Distributed representation of text

He He

January 31, 2023

Logistics

- HW1 released. Due by next Friday.
- Plan for today:
 - Lecture: 75 minutes
 - Break: 5 minutes
 - Section by Nitish: 40 minutes

Table of Contents

Review

Introduction

Count-based word embeddings

Prediction-based word embeddings

Neural networks

Generative vs discriminative models for text classification

• (Multinomial) naive Bayes

What's the key assumption?

Generative vs discriminative models for text classification

• (Multinomial) naive Bayes

What's the key assumption?

- Assumes conditional independence
- Very efficient in practice (closed-form solution)

Generative vs discriminative models for text classification

• (Multinomial) naive Bayes

What's the key assumption?

- Assumes conditional independence
- Very efficient in practice (closed-form solution)
- Logistic regression

Generative vs discriminative models for text classification

- (Multinomial) naive Bayes
 - Assumes conditional independence
 - Very efficient in practice (closed-form solution)
- Logistic regression
 - Works with all kinds of features
 - Wins with more data

What's the key assumption?

Generative vs discriminative models for text classification

- (Multinomial) naive Bayes
 - Assumes conditional independence
 - Very efficient in practice (closed-form solution)
- Logistic regression
 - Works with all kinds of features
 - Wins with more data

Feature vector of text input

- BoW representation
- N-gram features (usually $n \leq 3$)

What's the key assumption?

Generative vs discriminative models for text classification

- (Multinomial) naive Bayes
 - Assumes conditional independence
 - Very efficient in practice (closed-form solution)
- Logistic regression
 - Works with all kinds of features
 - Wins with more data

Feature vector of text input

- BoW representation
- N-gram features (usually $n \leq 3$)

Control the complexity of the hypothesis class

- Feature selection
- Norm regularization

What's the key assumption?

Table of Contents

Review

Introduction

Count-based word embeddings

Prediction-based word embeddings

Neural networks

Goal: come up with a good representation of text

• What is a representation?

- What is a representation?
 - Feature map: $\phi \colon \mathsf{text} \to \mathbb{R}^d$, e.g., BoW, handcrafted features

- What is a representation?
 - Feature map: $\phi \colon \mathsf{text} \to \mathbb{R}^d$, e.g., BoW, handcrafted features
 - "Representation" often refers to learned features of the input

- What is a representation?
 - Feature map: $\phi \colon \mathsf{text} \to \mathbb{R}^d$, e.g., BoW, handcrafted features
 - "Representation" often refers to learned features of the input
- What is a good representation?

- What is a representation?
 - Feature map: ϕ : text $\rightarrow \mathbb{R}^d$, e.g., BoW, handcrafted features
 - "Representation" often refers to learned features of the input
- What is a good representation?
 - Leads to good task performance (often requires less training data)

- What is a representation?
 - Feature map: ϕ : text $\rightarrow \mathbb{R}^d$, e.g., BoW, handcrafted features
 - "Representation" often refers to learned features of the input
- What is a good representation?
 - Leads to good task performance (often requires less training data)
 - Enables a notion of distance over text: d(φ(a), φ(b)) is small for semantically similar texts a and b

Euclidean distance

For $a,b\in \mathbb{R}^d$,

$$d(a,b)=\sqrt{\sum_{i=1}^d(a_i-b_i)^2}\;.$$

Euclidean distance

For $a,b\in \mathbb{R}^d$,

$$d(a,b)=\sqrt{\sum_{i=1}^d (a_i-b_i)^2}\;.$$

Assume *a* and *b* are BoW vectors. What if *b* repeats each sentence in *a* twice?

Euclidean distance

For $a, b \in \mathbb{R}^d$,

$$d(a,b)=\sqrt{\sum_{i=1}^d (a_i-b_i)^2}\;.$$

Assume *a* and *b* are BoW vectors. What if *b* repeats each sentence in *a* twice? $(b_i = 2a_i)$

Euclidean distance

For $a, b \in \mathbb{R}^d$,

$$d(a,b)=\sqrt{\sum_{i=1}^d(a_i-b_i)^2}\;.$$

Assume *a* and *b* are BoW vectors. What if *b* repeats each sentence in *a* twice? $(b_i = 2a_i)$

Cosine similarity

For $a, b \in \mathbb{R}^d$,

$$sim(a,b) = \frac{a \cdot b}{\|a\| \|b\|} = \cos \alpha$$

Angle between two vectors

Example: information retrieval

Given a set of documents and a query, use the BoW representation and cosine similarity to find the most relevant document.

