
CSCI-GA 2590: Natural Language Processing

Spring 2025

HW2 - Machine Translation

Name
NYU ID

Please write down any collaborators, AI tools (ChatGPT, Copliot, codex, etc.), and external resources
you used for this assignment here.
Collaborators:
AI tools:
Resources:

By turning in this assignment, I agree by the honor code of the College of Arts and Science at New York
University and declare that all of this is my own work.

Acknowledgement: Problem 1 was developed by Yilun Kuang. Problem 2 is based off of Annotated
Transformers from Sasha Rash and developed by Nitish Joshi.

Before you get started, please read the Submission section thoroughly.

Submission

Submission is done on Gradescope.

Written: You can either directly type your solution in the released .tex file, or write your solution using
pen or stylus. A .pdf file must be submitted.

Programming: Questions marked with “coding” at the start of the question require a coding part. Each
question contains details of which functions you need to modify. We have also provided some unit tests for
you to test your code. You should submit all .py files which you need to modify, along with the generated
output files as mentioned in some questions.

Compute Budget: For question 2.3, you should expect the total code execution time to be less than
2 hours on a single NVIDIA V100 GPU from NYU Greene HPC. Please plan ahead, as requesting GPU
resources on the cluster can take several hours or even longer during peak times.

Due Date: This homework is due on Feburary 26, 2025, 23:59 Eastern Time.

1 Recurrent Neural Network

In this problem, you will show the problem of vanishing and exploding gradients for Recurrent Neural
Network (RNN) analytically. To show this, we will first expand the gradient of the loss function with respect
to the parameters using the chain rule. Then, we will bound the norm of each individual partial derivative

1



NYU ID Machine Translation February 5, 2025

with matrix norm inequalities. The last step will be to collect all of the partial derivative terms and show
how repeated multiplication of a single weight matrix can lead to vanishing or exploding gradients.

1.1 RNN Derivatives

Let S = (s1, · · · , sT ) be a sequence of input word tokens and T be the sequence length. For a particular
token st ∈ V for 1 ≤ t ≤ T , we can obtain its corresponding word embedding xt ∈ Rd by applying equation
(1), where φone-hot is the one-hot encoding function and We is the word embedding matrix.

The RNN forward pass computes the hidden state ht ∈ Rd′ using equation (2). Here Whh ∈ Rd′×d′ is the
recurrent weight matrix, Wih ∈ Rd′×d is the input-to-hidden weight matrix, bh ∈ Rd′ is the hidden states
bias vector, and σ : Rd′ → [−1, 1]d

′
is the tanh activation function. Whh,Wih, bh are shared across sequence

index t.

The output of RNN ot ∈ Rk at each sequence index t is given by equation (3), where Who
∈ Rk×d′ is

the hidden-to-output weight matrix and bo ∈ Rk is the output bias vector. For an input sequence S =
(s1, · · · , sT ), we have a corresponding sequence of RNN hidden states H = (h1, · · · , hT ) and outputs O =
(o1, · · · , oT ).

xt = Weφone-hot(st) (1)

ht = σ(Whhht−1 +Wihxt + bh) (2)

ot = Whoht + bo (3)

Let’s now use this RNN model for classification. In particular, we consider the last output oT to be the
logits (scores for each class), which we then convert to the class probability vector pT ∈ [0, 1]k by pT =
g(WhohT + bo) where g(·) is the softmax function and ‖pT ‖1 = 1.

1. (1 point, written) Write down the per-example cross-entropy loss `(y, pT ) for the classification task.
Here y ∈ {0, 1}k is a one-hot vector of the label and pT is the class probability vector where pT [i] =
p(y[i] = 1 | S) for i = 1, . . . , k. ([i] denotes the i-th entry of the corresponding vector.)

CSCI-GA 2590: Natural Language Processing — Spring 2025 2



NYU ID Machine Translation February 5, 2025

2. To perform backpropagation, we need to compute the derivative of the loss with respect to each
parameter. Without loss of generality, let’s consider the derivative with respect to a single parameter
w = Whh[i, j] where [i, j] denotes the (i, j)-th entry of the matrix. By chain rule, we have

∂`

∂w
=

∂`

∂ot

∂ot
∂ht

∂ht
∂w

(4)

Note that the first two derivatives in the 4 are easy to compute, so let’s focus on the last term ∂ht

∂w .
During the lecture, we have shown that

∂ht
∂w

=

t∑
i=1

∂ht
∂hi

∂h+i
∂w

(5)

Here
∂h+

i

∂w denotes the “immediate” gradient where hi−1 is taken as a constant.

(a) (1 point, written) Give an expression for
∂h+

i

∂w .

