
Neural Sequence Generation

He He

February 14, 2023

1 / 23



Sequence generation

• Text classification: h : Vn → {0, . . . ,K}

• Sequence generation: h : Vnin → Vmout

• Summarization: document to summary
• Open-domain dialogue: context to response
• Parsing: sentence to linearized trees
• In general: text to text

Main difference (and challenge) is that the output space is much larger.
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Reduce generation to classification

Setup:
• Input: x ∈ Vnin, e.g. Le Programme a ate mis en application
• Output: y ∈ Vmout, e.g., The program has been implemented

Consider a probabilistic model p(y | x)

• Can we reduce it to classification (think logistic regression)?
• Decompose the problem using chain rule of probability

p(y | x) = p(y1 | x)p(y2 | y1, x) . . . p(ym | ym−1, . . . , y1, x)

=
m∏
i=1

p(yi | y<i , x)

• We only need to model the next word distribution p(yi | y<i , x) now.
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Reduce generation to classification
We want to model the next word distribution p(yi | y<i , x).
• Input: a sequence of tokens (prefix and input)

• Output: the next word from the output vocabulary
• We have reduced it to a classification problem.

We can use an RNN to model p(yi | y<i , x).

Figure: From Sequence to Sequence Learning with Neural Networks [Sutskever et al., 2014]
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The encoder-decoder architecture

Figure: 10.6.1 from d2l.ai

Model the input (e.g., French) and the output (e.g., English) separately.

• The encoder reads the input:

Encoder(x1, . . . , xn) = [h1, . . . , hn]

where hi ∈ Rd

• The decoder writes the output:

Decoder(h1, . . . , hn) = [y1, . . . , ym]

.
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RNN encoder-decoder model

Figure: 10.7.1 from d2l.ai

• The encoder embeds the input recurrently and produce a context vector

ht = RNNEncoder(xt , ht−1), c = f (h1, . . . , hn)

• The decoder produce the output state recurrently and map it to a distribution
over tokens

st = RNNDecoder([yt−1; c] , st−1), p(yt | y<t , c) = softmax(Linear(st))
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Bi-directional RNN encoder

The [Forbes]?? building is at 60 Fifth Ave.

Each hidden state should summarize both left and right context

Figure: 10.4.1 from d2l.ai

• Use two RNNs, one encode from left
to right, the other from right to left
• Concatenate hidden states from the

two RNNs

ht = [
←−
ht ;
−→
ht ]

ot = Wht + b
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Multilayer RNN

Figure: 10.3.1 from d2l.ai

• Improve model capacity (scaling up)
• Inputs to layer 1 are words
• Inputs to layer l are outputs from

layer l − 1

• Typically 2–4 layers
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Encoder-decoder attention
Motivation: should we use the same context vector for each decoding step?

Le Programme a ate mis en application

The Program has beenimplemented

We may want to “look at” different parts of the input during decoding.

Think the database analogy:

• Query: decoder states st−1
• Key: encoder states h1, . . . , hn
• Value: encoder states h1, . . . , hn
• Attention context: ct =

∑n
i=1 α(st−1, hi )hi

• Next state: st = RNNDecoder([yt−1; ct ] , st−1)
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Summary so far

The outputs of an encoder can be used by linear classifiers for classification,
sequence labeling etc.

A decoder is used to generate a sequence of symbols.

RNN encoder decoder model:
• Basic unit is an RNN (or its variants like LSTM)
• Make it more expressive: bi-directional, multilayer RNN
• Encoder-decoder attention helps the model learn input-output dependencies

more easily
• Bi-directional LSTM is the go-to architecture for NLP tasks until around 2017
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Transformer encoder decoder model

Figure: From illustrated transformer

• Stack the tranformer block (typically 12–24 layers)
• Decoder has an additional encoder-decoder multi-head attention layer

11 / 23
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Impact on NLP

• Initially designed for sequential data and obtained SOTA results on MT
• Replaced recurrent models (e.g. LSTM) on many tasks
• Enabled large-scale training which led to pre-trained models such as BERT and

GPT-2 (in two weeks)

12 / 23



Training

Maximum likelihood estimation:

max
∑

(x ,y)∈D

m∑
j=1

log p(yj | y<j , x ; θ)

What should be the prefix y<j?

13 / 23



Training

Maximum likelihood estimation:

max
∑

(x ,y)∈D

m∑
j=1

log p(yj | y<j , x ; θ)

What should be the prefix y<j?