What are potential problems?

Example:

Q: Who has watched Avatar? a_1 : She has watched the Wandering Earth. a_2 : Avatar was shown here last week.

Example: information retrieval

Given a set of documents and a query, use the BoW representation and cosine similarity to find the most relevant document.

What are potential problems?

Example:

Q: Who has watched Avatar? She has watched the Wandering Earth. Avatar was shown here last week.

- Similarity may be dominated by common words
- Only considers the surface form (e.g., do not account for synonyms)

Key idea: upweight words that carry more information about the document

Key idea: upweight words that carry more information about the document

Feature map ϕ : document $\rightarrow \mathbb{R}^{|\mathcal{V}|}$

TFIDF:

$$\phi_i(d) = \underbrace{\operatorname{count}(w_i, d)}_{\operatorname{term frequency}} \times$$

• Term frequency (TF): count of each word type in the document (same as BoW)

Key idea: upweight words that carry more information about the document

Feature map ϕ : document $\rightarrow \mathbb{R}^{|\mathcal{V}|}$

TFIDF:

$$\phi_i(d) = \underbrace{\operatorname{count}(w_i, d)}_{\operatorname{term frequency}} \times \underbrace{\log \frac{\# \operatorname{documents}}{\# \operatorname{documents containing } w_i}}_{\operatorname{inverse document frequency}}$$

- Term frequency (TF): count of each word type in the document (same as BoW)
- Reweight by **inverse document frequency (IDF)**: how specific is the word type to any particular document

Key idea: upweight words that carry more information about the document

Feature map ϕ : document $\rightarrow \mathbb{R}^{|\mathcal{V}|}$

TFIDF:

$$\phi_i(d) = \underbrace{\operatorname{count}(w_i, d)}_{\operatorname{term frequency}} \times \underbrace{\log \frac{\# \operatorname{documents}}{\# \operatorname{documents containing } w_i}}_{\operatorname{inverse document frequency}}$$

- Term frequency (TF): count of each word type in the document (same as BoW)
- Reweight by **inverse document frequency (IDF)**: how specific is the word type to any particular document
- Higher weight on frequent words that only occur in a few documents

Table of Contents

Review

Introduction

Count-based word embeddings

Prediction-based word embeddings

Neural networks

"You shall know a word by the company it keeps." (Firth, 1957)

"You shall know a word by the company it keeps." (Firth, 1957)

Word guessing! (example from Eisenstein's book) Everybody likes tezgüino.

"You shall know a word by the company it keeps." (Firth, 1957)

Word guessing! (example from Eisenstein's book) Everybody likes tezgüino. We make tezgüino out of corn.

"You shall know a word by the company it keeps." (Firth, 1957)

Word guessing! (example from Eisenstein's book) Everybody likes tezgüino. We make tezgüino out of corn. A bottle of tezgüino is on the table.

"You shall know a word by the company it keeps." (Firth, 1957)

Word guessing! (example from Eisenstein's book)
Everybody likes tezgüino.
We make tezgüino out of corn.
A bottle of tezgüino is on the table.
Don't have tezgüino before you drive.

"You shall know a word by the company it keeps." (Firth, 1957)

Word guessing! (example from Eisenstein's book)
Everybody likes tezgüino.
We make tezgüino out of corn.
A bottle of tezgüino is on the table.
Don't have tezgüino before you drive.

Idea: Represent a word by its neighbors.

Step 1: Choose the context

What are the neighbors? (What type of co-occurence are we interested in?)

Example:

• word × document

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	0	7	13
good	114	80	62	89
fool	36	58	1	4
wit	20	15	2	3

Figure 6.2 The term-document matrix for four words in four Shakespeare plays. Each cell contains the number of times the (row) word occurs in the (column) document.

Figure: Jurafsky and Martin.

Step 1: Choose the context

What are the neighbors? (What type of co-occurence are we interested in?)

Example:

- word × document
- word \times word

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	0	7	13
good	114	80	62	89
fool	36	58	1	4
wit	20	15	2	3

Figure 6.2 The term-document matrix for four words in four Shakespeare plays. Each cell contains the number of times the (row) word occurs in the (column) document.

