
Pretraining and Finetuning

He He

February 28, 2023

1 / 26



Logistics

• Section will be in-person, starting at 4:55pm.
• Review and Q&A about the lecture recording.
• Lab material.

• Online midterm next week
• Spring break no lecture
• Project: start early! Proposal due after spring break

2 / 26



Table of Contents

Representation learning

3 / 26



Representation learning
What are good representations?
• Enable a notion of distance over text (word embeddings)
• Contains good features for downstream tasks

negative the food is good but doesn’t worth an hour wait

Simple features (e.g. BoW) require complex models.
Good features only need simple models (e.g. linear classifier) .

Figure: Sentiment neuron [Radford et al., 2017]

4 / 26

https://arxiv.org/abs/1704.01444


Representation learning
What are good representations?
• Enable a notion of distance over text (word embeddings)
• Contains good features for downstream tasks

negative the food is good but doesn’t worth an hour wait

Simple features (e.g. BoW) require complex models.
Good features only need simple models (e.g. linear classifier) .

Figure: Sentiment neuron [Radford et al., 2017]

4 / 26

https://arxiv.org/abs/1704.01444


Representation learning

What can we do with good representations:
• Learning with small data: fine-tuning on learned representations
• Transfer learning: one representation for many tasks
• Metric learning: get a similarity metric for free

Training a neural network on any task gives us a representation good for that task.

But on which task can we learn good general representations?

5 / 26



Representation learning

What can we do with good representations:
• Learning with small data: fine-tuning on learned representations
• Transfer learning: one representation for many tasks
• Metric learning: get a similarity metric for free

Training a neural network on any task gives us a representation good for that task.

But on which task can we learn good general representations?

5 / 26



What can we learn from word guessing?

• The cats that are raised by my sister sleeping.

syntax

• Jane is happy that John invited friends to his birthday party. coreference

• is the capital of Tanzania. knowledge

• The boy is because he lost his keys. commonsense

• John took 100 bucks to Vegas. He won 50 and then lost 100. Now he only has
to go home. numerical reasoning

Word guessing entails lots of tasks related to language understanding!

6 / 26



What can we learn from word guessing?

• The cats that are raised by my sister sleeping. syntax

• Jane is happy that John invited friends to his birthday party.

coreference

• is the capital of Tanzania. knowledge

• The boy is because he lost his keys. commonsense

• John took 100 bucks to Vegas. He won 50 and then lost 100. Now he only has
to go home. numerical reasoning

Word guessing entails lots of tasks related to language understanding!

6 / 26



What can we learn from word guessing?

• The cats that are raised by my sister sleeping. syntax

• Jane is happy that John invited friends to his birthday party. coreference

• is the capital of Tanzania.

knowledge

• The boy is because he lost his keys. commonsense

• John took 100 bucks to Vegas. He won 50 and then lost 100. Now he only has
to go home. numerical reasoning

Word guessing entails lots of tasks related to language understanding!

6 / 26



What can we learn from word guessing?

• The cats that are raised by my sister sleeping. syntax

• Jane is happy that John invited friends to his birthday party. coreference

• is the capital of Tanzania. knowledge

• The boy is because he lost his keys.

commonsense

• John took 100 bucks to Vegas. He won 50 and then lost 100. Now he only has
to go home. numerical reasoning

Word guessing entails lots of tasks related to language understanding!

6 / 26



What can we learn from word guessing?

• The cats that are raised by my sister sleeping. syntax

• Jane is happy that John invited friends to his birthday party. coreference

• is the capital of Tanzania. knowledge

• The boy is because he lost his keys. commonsense

• John took 100 bucks to Vegas. He won 50 and then lost 100. Now he only has
to go home.

numerical reasoning

Word guessing entails lots of tasks related to language understanding!

6 / 26



What can we learn from word guessing?

• The cats that are raised by my sister sleeping. syntax

• Jane is happy that John invited friends to his birthday party. coreference

• is the capital of Tanzania. knowledge

• The boy is because he lost his keys. commonsense

• John took 100 bucks to Vegas. He won 50 and then lost 100. Now he only has
to go home. numerical reasoning

Word guessing entails lots of tasks related to language understanding!

6 / 26



What can we learn from word guessing?

• The cats that are raised by my sister sleeping. syntax

• Jane is happy that John invited friends to his birthday party. coreference

• is the capital of Tanzania. knowledge

• The boy is because he lost his keys. commonsense

• John took 100 bucks to Vegas. He won 50 and then lost 100. Now he only has
to go home. numerical reasoning

Word guessing entails lots of tasks related to language understanding!

6 / 26



Self-supervised learning

Key idea: predict parts of the input from the rest
• No supervision is needed—both input and output are from the raw data.
• Easy to scale—only need unlabeled data.
• Learned representation is general—related to many tasks.

