
Efficient Pretraining and Finetuning Techniques

He He

March 21, 2023

1 / 24



Logistics

• HW3 released: finetuning BERT!
• Proposal due today and we’ll provide brief feedback on Gradescope (or come to

OH)
• Midterm grades will be released soon.

2 / 24



Introduction
Plan for today:
• How to train larger models on larger data with less compute
• How to finetune larger models with less compute

Why care about efficiency?
• Practical reasons: training and running these models are expensive!
• Methods that help scaling may eventually leads to better models (e.g.,

transformers)
“The bitter lesson is based on the historical observations that 1) AI researchers
have often tried to build knowledge into their agents, 2) this always helps in the
short term, and is personally satisfying to the researcher, but 3) in the long run it
plateaus and even inhibits further progress, and 4) breakthrough progress
eventually arrives by an opposing approach based on scaling computation by
search and learning.” — Richard Sutton “The bitter lesson”

3 / 24



Introduction
Plan for today:
• How to train larger models on larger data with less compute
• How to finetune larger models with less compute

Why care about efficiency?
• Practical reasons: training and running these models are expensive!
• Methods that help scaling may eventually leads to better models (e.g.,

transformers)
“The bitter lesson is based on the historical observations that 1) AI researchers
have often tried to build knowledge into their agents, 2) this always helps in the
short term, and is personally satisfying to the researcher, but 3) in the long run it
plateaus and even inhibits further progress, and 4) breakthrough progress
eventually arrives by an opposing approach based on scaling computation by
search and learning.” — Richard Sutton “The bitter lesson”

3 / 24



Table of Contents

Efficient transformers

Efficient finetuning

4 / 24



Transformer recap

Figure: From The Illustrated
Transformer

Which components require matrix multiplication?

• Self-attention
• Q,K,V projection
• Scaled dot-product attention

• Feed-forward layer

5 / 24

https://jalammar.github.io/illustrated-transformer
https://jalammar.github.io/illustrated-transformer


Transformer recap

Figure: From The Illustrated
Transformer

Which components require matrix multiplication?
• Self-attention
• Q,K,V projection
• Scaled dot-product attention

• Feed-forward layer

5 / 24

https://jalammar.github.io/illustrated-transformer
https://jalammar.github.io/illustrated-transformer


Compute cost of transformers

Q, K, V projection:

n × de n × d
linear

O(n × de × d)

Scaled dot-product attention:

n × d

d × n

n × n
matmul

O(d × n2)

6 / 24



Compute cost of transformers

Q, K, V projection:

n × de n × d
linear

O(n × de × d)

Scaled dot-product attention:

n × d

d × n

n × n
matmul

O(d × n2)

6 / 24



Compute cost of transformers

Feed-forward layer (GPT-2):

n × d n × dh
linear+ReLU

n × d
linear+ReLU

O(n × d × dh)

• Two-layer FFN
• dh = 4d (d > 1K ) by default in GPT-2
• Approximately half of the compute time

7 / 24



Compute cost of transformers

Feed-forward layer (GPT-2):

n × d n × dh
linear+ReLU

n × d
linear+ReLU

O(n × d × dh)

• Two-layer FFN
• dh = 4d (d > 1K ) by default in GPT-2
• Approximately half of the compute time

7 / 24



Improve efficiency of transformers

How to scale transformer models to larger number of parameters and larger data?

• Quantization (training and inference)
• Weight sharing (training and inference)
• Sparsely-activated models (training and inference)
• Pruning (inference)
• Distillation (inference)

8 / 24



Improve efficiency of transformers

This lecture: Improve efficiency of self-attention (for long sequences)

Key idea: reduce the O(n2) time and memory cost
• Sparsify the attention matrix

• Deterministic mask
• Data-dependent mask

• Compress the key-value memory
• Low-rank projection
• Attention-based projection

9 / 24



Improve efficiency of transformers

This lecture: Improve efficiency of self-attention (for long sequences)

Key idea: reduce the O(n2) time and memory cost
• Sparsify the attention matrix
• Deterministic mask
• Data-dependent mask

• Compress the key-value memory
• Low-rank projection
• Attention-based projection

9 / 24



Limiting receptive field of self-attention

Blockwise self-attention [Qiu et al., 2020]: attention within a local window

• Divide a n × n matrix into m ×m blocks
• Compute one block per row and mask the rest

(i.e. set to 0)
• Allocate groups of attention heads to each

mask configuration
• Which configuration should use more

attention heads?