Figure: Jurafsky and Martin.

Step 1: Choose the context

What are the neighbors? (What type of co-occurence are we interested in?)

Example:

- word × document
- word \times word
- person × movie

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	0	7	13
good	114	80	62	89
fool	36	58	1	4
wit	20	15	2	3

Figure 6.2 The term-document matrix for four words in four Shakespeare plays. Each cell contains the number of times the (row) word occurs in the (column) document.

Figure: Jurafsky and Martin.
Step 1: Choose the context

What are the neighbors? (What type of co-occurence are we interested in?)

Example:

- word × document
- word \times word
- person × movie
- note × song

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	0	7	13
good	114	80	62	89
fool	36	58	1	4
wit	20	15	2	3

Figure 6.2 The term-document matrix for four words in four Shakespeare plays. Each cell contains the number of times the (row) word occurs in the (column) document.

Figure: Jurafsky and Martin.

Step 1: Choose the context

What are the neighbors? (What type of co-occurence are we interested in?)

Example:

- word × document
- word \times word
- person × movie
- note × song

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	0	7	13
good	114	80	62	89
fool	36	58	1	4
wit	20	15	2	3

Figure 6.2 The term-document matrix for four words in four Shakespeare plays. Each cell contains the number of times the (row) word occurs in the (column) document.

Figure: Jurafsky and Martin.

Construct a matrix where

- Row and columns represent two sets of objects
- Each entry is the (adjusted) co-occurence counts of the two objects

Step 2: Reweight counts

Upweight informative words

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	0.074	0	0.22	0.28
good	0	0	0	0
fool	0.019	0.021	0.0036	0.0083
wit	0.049	0.044	0.018	0.022
Elemente (A the ide main hts	1 4		four Chalzannan

Figure 6.9 A tf-idf weighted term-document matrix for four words in four Shakespeare

Figure: Jurafsky and Martin.

Each row/column gives us a word/document representation.

Using cosine similarity, we can cluster documents, find synonyms, discover word meanings...

Pointwise mutual information

$$\mathsf{PMI}(x;y) \stackrel{\text{def}}{=} \log \frac{p(x,y)}{p(x)p(y)} = \log \frac{p(x\mid y)}{p(x)} = \log \frac{p(y\mid x)}{p(y)}$$

Pointwise mutual information

$$\mathsf{PMI}(x;y) \stackrel{\text{def}}{=} \log \frac{p(x,y)}{p(x)p(y)} = \log \frac{p(x\mid y)}{p(x)} = \log \frac{p(y\mid x)}{p(y)}$$

- Symmetric: PMI(x; y) = PMI(y; x)
- Range: $(-\infty, \min(-\log p(x), -\log p(y)))$
- Estimates:

$$\hat{p}(x \mid y) = rac{\operatorname{count}(x, y)}{\operatorname{count}(y)} \quad \hat{p}(x) = rac{\operatorname{count}(x)}{\sum_{x' \in \mathcal{X}} \operatorname{count}(x')}$$

- Positive PMI: PPMI(x; y) $\stackrel{\text{def}}{=} \max(0, \text{PMI}(x; y))$
- Application in NLP: measure association between words

Step 3: Dimensionality reduction

Motivation: want a lower-dimensional, dense representation for efficiency

Step 3: Dimensionality reduction

Motivation: want a lower-dimensional, dense representation for efficiency

Recall **SVD**: a $m \times n$ matrix $A_{m \times n}$ (e.g., a word-document matrix), can be decomposed to

$$U_{m\times m}\Sigma_{m\times n}V_{n\times n}^T,$$

where U and V are orthogonal matrices, and Σ is a diagonal matrix.

Step 3: Dimensionality reduction

Motivation: want a lower-dimensional, dense representation for efficiency

Recall **SVD**: a $m \times n$ matrix $A_{m \times n}$ (e.g., a word-document matrix), can be decomposed to

$$U_{m\times m}\Sigma_{m\times n}V_{n\times n}^T,$$

where U and V are orthogonal matrices, and Σ is a diagonal matrix.

Interpretation:

$$AA^{T} = (U\Sigma V^{T})(V\Sigma U^{T}) = U\Sigma^{2}U^{T}.$$

- σ_i^2 are eigenvalues of AA^T
- Connection to PCA: If columns of A have zero mean (i.e. AA^T is the covariance matrix), then columns of U are principle components of the column space of A.

