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Logistics

• HW1 released. Due by next Friday.
• Plan for today:

• Lecture: 75 minutes
• Break: 5 minutes
• Section by Nitish: 40 minutes
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Last week
Generative vs discriminative models for text classi�cation

• (Multinomial) naive Bayes What’s the key assumption?

• Assumes conditional independence
• Very e�cient in practice (closed-form solution)

• Logistic regression What’s the main advantage?
• Works with all kinds of features
• Wins with more data

Feature vector of text input
• BoW representation
• N-gram features (usually n  3)

Control the complexity of the hypothesis class
• Feature selection
• Norm regularization
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Objective

Goal: come up with a good representation of text
• What is a representation?

• Feature map: � : text ! Rd , e.g., BoW, handcrafted features
• “Representation” often refers to learned features of the input

• What is a good representation?

• Leads to good task performance (often requires less training data)
• Enables a notion of distance over text: d(�(a),�(b)) is small for
semantically similar texts a and b
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Distance functions

Euclidean distance
For a, b 2 Rd ,

d(a, b) =

vuut
dX

i=1

(ai � bi )2 .

Assume a and b are BoW vectors. What if b repeats each sentence in a twice?
(bi = 2ai )

Cosine similarity
For a, b 2 Rd ,

sim(a, b) =
a · b

kakkbk = cos↵

Angle between two vectors
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Example: information retrieval

Given a set of documents and a query, use the BoW representation and cosine
similarity to �nd the most relevant document.

What are potential problems?

Example:
Q: Who has watched Avatar?
She has watched the Wandering Earth.
Avatar was shown here last week.

• Similarity may be dominated by common words
• Only considers the surface form (e.g., do not account for synonyms)

8 / 39
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TFIDF
Key idea: upweight words that carry more information about the document

Feature map � : document ! R|V|

TFIDF:

�i (d) = count(wi , d)| {z }
term frequency

⇥ log
# documents

# documents containing wi| {z }
inverse document frequency

.

• Term frequency (TF): count of each word type in the document (same as BoW)
• Reweight by inverse document frequency (IDF): how speci�c is the word type
to any particular document

• Higher weight on frequent words that only occur in a few documents
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The distributional hypothesis

“You shall know a word by the company it keeps.” (Firth, 1957)

Word guessing! (example from Eisenstein’s book)

Everybody likes tezgüino.
We make tezgüino out of corn.
A bottle of tezgüino is on the table.
Don’t have tezgüino before you drive.

Idea: Represent a word by its neighbors.
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We make tezgüino out of corn.
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We make tezgüino out of corn.
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Step 1: Choose the context

What are the neighbors? (What type of co-occurence are we interested in?)

Example:
• word ⇥ document

• word ⇥ word
• person ⇥movie
• note ⇥ song

Figure: Jurafsky and Martin.

Construct a matrix where
• Row and columns represent two sets of objects
• Each entry is the (adjusted) co-occurence counts of the two objects
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Step 2: Reweight counts
Upweight informative words

Figure: Jurafsky and Martin.

Each row/column gives us a word/document representation.

Using cosine similarity, we can cluster documents, �nd synonyms, discover word
meanings...

13 / 39



Pointwise mutual information

PMI(x ; y) def
= log

p(x , y)

p(x)p(y)
= log

p(x | y)
p(x)

= log
p(y | x)
p(y)

• Symmetric: PMI(x ; y) = PMI(y ; x)

• Range: (�1,min(� log p(x),� log p(y)))

• Estimates:

p̂(x | y) = count(x , y)
count(y)

p̂(x) =
count(x)P

x 02X count(x 0)

• Positive PMI: PPMI(x ; y) def
= max(0, PMI(x ; y))

• Application in NLP: measure association between words
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Step 3: Dimensionality reduction

Motivation: want a lower-dimensional, dense representation for e�ciency

Recall SVD: am⇥ nmatrix Am⇥n (e.g., a word-document matrix), can be decomposed
to

Um⇥m⌃m⇥nV
T
n⇥n ,

where U and V are orthogonal matrices, and ⌃ is a diagonal matrix.