• What’s the time complexity?
• O(n2) −→ O(n2/m)

10 / 24

https://arxiv.org/pdf/1911.02972.pdf


Limiting receptive field of self-attention

Blockwise self-attention [Qiu et al., 2020]: attention within a local window

• Divide a n × n matrix into m ×m blocks
• Compute one block per row and mask the rest

(i.e. set to 0)
• Allocate groups of attention heads to each

mask configuration
• Which configuration should use more

attention heads?
• What’s the time complexity?

• O(n2) −→ O(n2/m)

10 / 24

https://arxiv.org/pdf/1911.02972.pdf


Limiting receptive field of self-attention

Blockwise self-attention [Qiu et al., 2020]: attention within a local window

• Divide a n × n matrix into m ×m blocks
• Compute one block per row and mask the rest

(i.e. set to 0)
• Allocate groups of attention heads to each

mask configuration
• Which configuration should use more

attention heads?
• What’s the time complexity?

• O(n2) −→ O(n2/m)

10 / 24

https://arxiv.org/pdf/1911.02972.pdf


Limiting receptive field of self-attention
Longformer [Beltagy et al., 2020]: attention within a local window

• Sliding window: attending to a local window of size w around each token
O(n × w)

• Dilated sliding window: reaching longer range with a larger window size with gaps
• Global window: full attention on specific tokens, e.g., [CLS] in BERT

• Details: balancing efficiency and performance
• Adding dilation on some heads
• Using small window size on lower layers and larger ones on higher layers

11 / 24

https://arxiv.org/pdf/2004.05150.pdf


Limiting receptive field of self-attention
Longformer [Beltagy et al., 2020]: attention within a local window

• Sliding window: attending to a local window of size w around each token
O(n × w)

• Dilated sliding window: reaching longer range with a larger window size with gaps
• Global window: full attention on specific tokens, e.g., [CLS] in BERT
• Details: balancing efficiency and performance
• Adding dilation on some heads
• Using small window size on lower layers and larger ones on higher layers

11 / 24

https://arxiv.org/pdf/2004.05150.pdf


Limiting receptive field of self-attention
Reformer [Kitaev et al., 2020]: attention within an adaptive local window

Key idea:
• We want to compute the attention scores for a query qi :

ai = softmax

([
qi · k1√

d
, . . . ,

qi · kn√
d

])

• Goal: can we approximate ai ∈ Rn by computing < n dot products?
• Which dot products (kj ’s) have large influence on the value ai?

• kj ’s that has large dot products with (“close to”) qi

• How do we find such kj ’s (nearest neighbors of qi ) fast?

• Locality sensitive hashing (LSH): close vectors are put in the same bucket:
h(ks) = h(kt) if ks is close to kt

• Compute attention between qi and ki only if they fall in the same hash bucket

12 / 24

https://arxiv.org/pdf/2001.04451.pdf


Limiting receptive field of self-attention
Reformer [Kitaev et al., 2020]: attention within an adaptive local window

Key idea:
• We want to compute the attention scores for a query qi :

ai = softmax

([
qi · k1√

d
, . . . ,

qi · kn√
d

])
• Goal: can we approximate ai ∈ Rn by computing < n dot products?

• Which dot products (kj ’s) have large influence on the value ai?

• kj ’s that has large dot products with (“close to”) qi

• How do we find such kj ’s (nearest neighbors of qi ) fast?