SVD for the word-document matrix

[board]

- Run truncated SVD of the word-document matrix $A_{m \times n}$
- Each row of $U_{m \times k} \Sigma_k$ corresponds to a word vector of dimension k
- Each coordinate of the word vector corresponds to a cluster of documents (e.g., politics, music etc.)

Summary

Count-based word embeddings

- 1. Design the matrix, e.g. word \times document, people \times movie.
- 2. Reweight the raw counts, e.g. TFIDF, PMI.
- 3. Reduce dimensionality by truncated SVD.
- 4. Use word/person/etc. vectors in downstream tasks.

Key idea:

- Represent an object by its connection to other objects.
- For NLP, the word meaning can be represented by the context it occurs in.
- Infer latent features using co-occurence statistics

Table of Contents

Review

Introduction

Count-based word embeddings

Prediction-based word embeddings

Neural networks

Learning word embeddings

Goal: map each word to a vector in \mathbb{R}^d such that *similar* words also have *similar* word vectors.

Learning word embeddings

Goal: map each word to a vector in \mathbb{R}^d such that *similar* words also have *similar* word vectors.

Can we formalize this as a prediction problem?

• Needs to be self-supervised since our data is unlabeled.

Learning word embeddings

Goal: map each word to a vector in \mathbb{R}^d such that *similar* words also have *similar* word vectors.

Can we formalize this as a prediction problem?

• Needs to be self-supervised since our data is unlabeled.

Intuition: Similar words occur in similar contexts

- Predict the context given a word f: word \rightarrow context
- Words that tend to occur in same contexts will have similar representation

Task: given a word, predict its neighboring words within a window

The quick brown fox jumps over the lazy dog

Task: given a word, predict its neighboring words within a window

The quick brown fox jumps over the lazy dog

Assume conditional independence of the context words:

$$p(w_{i-k},...,w_{i-1},w_{i+1},...,w_{i+k} \mid w_i) = \prod_{j=i-k,j\neq i}^{i+k} p(w_j \mid w_i)$$

Task: given a word, predict its neighboring words within a window

The quick brown fox jumps over the lazy dog

Assume conditional independence of the context words:

$$p(w_{i-k},\ldots,w_{i-1},w_{i+1},\ldots,w_{i+k} \mid w_i) = \prod_{j=i-k,j\neq i}^{i+k} p(w_j \mid w_i)$$

How to model $p(w_j | w_i)$?

Task: given a word, predict its neighboring words within a window

The quick brown fox jumps over the lazy dog

Assume conditional independence of the context words:

$$p(w_{i-k},...,w_{i-1},w_{i+1},...,w_{i+k} \mid w_i) = \prod_{j=i-k,j\neq i}^{i+k} p(w_j \mid w_i)$$

How to model $p(w_j | w_i)$? Multiclass classification

Use the softmax function to predict context words from the center word

$$p(w_{j} | w_{j}) = \frac{\exp\left[\phi_{\mathsf{ctx}}(w_{j}) \cdot \phi_{\mathsf{wrd}}(w_{j})\right]}{\sum_{w \in \mathcal{V}} \exp\left[\phi_{\mathsf{ctx}}(w_{j}) \cdot \phi_{\mathsf{wrd}}(w_{j})\right]}$$

What's the difference from multinomial logistic regression?

Use the softmax function to predict context words from the center word

$$p(w_j \mid w_i) = \frac{\exp\left[\phi_{\mathsf{ctx}}(w_j) \cdot \phi_{\mathsf{wrd}}(w_i)\right]}{\sum_{w \in \mathcal{V}} \exp\left[\phi_{\mathsf{ctx}}(w_j) \cdot \phi_{\mathsf{wrd}}(w_i)\right]}$$

What's the difference from multinomial logistic regression?

Implementation:

• Matrix form: $\phi: w \mapsto A_{d \times |\mathcal{V}|} \phi_{\text{one-hot}}(w)$, ϕ can be implemented as a dictionary

Use the softmax function to predict context words from the center word

$$p(w_j \mid w_i) = \frac{\exp\left[\phi_{\mathsf{ctx}}(w_j) \cdot \phi_{\mathsf{wrd}}(w_i)\right]}{\sum_{w \in \mathcal{V}} \exp\left[\phi_{\mathsf{ctx}}(w_j) \cdot \phi_{\mathsf{wrd}}(w_i)\right]}$$

What's the difference from multinomial logistic regression?