Approach:
• Pretrain: train a model using self-supervised learning objectives on large data.
• Finetune: update part or all of the parameters of the pretrained model (which

provides an initialization) on supervise data of a task.

7 / 26



Self-supervised learning

Key idea: predict parts of the input from the rest
• No supervision is needed—both input and output are from the raw data.
• Easy to scale—only need unlabeled data.
• Learned representation is general—related to many tasks.

Approach:
• Pretrain: train a model using self-supervised learning objectives on large data.
• Finetune: update part or all of the parameters of the pretrained model (which

provides an initialization) on supervise data of a task.

7 / 26



A bit of history

• Pretrain an RNN model on unlabeled data and finetune on supervised tasks [Dai
et al., 2015] [ULMFiT; Howard et al., 2018]
• Promising results on a small scale

• ELMo: replace static word embedding by contextual word embeddings from
pretrained bi-LSTM [Peters et al., 2018]

• First impactful result in NLP

• Pretrain a Transformer model and finetune on supervised tasks

• GPT [Radford et al., 2018], BERT [Devlin et al., 2018]

• Scale the pretrained model to larger sizes

• GPT-2 (1.5B), T5 (11B), GPT-3 (175B), PaLM (540B)
• We will talk about 100B+ models in the third module

8 / 26

https://arxiv.org/pdf/1511.01432.pdf
https://arxiv.org/pdf/1511.01432.pdf
https://arxiv.org/pdf/1511.01432.pdf
https://arxiv.org/abs/1802.05365
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://arxiv.org/abs/1810.04805


A bit of history

• Pretrain an RNN model on unlabeled data and finetune on supervised tasks [Dai
et al., 2015] [ULMFiT; Howard et al., 2018]
• Promising results on a small scale

• ELMo: replace static word embedding by contextual word embeddings from
pretrained bi-LSTM [Peters et al., 2018]
• First impactful result in NLP

• Pretrain a Transformer model and finetune on supervised tasks

• GPT [Radford et al., 2018], BERT [Devlin et al., 2018]

• Scale the pretrained model to larger sizes

• GPT-2 (1.5B), T5 (11B), GPT-3 (175B), PaLM (540B)
• We will talk about 100B+ models in the third module

8 / 26

https://arxiv.org/pdf/1511.01432.pdf
https://arxiv.org/pdf/1511.01432.pdf
https://arxiv.org/pdf/1511.01432.pdf
https://arxiv.org/abs/1802.05365
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://arxiv.org/abs/1810.04805


A bit of history

• Pretrain an RNN model on unlabeled data and finetune on supervised tasks [Dai
et al., 2015] [ULMFiT; Howard et al., 2018]
• Promising results on a small scale

• ELMo: replace static word embedding by contextual word embeddings from
pretrained bi-LSTM [Peters et al., 2018]
• First impactful result in NLP

• Pretrain a Transformer model and finetune on supervised tasks
• GPT [Radford et al., 2018], BERT [Devlin et al., 2018]

• Scale the pretrained model to larger sizes

• GPT-2 (1.5B), T5 (11B), GPT-3 (175B), PaLM (540B)
• We will talk about 100B+ models in the third module

8 / 26

https://arxiv.org/pdf/1511.01432.pdf
https://arxiv.org/pdf/1511.01432.pdf
https://arxiv.org/pdf/1511.01432.pdf
https://arxiv.org/abs/1802.05365
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://arxiv.org/abs/1810.04805


A bit of history

• Pretrain an RNN model on unlabeled data and finetune on supervised tasks [Dai
et al., 2015] [ULMFiT; Howard et al., 2018]
• Promising results on a small scale

• ELMo: replace static word embedding by contextual word embeddings from
pretrained bi-LSTM [Peters et al., 2018]
• First impactful result in NLP

• Pretrain a Transformer model and finetune on supervised tasks
• GPT [Radford et al., 2018], BERT [Devlin et al., 2018]

• Scale the pretrained model to larger sizes
• GPT-2 (1.5B), T5 (11B), GPT-3 (175B), PaLM (540B)
• We will talk about 100B+ models in the third module

8 / 26

https://arxiv.org/pdf/1511.01432.pdf
https://arxiv.org/pdf/1511.01432.pdf
https://arxiv.org/pdf/1511.01432.pdf
https://arxiv.org/abs/1802.05365
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://arxiv.org/abs/1810.04805


Types of pretrained models

• Encoder models, e.g., BERT
• Encode text into vector representations that can be used for downstream

classification tasks

• Encoder-decoder models, e.g., T5

• Encode input text into vector representations and generate text
conditioned on the input

• Decoder models, e.g., GPT-2 (later)

• Read in text (prefix) and continue to generate text

All models are transformer based.