• Locality sensitive hashing (LSH): close vectors are put in the same bucket:
h(ks) = h(kt) if ks is close to kt

• Compute attention between qi and ki only if they fall in the same hash bucket

12 / 24

https://arxiv.org/pdf/2001.04451.pdf


Limiting receptive field of self-attention
Reformer [Kitaev et al., 2020]: attention within an adaptive local window

Key idea:
• We want to compute the attention scores for a query qi :

ai = softmax

([
qi · k1√

d
, . . . ,

qi · kn√
d

])
• Goal: can we approximate ai ∈ Rn by computing < n dot products?
• Which dot products (kj ’s) have large influence on the value ai?

• kj ’s that has large dot products with (“close to”) qi
• How do we find such kj ’s (nearest neighbors of qi ) fast?

• Locality sensitive hashing (LSH): close vectors are put in the same bucket:
h(ks) = h(kt) if ks is close to kt

• Compute attention between qi and ki only if they fall in the same hash bucket

12 / 24

https://arxiv.org/pdf/2001.04451.pdf


Limiting receptive field of self-attention
Reformer [Kitaev et al., 2020]: attention within an adaptive local window

Key idea:
• We want to compute the attention scores for a query qi :

ai = softmax

([
qi · k1√

d
, . . . ,

qi · kn√
d

])
• Goal: can we approximate ai ∈ Rn by computing < n dot products?
• Which dot products (kj ’s) have large influence on the value ai?
• kj ’s that has large dot products with (“close to”) qi

• How do we find such kj ’s (nearest neighbors of qi ) fast?

• Locality sensitive hashing (LSH): close vectors are put in the same bucket:
h(ks) = h(kt) if ks is close to kt

• Compute attention between qi and ki only if they fall in the same hash bucket

12 / 24

https://arxiv.org/pdf/2001.04451.pdf


Limiting receptive field of self-attention
Reformer [Kitaev et al., 2020]: attention within an adaptive local window

Key idea:
• We want to compute the attention scores for a query qi :

ai = softmax

([
qi · k1√

d
, . . . ,

qi · kn√
d

])
• Goal: can we approximate ai ∈ Rn by computing < n dot products?
• Which dot products (kj ’s) have large influence on the value ai?
• kj ’s that has large dot products with (“close to”) qi

• How do we find such kj ’s (nearest neighbors of qi ) fast?

• Locality sensitive hashing (LSH): close vectors are put in the same bucket:
h(ks) = h(kt) if ks is close to kt

• Compute attention between qi and ki only if they fall in the same hash bucket

12 / 24

https://arxiv.org/pdf/2001.04451.pdf


Limiting receptive field of self-attention
Reformer [Kitaev et al., 2020]: attention within an adaptive local window

Key idea:
• We want to compute the attention scores for a query qi :

ai = softmax

([
qi · k1√

d
, . . . ,

qi · kn√
d

])
• Goal: can we approximate ai ∈ Rn by computing < n dot products?
• Which dot products (kj ’s) have large influence on the value ai?
• kj ’s that has large dot products with (“close to”) qi

• How do we find such kj ’s (nearest neighbors of qi ) fast?
• Locality sensitive hashing (LSH): close vectors are put in the same bucket:
h(ks) = h(kt) if ks is close to kt

• Compute attention between qi and ki only if they fall in the same hash bucket

12 / 24

https://arxiv.org/pdf/2001.04451.pdf


Limiting receptive field of self-attention
Reformer [Kitaev et al., 2020]: attention within an adaptive local window

Key idea:
• We want to compute the attention scores for a query qi :

ai = softmax

([
qi · k1√

d
, . . . ,

qi · kn√
d

])
• Goal: can we approximate ai ∈ Rn by computing < n dot products?
• Which dot products (kj ’s) have large influence on the value ai?
• kj ’s that has large dot products with (“close to”) qi

• How do we find such kj ’s (nearest neighbors of qi ) fast?
• Locality sensitive hashing (LSH): close vectors are put in the same bucket:
h(ks) = h(kt) if ks is close to kt