CSCI-GA 2590: Natural Language Processing — Spring 2025 3



NYU ID Machine Translation February 5, 2025

(b) (2 points, written) Expand the gradient vector ∂ht

∂hi
using the chain rule as a product of partial

derivatives of one hidden state with respect to the previous hidden state. You do not need to
explicitly do differentiations beyond that.

CSCI-GA 2590: Natural Language Processing — Spring 2025 4



NYU ID Machine Translation February 5, 2025

3. (2 points, written) Now let’s further expand one of the partial derivatives from the previous question.

Write down the Jacobian matrix ∂hi+1

∂hi
by rules of differentiations. You can directly use σ′ as the

derivative of the activateion function in the expression.

CSCI-GA 2590: Natural Language Processing — Spring 2025 5



NYU ID Machine Translation February 5, 2025

1.2 Bounding Gradient Norm

To determine if the gradient will vanish or explode, we need a notion of magnitude. For the Jacobian
matrix, we can use the induced matrix norm (or operator norm). For this question, we use the spectral
norm ‖A‖2 =

√
λmax(A>A) = smax(A) for a matrix A ∈ Rm×n. Here λmax(A>A) denotes the maximum

eigenvalue of the matrix A>A and smax(A) denotes the maximum singular value of the matrix A. You can
learn more about matrix norms at this Wikipedia entry.
Now, to determine if the gradient ∂`

∂w will vanish or explode, we can focus on ‖∂ht

∂hi
‖. Note that if ‖∂ht

∂hi
‖

vanishes or explodes, ‖ ∂`
∂w‖ also vanishes or explodes based on (4) and (5).

1. (2 points, written) Given the mathematical form of the Jacobian matrix ∂hi+1

∂hi
we derived earlier, we

can now bound the norm of the Jacobian with the following matrix norm inequality

‖AB‖2 ≤ ‖A‖2 · ‖B‖2 (6)

for matrices A,B with matched shapes. Write down a bound for

∥∥∥∥ ∂hi

∂hi−1

∥∥∥∥
2

.

CSCI-GA 2590: Natural Language Processing — Spring 2025 6

https://en.wikipedia.org/wiki/Matrix_norm


NYU ID Machine Translation February 5, 2025

2. (4 points, written) Now we have all the pieces we need. Derive a bound on the gradient norm ‖∂ht

∂hi
‖.

Explain how the magnitude of the maximum singular value of Whh can lead to either vanishing or
exploding gradient problems. [HINT: You can use the fact that for the tanh activation function σ(·),
the derivative σ′(·) is always less than or equal to 1.]

CSCI-GA 2590: Natural Language Processing — Spring 2025 7



NYU ID Machine Translation February 5, 2025

3. (1 point, written) Propose one way to get around the vanishing and exploding gradient problem.

CSCI-GA 2590: Natural Language Processing — Spring 2025 8



NYU ID Machine Translation February 5, 2025

2 Machine Translation

The goal of this homework is to build a machine translation system using sequence-to-sequence transformer
models https://arxiv.org/abs/1706.03762. More specifically, you will build a system which translates
German to English using the Multi30k dataset (https://arxiv.org/abs/1605.00459) You are provided
with a code skeleton, which clearly marks out where you need to fill in code for each sub-question.

First go through the file README.md to set up the environment required for the class.

2.1 Attention

Transformers use scaled dot-product attention — given a set of queries Q (each of dimension dk), a set of
keys K (also each dimension dk), and a set of values V (each of dimension dv), the output is a weighted sum
of the values. More specifically,

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (7)

Note that each of Q,K, V is a matrix of vectors packed together.

1. (2 points, written) The above function is called ‘scaled’ attention due to the scaling factor 1√
dk

. The

original transformers paper mentions that this is needed because dot products between keys and queries
get large with larger dk.

For a query q and key k both of dimension dk and each component being an independent random
variable with mean 0 and variance 1, compute the mean and variance (with steps) of the dot product
q · k to demonstrate the point.

CSCI-GA 2590: Natural Language Processing — Spring 2025 9

https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1605.00459


NYU ID Machine Translation February 5, 2025

2. (2 points, coding) Implement the above scaled dot-product attention in the attention() function
present in layers.py. You can test the implementation after the next part.

CSCI-GA 2590: Natural Language Processing — Spring 2025 10



NYU ID Machine Translation February 5, 2025

3. (2 point, coding) In this part, you will modify the attention() function by making use of the pa-
rameters mask and dropout which were input to the function. The mask indicates positions where the
attention values should be zero (e.g. when we have padded a sentence of length 5 to length 10, we
do not want to attend to the extra tokens). dropout should be applied to the attention weights for
regularization.