9 / 26



Types of pretrained models

• Encoder models, e.g., BERT
• Encode text into vector representations that can be used for downstream

classification tasks

• Encoder-decoder models, e.g., T5
• Encode input text into vector representations and generate text

conditioned on the input

• Decoder models, e.g., GPT-2 (later)

• Read in text (prefix) and continue to generate text

All models are transformer based.

9 / 26



Types of pretrained models

• Encoder models, e.g., BERT
• Encode text into vector representations that can be used for downstream

classification tasks

• Encoder-decoder models, e.g., T5
• Encode input text into vector representations and generate text

conditioned on the input

• Decoder models, e.g., GPT-2 (later)
• Read in text (prefix) and continue to generate text

All models are transformer based.

9 / 26



Types of pretrained models

• Encoder models, e.g., BERT
• Encode text into vector representations that can be used for downstream

classification tasks

• Encoder-decoder models, e.g., T5
• Encode input text into vector representations and generate text

conditioned on the input

• Decoder models, e.g., GPT-2 (later)
• Read in text (prefix) and continue to generate text

All models are transformer based.

9 / 26



Types of pretrained models

• Encoder models, e.g., BERT
• Encode text into vector representations that can be used for downstream

classification tasks

• Encoder-decoder models, e.g., T5
• Encode input text into vector representations and generate text

conditioned on the input

• Decoder models, e.g., GPT-2 (later)
• Read in text (prefix) and continue to generate text

All models are transformer based.

9 / 26



Encoder models

An encoder takes a sequence of tokens and output their contextualized
representations:

h1, . . . , hn = Encoder(x1, . . . , xn)

We can then use h1, . . . , hn for other tasks.

How do we train Encoder?
• Use any supervised task: y = f (h1, . . . , hn)

• Use self-supervised learning: predict a word from its neighbors

10 / 26



Encoder models

An encoder takes a sequence of tokens and output their contextualized
representations:

h1, . . . , hn = Encoder(x1, . . . , xn)

We can then use h1, . . . , hn for other tasks.

How do we train Encoder?
• Use any supervised task: y = f (h1, . . . , hn)

• Use self-supervised learning: predict a word from its neighbors

10 / 26



Masked language modeling
Learning objective:

max
∑

x∈D,i∼pmask

log p(xi | x−i ; θ)

• x−i : noisy version fo x where xi is corrupted
• pmask: mask generator

11 / 26



BERT: objective

• Masked language modeling:
• Randomly sample 15% tokens as prediction targets
• Replace the target tokens in the input by either [MASK] (10%) or a random

token (10%), or leave it unchanged
cats are cute→ cats [MASK]/is/are cute
• Later work has shown that just use [MASK] is sufficient

• Next sentence prediction: predict whether a pair of sentences are consecutive

max
∑

x∼D,xn∼pnext

log p(y | x , xn; θ)

• xn: either the sentence following x or a randomly sampled sentence
• y : binary label of whether xn follows x
• Later work has shown that this objective is not necessary

12 / 26



BERT: objective

• Masked language modeling:
• Randomly sample 15% tokens as prediction targets
• Replace the target tokens in the input by either [MASK] (10%) or a random

token (10%), or leave it unchanged
cats are cute→ cats [MASK]/is/are cute
• Later work has shown that just use [MASK] is sufficient

• Next sentence prediction: predict whether a pair of sentences are consecutive

max
∑

x∼D,xn∼pnext

log p(y | x , xn; θ)

• xn: either the sentence following x or a randomly sampled sentence
• y : binary label of whether xn follows x
• Later work has shown that this objective is not necessary

12 / 26



BERT: architecture

• Subword unit: wordpiece (basically byte pair encoding)

• [CLS]: first token of all sequences; used for next sentence prediction
• Distinguish two sentences in a pair: [SEP] and segment embedding
• Learned position embedding
• 12 (base; 110M params) or 24 (large; 340M params) layer Transformer

13 / 26



BERT: architecture

• Subword unit: wordpiece (basically byte pair encoding)
• [CLS]: first token of all sequences; used for next sentence prediction

• Distinguish two sentences in a pair: [SEP] and segment embedding
• Learned position embedding
• 12 (base; 110M params) or 24 (large; 340M params) layer Transformer

13 / 26



BERT: architecture

• Subword unit: wordpiece (basically byte pair encoding)
• [CLS]: first token of all sequences; used for next sentence prediction
• Distinguish two sentences in a pair: [SEP] and segment embedding

• Learned position embedding
• 12 (base; 110M params) or 24 (large; 340M params) layer Transformer

13 / 26



BERT: architecture

• Subword unit: wordpiece (basically byte pair encoding)
• [CLS]: first token of all sequences; used for next sentence prediction
• Distinguish two sentences in a pair: [SEP] and segment embedding
• Learned position embedding