• Compute attention between qi and ki only if they fall in the same hash bucket

12 / 24

https://arxiv.org/pdf/2001.04451.pdf


Limiting receptive field of self-attention
Reformer [Kitaev et al., 2020] implementation

(a) Leverage the sparsity of the attention matrix

Challenge 1: find the nearest neighbors

(b) Sort qi ’s and ki ’s by their hash codes such that
vectors in the same bucket are grouped

Challenge 2: batch the computation

(c) Set ki = qi such that similar vectors are
grouped along the diagonal

(d) Chunk it by equal size (cf. blockwise attention)
a group may be split in two chunks

• Each chunk attends to itself and the
previous chunk

Better accuracy with more hashes

13 / 24

https://arxiv.org/pdf/2001.04451.pdf


Limiting receptive field of self-attention
Reformer [Kitaev et al., 2020] implementation

(a) Leverage the sparsity of the attention matrix
Challenge 1: find the nearest neighbors

(b) Sort qi ’s and ki ’s by their hash codes such that
vectors in the same bucket are grouped

Challenge 2: batch the computation

(c) Set ki = qi such that similar vectors are
grouped along the diagonal

(d) Chunk it by equal size (cf. blockwise attention)
a group may be split in two chunks

• Each chunk attends to itself and the
previous chunk

Better accuracy with more hashes

13 / 24

https://arxiv.org/pdf/2001.04451.pdf


Limiting receptive field of self-attention
Reformer [Kitaev et al., 2020] implementation

(a) Leverage the sparsity of the attention matrix
Challenge 1: find the nearest neighbors
(b) Sort qi ’s and ki ’s by their hash codes such that

vectors in the same bucket are grouped

Challenge 2: batch the computation

(c) Set ki = qi such that similar vectors are
grouped along the diagonal

(d) Chunk it by equal size (cf. blockwise attention)
a group may be split in two chunks

• Each chunk attends to itself and the
previous chunk

Better accuracy with more hashes

13 / 24

https://arxiv.org/pdf/2001.04451.pdf


Limiting receptive field of self-attention
Reformer [Kitaev et al., 2020] implementation

(a) Leverage the sparsity of the attention matrix
Challenge 1: find the nearest neighbors
(b) Sort qi ’s and ki ’s by their hash codes such that

vectors in the same bucket are grouped
Challenge 2: batch the computation

(c) Set ki = qi such that similar vectors are
grouped along the diagonal

(d) Chunk it by equal size (cf. blockwise attention)
a group may be split in two chunks

• Each chunk attends to itself and the
previous chunk

Better accuracy with more hashes

13 / 24

https://arxiv.org/pdf/2001.04451.pdf


Limiting receptive field of self-attention
Reformer [Kitaev et al., 2020] implementation

(a) Leverage the sparsity of the attention matrix
Challenge 1: find the nearest neighbors
(b) Sort qi ’s and ki ’s by their hash codes such that

vectors in the same bucket are grouped
Challenge 2: batch the computation

(c) Set ki = qi such that similar vectors are
grouped along the diagonal

(d) Chunk it by equal size (cf. blockwise attention)
a group may be split in two chunks

• Each chunk attends to itself and the
previous chunk

Better accuracy with more hashes

13 / 24

https://arxiv.org/pdf/2001.04451.pdf


Limiting receptive field of self-attention
Reformer [Kitaev et al., 2020] implementation

(a) Leverage the sparsity of the attention matrix
Challenge 1: find the nearest neighbors
(b) Sort qi ’s and ki ’s by their hash codes such that

vectors in the same bucket are grouped
Challenge 2: batch the computation

(c) Set ki = qi such that similar vectors are
grouped along the diagonal

(d) Chunk it by equal size (cf. blockwise attention)
a group may be split in two chunks

• Each chunk attends to itself and the
previous chunk

Better accuracy with more hashes

13 / 24

https://arxiv.org/pdf/2001.04451.pdf


Limiting receptive field of self-attention
Reformer [Kitaev et al., 2020] implementation

