Operations on Word Vectors

Logistics

- **Sections**: 40-50 mins at the end of some lectures (~5/6). Will cover some topics related to lecture + demo/code.
- Office Hours: Thursdays 11am-12pm, 60 5th Ave Room 302.

Recap

- Goal: Map each word to a vector in \mathbb{R}^d such that similar words have similar vectors.
- Skip-gram model: Given a word, predict its neighbouring words within a window.

Skip-gram

Recap

- Goal: Map each word to a vector in \mathbb{R}^d such that similar words have similar vectors
- Skip-gram model: Given a word, predict its neighbouring words within a window
- Continuous bag-of-words model: Given the context, predict the missing word.

CBOW

Recap

- GloVe: Global Vectors (Pennington et al., 2014) Use co-occurence matrix of each word pair.
- X_{ij} : No. of times the word i occurs in context of j; w_i : word embedding for i; c_j : context embedding for j; b's: bias terms.

Objective:
$$J = \sum_{i,j=1}^{V} (w_i^T c_j + b_i + b_j - log X_{ij})^2$$

Courtesy: Greg Durrett (UT Austin)

Similarity between word vectors

- Question: Do the learnt word embeddings satisfy the desired property of similarity?
- Use cosine similarity between any two word vectors.

Cosine Similarity

Word Analogy Task

- In word analogy tasks, we ask questions like "a is to b as c is to ____"
- Example: "London is to UK as Amsterdam is to Netherlands"

Word Analogy Task

- For a -> b :: c -> ?, given word vectors v_a , v_b and v_c , we will find a word d such that v_a v_b ~ v_c v_d
- The difference v_a v_b represents the 'concept' (e.g. capital of country).

Word Analogy Task

- For a -> b :: c -> ?, given word vectors v_a , v_b and v_c , we will find a word d such that v_a v_b ~ v_c v_d
- The difference v_a v_b represents the 'concept' (e.g. capital of country).

Country-Capital

Bias in word vectors

- The difference v_a v_b represents the 'concept' if a is woman and b is man, then it represents 'gender'.
- Compute projections of occupations on this difference v_a v_b .

Extreme she occupations

1. homemaker	2. nurse	3. receptionist
4. librarian	5. socialite	6. hairdresser
7. nanny	8. bookkeeper	9. stylist

10. housekeeper 11. interior designer 12. guidance counselor

Extreme he occupations

1. maestro	$2. \mathrm{skipper}$	3. protege
4. philosopher	5. captain	6. architect
7. financier	8. warrior	9. broadcaster
10. magician	11. figher pilot	12. boss

Bolukbasi et al. 2016

Bias in word vectors

- Similarly, we can obtain vectors for other concepts like race and religion.
- Compute projections of occupations on this difference ν_a ν_b .

_			
Racially Biased Analogies			
black → criminal	caucasian \rightarrow police		
$asian \rightarrow doctor$	$caucasian \rightarrow dad$		
$caucasian \rightarrow leader$	$black \rightarrow led$		
Religiously Biased Analogies			
muslim → terrorist	$christian \rightarrow civilians$		
jewish → philanthropist	$christian \rightarrow stooge$		
christian → unemployed	jewish \rightarrow pensioners		

Manzini et al., 2019

Note: The vectors were obtained from training on reddit data from USA users

Debiasing Word Vectors

• For a concept vector g and word vector e, obtain the biased component:

$$e_{\text{biased}} = \frac{e \cdot g}{||g||} g$$

Subtract from the original vector to obtain the debiased vector

$$e_{\text{debiased}} = e - e_{\text{biased}}$$

Debiasing Word Vectors

before neutralizing,
"receptionist" is positively correlated with the bias axis

debased version, with the component in the direction of the bias axis (g) zeroed out

Debiasing Word Vectors

- Previous method ensures that vector is orthogonal to the concept vector.
- Not always effective in debiasing —the word vectors corresponding to
 occupations are still clustered
 according to gender.

Gonen and Goldberg, 2019

Other Debiasing Methods

Ravfogel et al 2020:

- There is no single direction corresponding to concepts it can span in multiple directions.
- Propose Iterative Null-space Projection (INLP) iteratively neutralise/ debias the vectors.

Algorithm 1 Iterative Nullspace Projection (INLP)

```
Input: (X, Z): a training set of vectors and protected attributes
```

n: Number of rounds

Result: A projection matrix P

return P

Function GetProjectionMatrix (X, Z):

$$\begin{split} X_{projected} \leftarrow X \\ P \leftarrow I \\ \textbf{for } i \leftarrow 1 \textbf{ to } n \textbf{ do} \\ W_i \leftarrow \text{TrainClassifier}(X_{projected}, Z) \\ B_i \leftarrow \text{GetNullSpaceBasis}(W_i) \\ P_{N(W_i)} \leftarrow B_i B i^T \\ P \leftarrow P_{N(W_i)} P \\ X_{projected} \leftarrow P_{N(W_i)} X_{projected} \end{split}$$
 end

e.g. Dataset of (occupation, gender) where we have word vectors for each occupation along with the biased gender.

```
Algorithm 1 Iterative Nullspace Projection (INLP)
```

return P

```
Input: (X, Z): a training set of vectors and pro-
         tected attributes
         n: Number of rounds
Result: A projection matrix P
Function GetProjectionMatrix (X, Z):
    X_{projected} \leftarrow X
      P \leftarrow I
      for i \leftarrow 1 to n do
         W_i \leftarrow \text{TrainClassifier}(X_{projected}, Z)
          B_i \leftarrow \text{GetNullSpaceBasis}(W_i)
          P_{N(W_i)} \leftarrow B_i B i^T
          P \leftarrow P_{N(W_i)}P
          X_{projected} \leftarrow P_{N(W_i)} X_{projected}
    end
```

e.g. Train a linear classifier to predict gender from occupation.

```
Algorithm 1 Iterative Nullspace Projection (INLP)

Input: (X, Z): a training set of vectors and protected attributes

n: Number of rounds

Result: A projection matrix P
```

Function GetProjectionMatrix (X, Z):

```
X_{projected} \leftarrow X
P \leftarrow I

for i \leftarrow 1 to n do

W_i \leftarrow \text{TrainClassifier}(X_{projected}, Z)

B_i \leftarrow \text{GetNullSpaceBasis}(W_i)

P_{N(W_i)} \leftarrow B_i B i^T

P \leftarrow P_{N(W_i)} P

X_{projected} \leftarrow P_{N(W_i)} X_{projected}
```

Project X onto nullspace of W —> predicting Z (e.g. gender) from new X will not work.

end return P

Ravfogel et al., 2020

- W: weight of a linear classifier trained to predict Z from X
- Project on null-space
- Iterate

- Does not suffer from the issue we saw with earlier debiasing method.
- Representations are now not clustered according to protected attribute (e.g. gender).

Summary

- Word vectors encode a notion of similarity, which can be helpful for retrieval, word analogy tasks etc.
- Word vectors can encode biases from the data —> Need to evaluate and use appropriate debiasing methods.