Operations on Word Vectors

Nitish Joshi, 31st January 2022

Logistics

- Sections: $40-50$ mins at the end of some lectures ($\sim 5 / 6)$. Will cover some topics related to lecture + demo/code.
- Office Hours: Thursdays 11am-12pm, 60 5th Ave Room 302.

Recap

- Goal: Map each word to a vector in \mathbb{R}^{d} such that similar words have similar vectors.
- Skip-gram model: Given a word, predict its neighbouring words within a window.

Skip-gram

Recap

- Goal: Map each word to a vector in \mathbb{R}^{d} such that similar words have similar vectors
- Skip-gram model: Given a word, predict its neighbouring words within a window
- Continuous bag-of-words model: Given the context, predict the missing word.

Recap

- GloVe: Global Vectors (Pennington et al., 2014) - Use co-occurence matrix of each word pair.
- $X_{i j}$: No. of times the word i occurs in context of $j ; w_{i}$: word embedding for i ; c_{j} : context embedding for $j ; b^{\prime} s:$ bias terms.

Objective: $J=\sum_{i, j=1}^{V}\left(w_{i}^{T} c_{j}+b_{i}+b_{j}-\log X_{i j}\right)^{2}$

Courtesy: Greg Durrett (UT Austin)

Similarity between word vectors

- Question: Do the learnt word embeddings satisfy the desired property of similarity?
- Use cosine similarity between any two word vectors.

Cosine Similarity

Word Analogy Task

- In word analogy tasks, we ask questions like " a is to b as c is to \qquad "
- Example: "London is to UK as Amsterdam is to Netherlands"

Word Analogy Task

- For $\mathrm{a}->\mathrm{b}:: \mathrm{c}->$?, given word vectors v_{a}, v_{b} and v_{c}, we will find a word d such that $v_{a}-v_{b} \sim v_{c}-v_{d}$
- The difference $v_{a}-v_{b}$ represents the 'concept' (e.g. capital of country).

Word Analogy Task

- For $\mathrm{a}->\mathrm{b}:: \mathrm{c}->$?, given word vectors v_{a}, v_{b} and v_{c}, we will find a word d such that $v_{a}-v_{b} \sim v_{c}-v_{d}$
- The difference $v_{a}-v_{b}$ represents the 'concept' (e.g. capital of country).

Country-Capital

Bias in word vectors

- The difference $v_{a}-v_{b}$ represents the 'concept' - if a is woman and b is man, then it represents 'gender'.
- Compute projections of occupations on this difference $v_{a}-v_{b}$.

Extreme she occupations			
1. homemaker	2. nurse	3. receptionist	
4. librarian	5. socialite	6. hairdresser	
7. nanny	8. bookkeeper	9. stylist	
10. housekeeper	11. interior designer	12. guidance co	
Extreme he occupations			
1. maestro	2. skipper	3. protege	
4. philosopher	5. captain	6 . architect	
7. financier	8. warrior	9. broadcaster	Bolukbasi et al. 2016

Bias in word vectors

- Similarly, we can obtain vectors for other concepts like race and religion.
- Compute projections of occupations on this difference $v_{a}-v_{b}$.

Racially Biased Analogies	
black \rightarrow criminal	
asian \rightarrow doctor	
caucasian \rightarrow leader	

caucasian \rightarrow dad

black \rightarrow led\end{array}\right] .\)| Religiously Biased Analogies |
| :--- |
| muslim \rightarrow terrorist
 jewish \rightarrow philanthropist
 christian \rightarrow unemployed |
| chrisian \rightarrow civilians
 christian \rightarrow stooge
 jewish \rightarrow pensioners |

Manzini et al., 2019
Note: The vectors were obtained from training on reddit data from USA users

Debiasing Word Vectors

- For a concept vector g and word vector e , obtain the biased component:

$$
e_{\text {biased }}=\frac{e . g}{\|g\|} g
$$

- Subtract from the original vector to obtain the debiased vector

$$
e_{\text {debiased }}=e-e_{\text {biased }}
$$

Debiasing Word Vectors

before neutralizing,
"receptionist" is positively correlated with the bias axis
orthogonal axis $\overrightarrow{\boldsymbol{g}}$
(49-dimensional) g_{\perp}

after neutralizing,

debased version, with the component
in the direction of the bias axis (g) zeroed out

Debiasing Word Vectors

- Previous method ensures that vector is orthogonal to the concept vector.
- Not always effective in debiasing -the word vectors corresponding to occupations are still clustered according to gender.