(a) Leverage the sparsity of the attention matrix
Challenge 1: find the nearest neighbors
(b) Sort qi ’s and ki ’s by their hash codes such that

vectors in the same bucket are grouped
Challenge 2: batch the computation

(c) Set ki = qi such that similar vectors are
grouped along the diagonal

(d) Chunk it by equal size (cf. blockwise attention)
a group may be split in two chunks
• Each chunk attends to itself and the

previous chunk

Better accuracy with more hashes

13 / 24

https://arxiv.org/pdf/2001.04451.pdf


Limiting receptive field of self-attention
Reformer [Kitaev et al., 2020] implementation

(a) Leverage the sparsity of the attention matrix
Challenge 1: find the nearest neighbors
(b) Sort qi ’s and ki ’s by their hash codes such that

vectors in the same bucket are grouped
Challenge 2: batch the computation

(c) Set ki = qi such that similar vectors are
grouped along the diagonal

(d) Chunk it by equal size (cf. blockwise attention)
a group may be split in two chunks
• Each chunk attends to itself and the

previous chunk
Better accuracy with more hashes

13 / 24

https://arxiv.org/pdf/2001.04451.pdf


Summarize the KV memory
Self-attention is low rank [Wang et al., 2020]

• Left: cumulative eigenvalues of pretrained transformer with n = 512

• Most information in the attention matrix can be recovered by the top 128
eigenvectors

• Right: cumulative eigenvalues of the top 128 eigenvalues across layers

• Higher layers are more low-rank

• Idea: instead of attending to n tokens, attend to k principal components

14 / 24

https://arxiv.org/pdf/2006.04768.pdf


Summarize the KV memory
Self-attention is low rank [Wang et al., 2020]

• Left: cumulative eigenvalues of pretrained transformer with n = 512

• Most information in the attention matrix can be recovered by the top 128
eigenvectors

• Right: cumulative eigenvalues of the top 128 eigenvalues across layers

• Higher layers are more low-rank

• Idea: instead of attending to n tokens, attend to k principal components

14 / 24

https://arxiv.org/pdf/2006.04768.pdf


Summarize the KV memory
Self-attention is low rank [Wang et al., 2020]

• Left: cumulative eigenvalues of pretrained transformer with n = 512

• Most information in the attention matrix can be recovered by the top 128
eigenvectors

• Right: cumulative eigenvalues of the top 128 eigenvalues across layers

• Higher layers are more low-rank
• Idea: instead of attending to n tokens, attend to k principal components

14 / 24

https://arxiv.org/pdf/2006.04768.pdf


Summarize the KV memory
Self-attention is low rank [Wang et al., 2020]

• Left: cumulative eigenvalues of pretrained transformer with n = 512

• Most information in the attention matrix can be recovered by the top 128
eigenvectors

• Right: cumulative eigenvalues of the top 128 eigenvalues across layers
• Higher layers are more low-rank

• Idea: instead of attending to n tokens, attend to k principal components

14 / 24

https://arxiv.org/pdf/2006.04768.pdf


Summarize the KV memory
Self-attention is low rank [Wang et al., 2020]

• Left: cumulative eigenvalues of pretrained transformer with n = 512

• Most information in the attention matrix can be recovered by the top 128
eigenvectors

• Right: cumulative eigenvalues of the top 128 eigenvalues across layers
• Higher layers are more low-rank

• Idea: instead of attending to n tokens, attend to k principal components

14 / 24

https://arxiv.org/pdf/2006.04768.pdf


Summarize the KV memory

Linformer [Wang et al., 2020]: compute self-attention in a lower dimension

• Reduce dimensionality of the “memory”: Map K, V from
n × d to k × d

• Attend to the lower-dimensional memory:
softmax

(
Qn×dK

T
k×d/

√
d
)

• What’s the dimension of the attention matrix?
• What’s the dimension of the self-attention output?