Implementation:

- Matrix form: $\phi: w \mapsto A_{d \times |\mathcal{V}|} \phi_{\text{one-hot}}(w)$, ϕ can be implemented as a dictionary
- Learn parameters by MLE and SGD (Is the objective convex?)

Use the softmax function to predict context words from the center word

$$p(w_j \mid w_i) = \frac{\exp\left[\phi_{\mathsf{ctx}}(w_j) \cdot \phi_{\mathsf{wrd}}(w_i)\right]}{\sum_{w \in \mathcal{V}} \exp\left[\phi_{\mathsf{ctx}}(w_j) \cdot \phi_{\mathsf{wrd}}(w_i)\right]}$$

What's the difference from multinomial logistic regression?

- Implementation: Matrix form: $\phi: w \mapsto A_{d \times |V|} \phi_{\text{one-hot}}(w), \phi$ can be implemented as a dictionary
 - Learn parameters by MLE and SGD (Is the objective convex?)
 - ϕ_{wrd} is taken as the word embedding

Negative sampling

Challenge in MLE: computing the normalizer is expensive (try calculate the gradient)!

$$\frac{2(0)}{(C_{2}w)ED} = \sum_{\substack{(C_{2}w)\in D}} \log P(C(w))$$

$$= \sum_{\substack{(C_{2}w)\in D}} \varphi_{C}(c) \cdot \varphi_{w}(w) - \log \sum_{\substack{(W)\in V}} \varphi_{C}(c) \cdot \varphi_{w}(w')$$

Negative sampling

Challenge in MLE: computing the normalizer is expensive (try calculate the gradient)!

Key idea: solve a binary classification problem instead

positive examples +

			-	_	
W	$c_{ m pos}$	W	c_{neg}	W	<i>c</i> _{neg}
apricot	tablespoon	apricot	aardvark	apricot	seven
apricot	of	apricot	my	apricot	forever
apricot	jam	apricot	where	apricot	dear
apricot	a	apricot	coaxial	apricot	if

Is the (word, context) pair real or fake?

negative examples -

$$p_{ heta}(\mathsf{real} \mid w, c) = rac{1}{1 + e^{-\phi_{\mathsf{ctx}}(c) \cdot \phi_{\mathsf{wrd}}(w)}}$$

The continuous bag-of-words model

Task: given the context, predict the word in the middle

The quick brown the jumps over the lazy dog

Similary, we can use logistic regression for the prediction

$$p(w_i \mid w_{i-k}, \ldots, w_{i-1}, w_{i+1}, \ldots, w_{i+k})$$

How to represent the context (input)?

The continuous bag-of-words model

The context is a sequence of words.

$$c = w_{i-k}, \ldots, w_{i-1}, w_{i+1}, \ldots, w_{i+k}$$

$$p(w_i \mid c) = \frac{\exp\left[\phi_{\mathsf{wrd}}(w_i) \cdot \phi_{\mathsf{BoW}}(c)\right]}{\sum_{w \in \mathcal{V}} \exp\left[\phi_{\mathsf{wrd}}(w) \cdot \phi_{\mathsf{BoW}}(c)\right]}$$

The continuous bag-of-words model

The context is a sequence of words.

$$c = w_{i-k}, \ldots, w_{i-1}, w_{i+1}, \ldots, w_{i+k}$$

$$p(w_i \mid c) = \frac{\exp\left[\phi_{wrd}(w_i) \cdot \phi_{BoW}(c)\right]}{\sum_{w \in \mathcal{V}} \exp\left[\phi_{wrd}(w) \cdot \phi_{BoW}(c)\right]}$$
$$= \frac{\exp\left[\phi_{wrd}(w_i) \cdot \sum_{w' \in \mathcal{C}} \phi_{ctx}(w)\right]}{\sum_{w \in \mathcal{V}} \exp\left[\phi_{wrd}(w) \cdot \sum_{w' \in c} \phi_{ctx}(w')\right]}$$

- $\phi_{\text{BoW}}(c)$ sums over representations of each word in c
- Implementation is similar to the skip-gram model.