To test the implementation against some unit tests, run python3 test.py --attention.

CSCI-GA 2590: Natural Language Processing — Spring 2025 11



NYU ID Machine Translation February 5, 2025

4. (3 points, coding) Instead of a single attention function, transformers use multi-headed attention func-
tion. For original keys, queries and values (each of dimension say dmodel), we use h different projection
matrices to obtain queries, keys and values of dimensions dk, dk and dv respectively. Implement the
function MultiHeadedAttention() in layers.py. To test the implementation against some unit tests,
run python3 test.py --multiheaded attention.

CSCI-GA 2590: Natural Language Processing — Spring 2025 12



NYU ID Machine Translation February 5, 2025

2.2 Positional Encoding

Since the underlying blocks in a transformer (namely attention and feed forward layers) do not encode any
information about the order of the input tokens, transformers use ‘positional encodings’ which are added to
the input embeddings. If dmodel is the dimension of the input embeddings, pos is the position, and i is the
dimension, then the encoding is defined as:

PE(pos,2i) = sin(pos/100002i/dmodel) (8)

PE(pos,2i+1) = cos(pos/100002i/dmodel) (9)

1. (2 points, written) Since the objective of the positional encoding is to add information about the
position, can we simply use PEpos = sin(pos) as the positional encoding for pos position? Why or
why not?

CSCI-GA 2590: Natural Language Processing — Spring 2025 13



NYU ID Machine Translation February 5, 2025

2. (2 points, coding) Implement the above positional encoding in the function PositionalEncoding()

in the file utils.py. To test the implementation against some unit tests, run python3 test.py

--positional encoding.

CSCI-GA 2590: Natural Language Processing — Spring 2025 14



NYU ID Machine Translation February 5, 2025

2.3 Training

1. (2 points, coding) The above questions should complete the missing parts in the training code and we
can now train a machine translation system!

Use the command python3 main.py to train your model. For the purpose of this homework, you
are not required to tune any hyperparameters. You should submit the generated out greedy.txt file
containing outputs. You must obtain a BLEU score of at least 35 for full points (By default we are
using BLEU-4 for this and all subsequent questions).

CSCI-GA 2590: Natural Language Processing — Spring 2025 15



NYU ID Machine Translation February 5, 2025

2.4 Decoding & Evaluation

In the previous question, the code uses the default greedy decode() to decode the output. In practice,
people use algorithms such as beam search decoding, which have been shown to give better quality outputs.
(Note: In the following questions, use a model trained with the default i.e. given hyperparameters)

1. (2 points, written) In the file utils.py you will notice a function subsequent mask(). What does
that function do and why is it required in our model?

CSCI-GA 2590: Natural Language Processing — Spring 2025 16



NYU ID Machine Translation February 5, 2025

2. (5 points, coding) Implement the beam search() function in utils.py. We have provided the main
skeleton for this function and you are only required to fill in the important parts (more details in
the code). You can run the code using the arguments --beam search and --beam size. You should
submit the generated file out beam.txt when beam size = 2.

To test the implementation against some unit tests, run python3 test.py --beam search --beam size

[your beam size]

CSCI-GA 2590: Natural Language Processing — Spring 2025 17



NYU ID Machine Translation February 5, 2025

3. (3 points, written) For the model trained in question 2.3, plot the BLEU score as a function of beam
size. You should plot the score using beam size 1 to 5. Is the trend as expected? Explain your answer.

CSCI-GA 2590: Natural Language Processing — Spring 2025 18



NYU ID Machine Translation February 5, 2025

4. (2 points, written) You might notice that some of the sentences contain the ‘〈unk〉’ token which denotes
a word not in the vocabulary. For systems such as Google Translate, you might not want such tokens
in the outputs seen by the user. Describe a potential way to avoid (or reduce) the occurrence of these
tokens in the output.

CSCI-GA 2590: Natural Language Processing — Spring 2025 19



NYU ID Machine Translation February 5, 2025

5. (2 points, written) In this homework, you have been using BLEU score as your evaluation metric.
Consider an example where the reference translation is “I just went to the mall to buy a table.”, and
consider two possible model generations: “I just went to the mall to buy a knife.” and “I just went
to the mall to buy a desk.”. Which one will BLEU score higher? Suggest a potential fix if it does not
score the intended one higher.

CSCI-GA 2590: Natural Language Processing — Spring 2025 20


	Recurrent Neural Network
	RNN Derivatives
	Bounding Gradient Norm

	Machine Translation
	Attention
	Positional Encoding
	Training
	Decoding & Evaluation


