives but soon escapes on foot and tries to make his way back to the guys
who are having all sorts of problems of their own. Truly a great film loaded with laughs

and great acting. Just an overall good movie for anyone looking for a laugh or
something a little different

® Idea: count the number of positive/negative words
® Whatis a “word"?
® How do we know which are positive/negative?
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Preprocessing: tokenization

Goal: Splitting a string of characters to a sequence of tokens [x, ..., Xa].
Language-specific solutions
® Regular expression: “I didn't watch the movie"”. — [“I", “did", “n't", “watch”, “the”,
mOV|e" " II]
® Special cases: U.S., Ph.D. etc.
* Dictionary / sequence labeler: “BiXH EEHZ - " — [T, &E", £, "B, "

L= "
-/,
sy ° ]

36/60



Preprocessing: tokenization

Goal: Splitting a string of characters to a sequence of tokens [x, ..., Xa].

Language-specific solutions

® Regular expression: “I didn't watch the movie"”. — [“I", “did", “n't", “watch”, “the”,
mOV|e" " II]

® Special cases: U.S., Ph.D. etc.

* Dictionary / sequence labeler: “BiXH EEHZ - " — [T, &E", £, "B, "

L= "
-/,
sy ° ]

General solutions: don't split by words
[ Characters [ll n lInII, llall llfll llfll llall Ilbll IIIII Ilell]

e Subword (e.g., byte pair encoding): [“un”, “aff”, “able#"]

36/60



Classification: problem formulation

Input: a sequence of tokens x = (x1, ... x,) Where x; € V.

Output: binary label y € {0,1}.

Probabilistic model:

I

1 if =1 0.5
o= {1 Tl =112>
0 otherwise

where py is a distribution parametrized by § € ©.

Modeling question: what's the parametric form of py?
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Modeling p(y | x)

How to write a review:
1. Decide the sentiment by flipping a coin: p(y)
2. Generate word sequentially conditioned on the sentiment p(x | y)
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Modeling p(y | x)

How to write a review:
1. Decide the sentiment by flipping a coin: p(y)
2. Generate word sequentially conditioned on the sentiment p(x | y)

p(y) = Bernoulli(a) (2)

p(x|y)= 3)
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Modeling p(y | x)

How to write a review:
1. Decide the sentiment by flipping a coin: p(y)
2. Generate word sequentially conditioned on the sentiment p(x | y)

p(y) = Bernoulli(a) (2)

p(x|y)= Hp(x,- | v) (independent assumption) (3)
i=1
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Modeling p(y | x)

How to write a review:
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2. Generate word sequentially conditioned on the sentiment p(x | y)
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Modeling p(y | x)

How to write a review:
1. Decide the sentiment by flipping a coin: p(y)
2. Generate word sequentially conditioned on the sentiment p(x | y)

ply) = Bernoulli( )

p(x|y) Hp xi | y) (independent assumption)

p(xi=w|y)= 9W,y where w € V

D Oy =1

wey

Bayes rule: p(x|y)ply)  p(x|y)ply)

Pb 1) === Xy P(x [ y)p(y)
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Naive Bayes models

Naive Bayes assumption
The input features are conditionally independent given the label:

p(x|y) = Hp(x,\y

® A strong assumption, but works surprisingly well in practice.

® Note: p(x; | y) doesn't have to be a categorical distribution (e.g., Gaussian
distribution)
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Learning: maximum likelihood estimation

Task: estimate parameters 6 of a distribution p(y; #) given i.i.d. samples
D = (y1,...,yn) from the distribution.

Goal: find the parameters that make the observed data most probable.
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Learning: maximum likelihood estimation

Task: estimate parameters 6 of a distribution p(y; #) given i.i.d. samples
D = (y1,...,yn) from the distribution.

Goal: find the parameters that make the observed data most probable.

Likelihood function of 6 given D:

L(6; D) ' p(D; 0) Hp(y,,

Maximum (log-)likelihood estimator:

0 = argmax L(0; D) = arg maXZ log p(yi; 0) (6)
0c© 0cO i=1
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Quick remark: MLE and ERM
ERM:

min Z o(x1, y() 9)

i=1
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Quick remark: MLE and ERM

ERM:
min Zﬁ(x(i),y(i), 0)

i=1
MLE:

N
maxz log p(y) | x(1); )
i=1
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Quick remark: MLE and ERM

ERM: N
min Zﬁ(x(i),y(i), 0)
i=1

MLE:

N
maxz log p(y) | x(1); )
i=1

What's the connection between MLE and ERM?