Interpretation:
AAT = (U⌃V T )(V⌃UT ) = U⌃2UT .

• �2
i are eigenvalues of AA

T

• Connection to PCA: If columns of A have zero mean (i.e. AAT is the covariance
matrix), then columns of U are principle components of the column space of A.
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SVD for the word-document matrix
[board]

• Run truncated SVD of the word-document matrix Am⇥n

• Each row of Um⇥k⌃k corresponds to a word vector of dimension k

• Each coordinate of the word vector corresponds to a cluster of documents (e.g.,
politics, music etc.)

16 / 39
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[board]
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Summary

Count-based word embeddings
1. Design the matrix, e.g. word ⇥ document, people ⇥movie.
2. Reweight the raw counts, e.g. TFIDF, PMI.
3. Reduce dimensionality by truncated SVD.
4. Use word/person/etc. vectors in downstream tasks.

Key idea:
• Represent an object by its connection to other objects.
• For NLP, the word meaning can be represented by the context it occurs in.
• Infer latent features using co-occurence statistics

17 / 39
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Learning word embeddings

Goal: map each word to a vector in Rd such that similar words also have similar word
vectors.

Can we formalize this as a prediction problem?
• Needs to be self-supervised since our data is unlabeled.

Intuition: Similar words occur in similar contexts
• Predict the context given a word f : word ! context
• Words that tend to occur in same contexts will have similar representation
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The skip-gram model

Task: given a word, predict its neighboring words within a window

The quick brown fox jumps over the lazy dog

Assume conditional independence of the context words:

p(wi�k , . . . ,wi�1,wi+1, . . . ,wi+k | wi ) =
i+kY

j=i�k,j 6=i

p(wj | wi )

How to model p(wj | wi )? Multiclass classi�cation

20 / 39
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The skip-gram model

Use the softmax function to predict context words from the center word

p(wj | wi ) =
exp [�ctx(wj) · �wrd(wi )]P

w2V exp [�ctx(wj) · �wrd(wi )]

What’s the di�erence from multinomial logistic regression?

Implementation:

• Matrix form: � : w 7! Ad⇥|V|�one-hot(w), � can be implemented as a dictionary
• Learn parameters by MLE and SGD (Is the objective convex?)
• �wrd is taken as the word embedding

21 / 39
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Negative sampling
Challenge in MLE: computing the normalizer is expensive (try calculate the gradient)!

Key idea: solve a binary classi�cation problem instead

Is the (word, context) pair real or fake?

p✓(real | w , c) =
1

1 + e��ctx(c)·�wrd(w)

22 / 39
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The continuous bag-of-words model

Task: given the context, predict the word in the middle

The quick brown fox jumps over the lazy dog

Similary, we can use logistic regression for the prediction

p(wi | wi�k , . . . ,wi�1,wi+1, . . . ,wi+k)

How to represent the context (input)?

23 / 39
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The continuous bag-of-words model

The context is a sequence of words.

c = wi�k , . . . ,wi�1,wi+1, . . . ,wi+k

p(wi | c) =
exp [�wrd(wi ) · �BoW(c)]P
w2V exp [�wrd(w) · �BoW(c)]

=
exp

⇥
�wrd(wi ) ·

P
w 02c �ctx(w

0)
⇤

P
w2V exp

⇥
�wrd(w) ·

P
w 02c �ctx(w

0)
⇤

• �BoW(c) sums over representations of each word in c

• Implementation is similar to the skip-gram model.
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Semantic properties of word embeddings

Find similar words: top-k nearest neighbors using cosine similarity

• Size of window in�uences the type of similarity
• Shorter window produces syntactically similar words, e.g., Hogwarts and
Sunnydale (�ctional schools)

• Longer window produces topically related words, e.g., Hogwarts and
Dumbledore (Harry Porter entities)
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Semantic properties of word embeddings
Solve word analogy problems: a is to b as a’ is to what?