• Computation cost: O(nk)

• Downside of uisng Linformer as a decoder?

• Unclear how to mask: past and future are mixed

15 / 24

https://arxiv.org/pdf/2006.04768.pdf


Summarize the KV memory

Linformer [Wang et al., 2020]: compute self-attention in a lower dimension

• Reduce dimensionality of the “memory”: Map K, V from
n × d to k × d

• Attend to the lower-dimensional memory:
softmax

(
Qn×dK

T
k×d/

√
d
)

• What’s the dimension of the attention matrix?
• What’s the dimension of the self-attention output?

• Computation cost: O(nk)

• Downside of uisng Linformer as a decoder?

• Unclear how to mask: past and future are mixed

15 / 24

https://arxiv.org/pdf/2006.04768.pdf


Summarize the KV memory

Linformer [Wang et al., 2020]: compute self-attention in a lower dimension

• Reduce dimensionality of the “memory”: Map K, V from
n × d to k × d

• Attend to the lower-dimensional memory:
softmax

(
Qn×dK

T
k×d/

√
d
)

• What’s the dimension of the attention matrix?

• What’s the dimension of the self-attention output?
• Computation cost: O(nk)

• Downside of uisng Linformer as a decoder?

• Unclear how to mask: past and future are mixed

15 / 24

https://arxiv.org/pdf/2006.04768.pdf


Summarize the KV memory

Linformer [Wang et al., 2020]: compute self-attention in a lower dimension

• Reduce dimensionality of the “memory”: Map K, V from
n × d to k × d

• Attend to the lower-dimensional memory:
softmax

(
Qn×dK

T
k×d/

√
d
)

• What’s the dimension of the attention matrix?
• What’s the dimension of the self-attention output?

• Computation cost: O(nk)

• Downside of uisng Linformer as a decoder?

• Unclear how to mask: past and future are mixed

15 / 24

https://arxiv.org/pdf/2006.04768.pdf


Summarize the KV memory

Linformer [Wang et al., 2020]: compute self-attention in a lower dimension

• Reduce dimensionality of the “memory”: Map K, V from
n × d to k × d

• Attend to the lower-dimensional memory:
softmax

(
Qn×dK

T
k×d/

√
d
)

• What’s the dimension of the attention matrix?
• What’s the dimension of the self-attention output?

• Computation cost: O(nk)

• Downside of uisng Linformer as a decoder?

• Unclear how to mask: past and future are mixed

15 / 24

https://arxiv.org/pdf/2006.04768.pdf


Summarize the KV memory

Linformer [Wang et al., 2020]: compute self-attention in a lower dimension

• Reduce dimensionality of the “memory”: Map K, V from
n × d to k × d

• Attend to the lower-dimensional memory:
softmax

(
Qn×dK

T
k×d/

√
d
)

• What’s the dimension of the attention matrix?
• What’s the dimension of the self-attention output?

• Computation cost: O(nk)

• Downside of uisng Linformer as a decoder?

• Unclear how to mask: past and future are mixed

15 / 24

https://arxiv.org/pdf/2006.04768.pdf


Summarize the KV memory

Linformer [Wang et al., 2020]: compute self-attention in a lower dimension

• Reduce dimensionality of the “memory”: Map K, V from
n × d to k × d

• Attend to the lower-dimensional memory:
softmax

(
Qn×dK

T
k×d/

√
d
)

• What’s the dimension of the attention matrix?
• What’s the dimension of the self-attention output?