• 12 (base; 110M params) or 24 (large; 340M params) layer Transformer

13 / 26



BERT: architecture

• Subword unit: wordpiece (basically byte pair encoding)
• [CLS]: first token of all sequences; used for next sentence prediction
• Distinguish two sentences in a pair: [SEP] and segment embedding
• Learned position embedding
• 12 (base; 110M params) or 24 (large; 340M params) layer Transformer

13 / 26



Finetuning BERT
Classification tasks: Add a linear layer (randomly initialized) on top of the [CLS]

embedding
p(y | x) = softmax(Wh[CLS])

14 / 26



Finetuning BERT
Sequence labeling tasks: Add linear layers (randomly initialized) on top of every token

p(yi | x) = softmax(Whi )

15 / 26



Finetuning BERT

• Finetune all parameters (both the newly added layer and the pretrained weights)
• Use a small learning rate (e.g., 1e-5)
• Train for a small number of epochs (e.g, 3 epochs)
• Led to SOTA results on many NLU tasks
• Not straightforward to use on text generation tasks

16 / 26



Encoder-decoder models

An encoder-decoder model encodes input text to a sequence of contextualized
representations, and decodes a sequence of tokens autoregressively.

h1, . . . , hn = Encoder(x1, . . . , xn)

s1, . . . , sm = Decoder(y0, . . . , ym−1, h1, . . . , hn)

p(yi | x , y<i ) = softmax(Wsi )

How do we train the encoder-decoder?

• Use any supervised task, e.g., machine translation
• Use self-supervised learning: predict text spans from their neighbors

17 / 26



Masked language modeling using an encoder-decoder

Input: text with corrupted spans
Output: recovered spans

18 / 26



T5
• First train on unlabele data by masked language modeling

• Predict corrupted spans as a sequence
• Then continue training by supervised multitask learning

• Formulate tasks as text-to-text format
• Use a prefix to denote the task
• Mixing examples from different datasets when constructing batches

• Jointly training with the two objectives works slightly worse
19 / 26



Finetuning T5

• Formulate the task in text-to-text format
• Fine-tune all parameters (similar to BERT fine-tuning)
• Advantages over encoder models: unified modeling of many different tasks

20 / 26



Efficient pretraining

An obvious downside of pretrained models is that they are quite expensive to train!

How can we make them more efficient?

Idea 1: reducing the number of parameters smartly

Example: ALBERT (a lite BERT) [Lan et al., 2020]

• Factorization:
• Recall that in Transformer, we first need to map the one-hot encoding (of

size V ) of a token to Q, K, V embeddings (of size H)
• The number of parameters is V × H
• We can instead first map it to a lower-dim space (of size E ) so that the

number of params is V × E + E × H

21 / 26



Efficient pretraining

An obvious downside of pretrained models is that they are quite expensive to train!

How can we make them more efficient?

Idea 1: reducing the number of parameters smartly

Example: ALBERT (a lite BERT) [Lan et al., 2020]

• Parameter sharing:
• Share feedforward network weights across layers
• Share self-attention weights across layers
• ALBERT: share all params across layers

21 / 26



Efficient pretraining

Idea 2: design harder learning objectives

ALBERT: Inter-sentence coherence loss
• Motivation: the next sentence prediction task is too easy
• Design hard negative examples
• Input: take two consecutive sentences, swap their order randomly
• Output: predict if they are in natural order

I went home. SEP I slept. +1
I slept. SEP I went home. -1

• What is needed to perform this task well?

22 / 26



Efficient pretraining
Idea 2: design harder learning objectives

ELECTRA [Clark et al., 2020]: discriminate from true vs guessed tokens

• First train the generator for n steps using the MLM objective.
• Freeze generator weights. Then train the discriminator using the sequence

classification objective.
• The discriminator and generator share weights except for the input token

embeddings.
23 / 26



Efficient pretraining
ELECTRA result:

Figure: Finetuning result on the GLUE benchmark

• Larger improvement at smaller model sizes
• Faster training
• An effective approach if you don’t have large compute for pretraining

24 / 26



What are these models trained on?

Both quantity and quality are important

• Wikipedia: encyclopedia articles (clean, single domain)
• Toronto Books Corpus: e-books (diverse domain)
• WebText (40GB): content submitted to Reddit with a vote ≥ 3 (diverse, bias)
• CommonCrawl (20TB): scraped HTML with markers removed (diverse, large,

noisy, bias)
• A cleaned version: C4 (750GB)

25 / 26



Summary

Lots of learning happens from just observing the world (data).

• Self-supervised learning: benefits from large data and compute
• Basic: predict parts from other parts based on the structure of data (works

beyond text)
• Advanced: design hard negatives to improve efficiency

• Finetuning: adapt pretrained models to downstream tasks on a small amount of
labeled data

26 / 26


	Representation learning