Other Debiasing Methods

- Ravfogel et al 2020:
- There is no single direction corresponding to concepts - it can span in multiple directions.
- Propose Iterative Null-space Projection (INLP) - iteratively neutralise/ debias the vectors.

Other Debiasing Methods: INLP

```
Algorithm 1 Iterative Nullspace Projection (INLP)
Input : \((X, Z)\) : a training set of vectors and pro-
    tected attributes
    n : Number of rounds
Result: A projection matrix \(P\)
Function GetProjectionMatrix \((X, Z)\) :
    \(X_{\text {projected }} \leftarrow X\)
    \(P \leftarrow I\)
    for \(i \leftarrow 1\) to \(n\) do
    \(W_{i} \leftarrow\) TrainClassifier \(\left(X_{\text {projected }}, Z\right)\)
    \(B_{i} \leftarrow \operatorname{GetNullSpaceBasis}\left(W_{i}\right)\)
    \(P_{N\left(W_{i}\right)} \leftarrow B_{i} B i^{T}\)
    \(P \leftarrow P_{N\left(W_{i}\right)} P\)
    \(X_{\text {projected }} \leftarrow P_{N\left(W_{i}\right)} X_{\text {projected }}\)
    end
    return \(P\)
```

e.g. Dataset of (occupation, gender) where we have word vectors for each occupation along with the biased gender.

Other Debiasing Methods: INLP

```
Algorithm }1\mathrm{ Iterative Nullspace Projection (INLP)
Input:(X,Z): a training set of vectors and pro-
    tected attributes
    n: Number of rounds
Result: A projection matrix P
Function GetProjectionMatrix(X,Z):
    X projected }\leftarrow
    P\leftarrowI
    for }i\leftarrow1\mathrm{ to }n\mathrm{ do
    Wi}\leftarrow\leftarrow\mathrm{ TrainClassifier( }\mp@subsup{X}{\mathrm{ projected }}{},Z
    Bi}\leftarrowGetNullSpaceBasis(Wi
    P
    P}\leftarrow\mp@subsup{P}{N(\mp@subsup{W}{i}{})}{}
    X projected }\leftarrow\mp@subsup{P}{N(\mp@subsup{W}{i}{})}{}\mp@subsup{X}{\mathrm{ projected}}{
    end
    return P
```


Other Debiasing Methods: INLP

```
Algorithm }1\mathrm{ Iterative Nullspace Projection (INLP)
Input:(X,Z): a training set of vectors and pro-
    tected attributes
    n: Number of rounds
Result: A projection matrix P
Function GetProjectionMatrix(X,Z):
    X projected }\leftarrow
    P\leftarrowI
    for }i\leftarrow1\mathrm{ to }n\mathrm{ do
    Wi}\leftarrow\mp@code{TrainClassifier( ( }\mp@subsup{X}{\mathrm{ projected}}{},Z
            Bi}\leftarrowGetNullSpaceBasis(Wi
            P
            P}\leftarrow\mp@subsup{P}{N(\mp@subsup{W}{i}{})}{}
            X projected }\leftarrow\mp@subsup{P}{N(\mp@subsup{W}{i}{})}{}\mp@subsup{X}{\mathrm{ projected}}{
    end
    return P
```

Project X onto nullspace of $\mathrm{W} \rightarrow>$ predicting Z (e.g. gender) from new
X will not work.

Other Debiasing Methods: INLP

- W: weight of a linear classifier trained to predict Z from X
- Project on null-space
- Iterate

Other Debiasing Methods: INLP

- Does not suffer from the issue we saw with earlier debiasing method.
- Representations are now not clustered according to protected attribute (e.g. gender).

Summary

- Word vectors encode a notion of similarity, which can be helpful for retrieval, word analogy tasks etc.
- Word vectors can encode biases from the data $->$ Need to evaluate and use appropriate debiasing methods.