13 / 23



Training
Maximum likelihood estimation:

max
∑

(x ,y)∈D

m∑
j=1

log p(yj | y<j , x ; θ)

What should be the prefix y<j?

Option 1: whatever generated by the model

Figure: 10.7.1 from d2l.ai
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Training
Maximum likelihood estimation:

max
∑

(x ,y)∈D

m∑
j=1

log p(yj | y<j , x ; θ)

What should be the prefix y<j?

Option 2: the groundtruth prefix (teacher forcing)

Figure: 10.7.3 from d2l.ai
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Decoder attention masking

Recall that the output of self-attention depends on all tokens y1, . . . ym.

But the decoder is supposed to model p(yt | y<t , x).

It should not look at the “future” (yt+1, . . . , ym)!

How do we fix the decoder self-attention?
• Mathematically, changing the input values and keys suffices.
• Practically, set a(si , sj) to − inf for all j > i and for i = 1, . . . ,m.

• The attention matrix is a lower-triangular matrix.

14 / 23
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Inference

How do we generate sequences given a trained model?

Figure: 10.7.1 from d2l.ai

The encoder-decoder model defines a probability distribution p(y | x ; θ) over
sequences.

Which one should we output?

15 / 23
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Inference

Argmax decoding:
ŷ = argmax

y∈Vn
out

p(y | x ; θ)

• Return the most likely sequence
• But exact search is intractable

Approximate search:
• Greedy decoding: return the most likely symbol at each step

yt = argmax
y∈Vout

p(y | x , y<t ; θ)
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Approximate decoding: beam search
Beam search: maintain k (beam size) highest-scored partial solutions at every step

Example: |V| = 5, k = 2

• At each step, rank symbols by log probability of the partial sequence
• Keep the top-k symbol out of all possible continuations
• Save backpointer to the previous state

17 / 23



Is argmax the right decoding objective?
High likelihood can be correlated with low quality outputs!

Figure: From the likelihood trap paper by Zhang et al., 2020

In practice, argmax decoding has been observed to lead to
• Repetitive generations, e.g.

“..., was conducted by researchers from the Universidad Nacional Autonoma de Mexico (UNAM)
and the Universidad Nacional Autonoma de Mexico (UNAM/Universidad Nacional Autonoma de
Mexico/Universidad Nacional Autonoma de Mexico/Universidad Nacional Autonoma...”

• Degraded generations with large beam size in MT
18 / 23
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Sampling-based decoding

If we have learned a perfect p(y | x), shouldn’t we just sample from it?

Sampling the next word sequentially:
• While output is not EOS

• Sample next word from p(· | prefix, input; θ)
• Append the word to prefix

Standard sampling often produces non-sensical sentences:
They were cattle called Bolivian Cavalleros; they live in a remote desert uninterrupted by town,
and they speak huge, beautiful, paradisiacal Bolivian linguistic thing.

Typically we modify the learned distrubtion pθ before sampling the next word

19 / 23
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Tempered sampling

Intuition: concentrate probability mass on highly likely sequences

Scale scores (from the linear layer) before the softmax layer:

p(yt = w | y<t , x) ∝ exp (score(w))

q(yt = w | y<t , x) ∝ exp (score(w)/T ) where T ∈ (0,+∞)

• What happends when T → 0 and T → +∞?
• Does it change the rank of y according to likelihood?
• Typically we chooose T ∈ (0, 1), which makes the distribution more peaky.
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Truncated sampling
Another way to focus on high likelihood sequences: truncate the tail of the
distribution

Top-k sampling:
• Rank all tokens w ∈ V by p(yt = w | y<t , x)
• Only keep the top k of those and renormalize the distribution

Which k to choose?

Figure: From the nucleus sampling paper by Holtzman et al., 2020
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Truncated sampling

Top-p sampling:

• Rank all tokens w ∈ V by p(yt = w | y<t , x)

• Keep only tokens in the top p probability mass and renormalize the distribution
• The corresponding k is dynamic:

• Start with k = 1, increment until the cumulative probability mass is larger
than p

22 / 23



Decoding in practice

• Can combine different tricks (e.g., temperature + beam search, temperature +
top-k )
• Use beam search with small beam size for tasks where there exists a correct

answer, e.g. machine translation, summarization
• Use top-k or top-p for open-ended generation, e.g. story generation, chit-chat

dialogue, continuation from a prompt
• As models getting better/larger, sampling-based methods tend to work better
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