• Computation cost: O(nk)

• Downside of uisng Linformer as a decoder?
• Unclear how to mask: past and future are mixed

15 / 24

https://arxiv.org/pdf/2006.04768.pdf


Summarize the KV memory
Perceiver [Jaegle et al., 2021]: use latent states to compress the KV memory

• Use latent states (k × ds ) as queries to attend to K,V (n × d ) −→ lower
dimensional states (k × ds )

• Stack self-attention layers on latent states: decoupling depth and input size
• Map to latent states using cross attention: O(nm)

• Self-attention layers: O(Lm2)

16 / 24

https://arxiv.org/pdf/2103.03206.pdf


Summarize the KV memory
Perceiver [Jaegle et al., 2021]: use latent states to compress the KV memory

• Use latent states (k × ds ) as queries to attend to K,V (n × d ) −→ lower
dimensional states (k × ds )
• Stack self-attention layers on latent states: decoupling depth and input size

• Map to latent states using cross attention: O(nm)

• Self-attention layers: O(Lm2)

16 / 24

https://arxiv.org/pdf/2103.03206.pdf


Summarize the KV memory
Perceiver [Jaegle et al., 2021]: use latent states to compress the KV memory

• Use latent states (k × ds ) as queries to attend to K,V (n × d ) −→ lower
dimensional states (k × ds )
• Stack self-attention layers on latent states: decoupling depth and input size
• Map to latent states using cross attention: O(nm)

• Self-attention layers: O(Lm2)

16 / 24

https://arxiv.org/pdf/2103.03206.pdf


Summarize the KV memory
Perceiver [Jaegle et al., 2021]: use latent states to compress the KV memory

• Use latent states (k × ds ) as queries to attend to K,V (n × d ) −→ lower
dimensional states (k × ds )
• Stack self-attention layers on latent states: decoupling depth and input size
• Map to latent states using cross attention: O(nm)

• Self-attention layers: O(Lm2)

16 / 24

https://arxiv.org/pdf/2103.03206.pdf


Summary
Improve the quadratic time and space complexity of self-attention
• Sparsify the attention matrix
• Compress the KV memory

Bad news: Most techniques are not widely used in large pretrained models now.
Why?
• Improvement in time/space complexity doesn’t always translate to real

time/space savings
• These techniques often breaks structure and sacrifice the batching ability on

GPUs
• Only see improvement on very long sequences

Takeaways:
• Attention structure is important
• Low-rank techniques

17 / 24



Summary
Improve the quadratic time and space complexity of self-attention
• Sparsify the attention matrix
• Compress the KV memory

Bad news: Most techniques are not widely used in large pretrained models now.
Why?
• Improvement in time/space complexity doesn’t always translate to real

time/space savings
• These techniques often breaks structure and sacrifice the batching ability on

GPUs
• Only see improvement on very long sequences

Takeaways:
• Attention structure is important
• Low-rank techniques

17 / 24



Summary
Improve the quadratic time and space complexity of self-attention
• Sparsify the attention matrix
• Compress the KV memory

Bad news: Most techniques are not widely used in large pretrained models now.
Why?
• Improvement in time/space complexity doesn’t always translate to real

time/space savings
• These techniques often breaks structure and sacrifice the batching ability on

GPUs
• Only see improvement on very long sequences

Takeaways:
• Attention structure is important
• Low-rank techniques

17 / 24



Table of Contents

Efficient transformers

Efficient finetuning

18 / 24



Improve finetuning efficiency

Problem:
• In NLP, typically all parameters of the pretrained models (e.g., BERT) are

finetuned, which is expensive for large models.
• Saving and loading finetuned models for different tasks is costly.

Can we finetune a smaller number of parameters to achieve performance similar to
full finetuning?
• Select a subset of parameters from the pretrained weights to update
• Add a small number of parameters to adapte the (frozen) pretrained model

19 / 24



Improve finetuning efficiency

Problem:
• In NLP, typically all parameters of the pretrained models (e.g., BERT) are

finetuned, which is expensive for large models.
• Saving and loading finetuned models for different tasks is costly.

Can we finetune a smaller number of parameters to achieve performance similar to
full finetuning?

• Select a subset of parameters from the pretrained weights to update
• Add a small number of parameters to adapte the (frozen) pretrained model

19 / 24



Improve finetuning efficiency

Problem:
• In NLP, typically all parameters of the pretrained models (e.g., BERT) are

finetuned, which is expensive for large models.
• Saving and loading finetuned models for different tasks is costly.