MLE is equivalent to ERM with the negative log-likelihood (NLL) loss function:

G (XD, y D 0) X —log p(y ™ | x(1); )
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MLE solution for our Naive Bayes model

count(w, y) def frequency of w in documents with label y

count(w, y)

wey count(w, y)
= how often the word occur in positive/negative documents

pme(w | y) = 5

= “positive/negative score of the word”

N T(y® =k
pMLE(y _ k) — Z/—l (ﬁ )

= fraction of positive/negative documents
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Inference: make predictions using the model

Inference: y = arg max,cy py(y | x)
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Inference: y = arg max,cy py(y | x)

Compare pg(y = 1| x) and pp(y =0 | x):
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Inference: make predictions using the model

Inference: y = arg max,cy py(y | x)

Compare pg(y = 1| x) and pp(y =0 | x):

poly =11x) _ po(x |y =1)pp(y = 1)
poy =0[x)  po(x|y=0)ps(y =0)

Assuming pg(y = 1) = pp(y = 0), we only need to compare pg(x | y = 1) and
po(x |y =0).

n
score of class k = log pg(x | y = k) = Z log po(xi | y = k)
i=1

In practice, adding up positive/negative scores of each word.
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Feature design

Naive Bayes doesn't have to use single words as features
® |exicons, e.g., LIWC.

® Task-specific features, e.g., is the email subject all caps.

® Bytes and characters, e.g., used in language ID detection.
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Summary of Naive Bayes models

® Modeling: the conditional indepedence assumption simplifies the problem
® | earning: MLE (or ERM with negative log-likelihood loss)

e Inference: very fast (adding up scores of each word)
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Discriminative models: directly model p(y | x)

® yis a Bernoulli variable:

ply [ ) = (1= o)1)
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Discriminative models: directly model p(y | x)

® yis a Bernoulli variable:
Py [ %) = ¥ (1~ )

® Bringin x:
ply | x) = h(x)’ (1 = h(x))*=) h(x) < [0.1]

Parametrize h(x) using a linear function:

h(x)=w-é(x)+b ¢: X > RY weR?

Problem: h(x) € R (score)
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Logistic regression

Map w - ¢(x) € R to [0, 1] by the logistic function

1.0

0.8

0.6

1/(1 + e~ 9)

0.4

0.2

0.0

-100 -7.5 -50 -25 00 25 50 7.5 10.0
w-@(x)

[P ) (v €{0,1})
eM@'¢(X)
Sy 7400

ply=1|xw)=

ply =k|x;w)= (ye{1,....,K}) “softmax”
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Inference

y =argmaxp(y = k| x; w) (7)
key
eWk'qb(X)
=argmax ———————— (8)
k€Y Dlicy ewi9(x)
— arg max " ?(x) 9)
key
=argmax  wi - ¢(x) (10)
key SN——

score for class k
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MLE for logistic regression

maxz log p(y™) | x(); w)
i=1

e |ikelihood function is concave / NLL is convex
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MLE for logistic regression

maxz log p(y™) | x(); w)
i=1

e |ikelihood function is concave / NLL is convex
® No closed-form solution
e Use stochastic gradient ascent
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BoW representation
Example:

V = {the,a, an, in, for, penny, pound}
sentence = in for a penny, in for a pound
x = (in, for, a, penny, in, for,a, pound)

Feature extractor: ¢: X — RY.
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BoW representation
Example:

V = {the,a, an, in, for, penny, pound}
sentence = in for a penny, in for a pound
x = (in, for, a, penny, in, for,a, pound)

Feature extractor: ¢: X — RY.
BoW Idea: a sentence is the “sum” of words in it.

¢BoW(X) = Z ¢one—hot(xi)
i=1

¢one_hot(x1):[0 00100 0] the sentence contains the word “in”

¢Bow(x):[0 2 0 2 21 1] the sentence contains 2 occurrences of “in”
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N-gram features

Potential problems with the the BoW representation?
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N-gram features

Potential problems with the the BoW representation?

N-gram features:
in for a penny, in for a pound

® Unigram: in, for, a, ...
e Bigram: in/for, for/a, a/penny, ...
e Trigram: in/for/a, for/a/penny, ...

“Y What are the pros/cons of using higher order n-grams?
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Feature extractor

Logistic regression allows for richer features (limitation of NB)

Define each feature as a function ¢;: X — R.

)

1 x contains “happy”
P1(x) = .
0 otherwise

1 x contains words with suffix “yyyy”

02(x) = {O otherwise

In practice, use a dictionary

feature_vector["prefix=un+suffix=ing"] =1
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Summary

generative models

discriminative models

modeling joint: p(x,y)
assumption on y yes
assumption on x yes

development generative story

conditional: p(y | x)
yes
no

feature extractor
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