Figure: Parallelogram model (from J&H).

• man : woman :: king : queen
�wrd(man)� �wrd(king) ⇡ �wrd(woman)� �wrd(queen)

• Caveat: must exclude the three input words
• Does not work for general relations
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Comparison

Count-based Prediction-based

matrix factorization prediction problem
fast to compute slow (with large corpus) but more �exible
interpretable components hard to interprete but has intriguing prop-

erties

• Both uses the distributional hypothesis.
• Both generalize beyond text: using co-occurence between any types of objects

• Learn product embeddings from customer orders
• Learn region embeddings from images
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Evaluate word vectors

Intrinsic evaluation
• Evaluate on the proxy task (related to the learning objective)
• Word similarity/analogy datasets (e.g., WordSim-353, SimLex-999)

Extrinsic evaluation
• Evaluate on the real/downstream task we care about
• Use word vectors as features in NER, parsing etc.
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Summary

Key idea: formalize word representation learning as a self-supervised prediction
problem

Prediction problems:
• Skip-gram: Predict context from words
• CBOW: Predict word from context
• Other possibilities:

• Predict log p̂(word | context), e.g. GloVe
• Contextual word embeddings (later)
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Feature learning

Linear predictor with handcrafted features: f (x) = w · �(x).

Can we learn intermediate features?

Example:
• Predict popularity of restaurants.
• Raw input: #dishes, price, wine option, zip code, #seats, size
• Decompose into subproblems:

h1([#dishes, price, wine option]) = food quality

h2([zip code]) = walkable

h3([#seats, size]) = nosie
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Prede�ned subproblems
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wine option
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Popularity
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features

Input
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Output

h1

h2

h3

food quality

walkable
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Learning intermediate features

#dishes

price

wine option

zip code

#seats

size

Popularity

Hidden
layer

Input
layer

Output
layer

h1

h2

h3
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Neural networks

Key idea: automatically learn the intermediate features.

Feature engineering: Manually specify �(x) based on domain knowledge and learn
the weights:

f (x) = wT�(x).

Feature learning: Automatically learn both the features (K hidden units) and the
weights:

h(x) = [h1(x), . . . , hK (x)] , f (x) = wTh(x)
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Activation function
• How should we parametrize hi ’s? Can it be linear?

hi (x) = �(vTi x). (1)

• � is the nonlinear activation function.
• What might be some activation functions we want to use?

• sign function? Non-di�erentiable.
• Di�erentiable approximations: sigmoid functions.

• E.g., logistic function, hyperbolic tangent function, ReLU

• Two-layer neural network (one hidden layer and one output layer) with K
hidden units:

f (x) =
KX

k=1

wkhk(x) =
KX

k=1

wk�(vk
T x) (2)
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Activation Functions
• The hyperbolic tangent is a common activation function:

�(x) = tanh (x) .
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Activation Functions
• More recently, the recti�ed linear (ReLU) function has been very popular:

�(x) = max(0, x).

• Much faster to calculate, and to calculate its derivatives.
• Work well empirically.
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Multilayer perceptron / Feed-forward neural networks
• Wider: more hidden units.
• Deeper: more hidden layers.

x1

x2

...

xd�1

xd

score

Hidden
layers

Input
layer

Output
layer
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Multilayer Perceptron: Standard Recipe
• Each subsequent hidden layer takes the output o 2 Rm of previous layer and
produces

h(j)(o(j�1)) = �
⇣
W (j)o(j�1) + b(j)

⌘
, for j = 2, . . . , L

whereW (j) 2 Rm⇥m, b(j) 2 Rm.

• Last layer is an a�nemapping (no activation function):

a(o(L)) = W (L+1)o(L) + b(L+1),

whereW (L+1) 2 Rk⇥m and b(L+1) 2 Rk .
• The full neural network function is given by the composition of layers:

f (x) =
⇣
a � h(L) � · · · � h(1)

⌘
(x) (3)

• Last layer typically gives us a score. (How to do classi�cation?)
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