Can we finetune a smaller number of parameters to achieve performance similar to
full finetuning?
• Select a subset of parameters from the pretrained weights to update
• Add a small number of parameters to adapte the (frozen) pretrained model

19 / 24



Finetune a subset of parameters
Freezing the first X layers [Lee et al., 2019]

A fourth of the layers need to be fine-tuned to obtain 90% of the performance.
20 / 24

https://arxiv.org/pdf/1911.03090.pdf


Finetune a subset of parameters

BitFit [Ben-Zaken et al., 2022]: only finetune the bias term (0.1% of the parameters)

Bias terms in QKV projection Bias terms in MLP layers

Result: 80.9 (BitFit, 0.08% params) vs 81.8 (full finetuning) on GLUE

21 / 24

https://arxiv.org/pdf/2106.10199.pdf


Adapt the frozen pretrained model

Adapter [Houlsby et al., 2019]: insert small networks to the pretrained model

• Insert learnable ”adapters” in-between layers
• Adapters uses a bottleneck structure to

reduce parameters
• Adapters uses a skip-connection

such that it
can be “reduced” to the original frozen model

Result: less than 0.4% performance drop with 3%
more parameters on GLUE

22 / 24

https://arxiv.org/pdf/1902.00751.pdf


Adapt the frozen pretrained model

Adapter [Houlsby et al., 2019]: insert small networks to the pretrained model

• Insert learnable ”adapters” in-between layers
• Adapters uses a bottleneck structure to

reduce parameters
• Adapters uses a skip-connection such that it

can be “reduced” to the original frozen model
Result: less than 0.4% performance drop with 3%
more parameters on GLUE

22 / 24

https://arxiv.org/pdf/1902.00751.pdf


Adapt the frozen pretrained model

LoRA [Hu et al., 2021]: add low-rank matrices as additional parameters

Hypothesis: weight matrices are low rank

Adapters: For any matrix multiplication h = W0x , we
modify it to

h = W0x + ∆Wx = W0x + BAx

• W0 ∈ Rd×k ,B ∈ Rd×r ,A ∈ Rr×k(r � k)

• Initialization: BA = 0

• Can be applied to any weight matrices, e.g., QKV
projection matrices

23 / 24

https://arxiv.org/pdf/2106.09685.pdf


Adapt the frozen pretrained model

Compare LoRA and the original adapters:

• LoRA recovers full finetuning by increasing r

Adapter recovers an MLP model with increasing params

• LoRA has no additional inference cost by setting W0 ←W0 + BA (doesn’t work
for multiple tasks)
Adapter incurs additional inference cost due to the added params

The most widely used efficient finetuning method on very large models (>100B).

24 / 24



Adapt the frozen pretrained model

Compare LoRA and the original adapters:

• LoRA recovers full finetuning by increasing r

Adapter recovers an MLP model with increasing params
• LoRA has no additional inference cost

by setting W0 ←W0 + BA (doesn’t work
for multiple tasks)
Adapter incurs additional inference cost due to the added params

The most widely used efficient finetuning method on very large models (>100B).

24 / 24



Adapt the frozen pretrained model

Compare LoRA and the original adapters:

• LoRA recovers full finetuning by increasing r

Adapter recovers an MLP model with increasing params
• LoRA has no additional inference cost by setting W0 ←W0 + BA (doesn’t work

for multiple tasks)
Adapter incurs additional inference cost due to the added params

The most widely used efficient finetuning method on very large models (>100B).

24 / 24



Summary

Reduce finetuning cost by reducing the number of parameters to update
• Finetune a subset of parameters
• Finetune an additional adapters inserted to the model

Not widely used for SOTA large models, but used sometimes in resource-constrained
settings.

Other ways to adapt the model without parameter update: prompting, in-context
learning (later)

Lots of open research questions!

25 / 24


	Efficient transformers
	Efficient finetuning