Semantic properties of word embeddings

Find similar words: top-k nearest neighbors using cosine similarity

- Size of window influences the type of similarity
- Shorter window produces syntactically similar words, e.g., Hogwarts and Sunnydale (fictional schools)
- Longer window produces topically related words, e.g., Hogwarts and Dumbledore (Harry Porter entities)

Semantic properties of word embeddings

Solve word analogy problems: a is to b as a' is to what?

Figure: Parallelogram model (from J&H).

• man : woman :: king : queen

 $\phi_{wrd}(man) - \phi_{wrd}(king) \approx \phi_{wrd}(woman) - \phi_{wrd}(queen)$

- Caveat: must exclude the three input words
- Does not work for general relations

Comparison

Count-based	Prediction-based
matrix factorization fast to compute interpretable components	prediction problem slow (with large corpus) but more flexible hard to interprete but has intriguing prop- erties

- Both uses the **distributional hypothesis**.
- Both generalize beyond text: using co-occurence between any types of objects
 - Learn product embeddings from customer orders
 - Learn region embeddings from images

Intrinsic evaluation

- Evaluate on the proxy task (related to the learning objective)
- Word similarity/analogy datasets (e.g., WordSim-353, SimLex-999)

Extrinsic evaluation

- Evaluate on the real/downstream task we care about
- Use word vectors as features in NER, parsing etc.

Summary

Key idea: formalize word representation learning as a self-supervised prediction problem

Prediction problems:

- Skip-gram: Predict context from words
- CBOW: Predict word from context
- Other possibilities:
 - Predict $\log \hat{p}(word \mid context)$, e.g. GloVe
 - Contextual word embeddings (later)

Table of Contents

Review

Introduction

Count-based word embeddings

Prediction-based word embeddings

Neural networks

Feature learning

Linear predictor with handcrafted features: $f(x) = w \cdot \phi(x)$.

Can we learn intermediate features?
Feature learning

Linear predictor with handcrafted features: $f(x) = w \cdot \phi(x)$.

Can we learn intermediate features?

Example:

- Predict popularity of restaurants.
- Raw input: #dishes, price, wine option, zip code, #seats, size
- Decompose into subproblems:

 $h_1([#dishes, price, wine option]) = food quality$

*h*₂([zip code]) = walkable

h₃([#seats, size]) = nosie

Predefined subproblems

Learning intermediate features

Neural networks

Key idea: automatically learn the intermediate features.

Feature engineering: Manually specify $\phi(x)$ based on domain knowledge and learn the weights:

 $f(x) = w^T \phi(x).$

Feature learning: Automatically learn both the features (*K* hidden units) and the weights:

$$h(x) = [h_1(x), \ldots, h_{\mathcal{K}}(x)], \quad f(x) = w^T h(x)$$

• How should we parametrize h_i 's? Can it be linear?

• How should we parametrize *h_i*'s? Can it be linear?

$$h_i(x) = \sigma(v_i^T x). \tag{1}$$

• σ is the *nonlinear* activation function.

• How should we parametrize h_i 's? Can it be linear?

$$h_i(x) = \sigma(v_i^T x). \tag{1}$$

- σ is the *nonlinear* activation function.
- What might be some activation functions we want to use?

• How should we parametrize *h_i*'s? Can it be linear?

$$h_i(x) = \sigma(v_i^T x). \tag{1}$$

- σ is the *nonlinear* activation function.
- What might be some activation functions we want to use?
 - sign function? Non-differentiable.

• How should we parametrize *h_i*'s? Can it be linear?

$$h_i(x) = \sigma(v_i^T x). \tag{1}$$

- σ is the *nonlinear* activation function.
- What might be some activation functions we want to use?
 - sign function? Non-differentiable.
 - *Differentiable* approximations: sigmoid functions.
 - E.g., logistic function, hyperbolic tangent function, ReLU

• How should we parametrize *h_i*'s? Can it be linear?

$$h_i(x) = \sigma(v_i^T x). \tag{1}$$

- σ is the *nonlinear* activation function.
- What might be some activation functions we want to use?
 - sign function? Non-differentiable.
 - Differentiable approximations: sigmoid functions.
 - E.g., logistic function, hyperbolic tangent function, ReLU
- Two-layer neural network (one hidden layer and one output layer) with *K* hidden units:

$$f(x) = \sum_{k=1}^{K} w_k h_k(x) = \sum_{k=1}^{K} w_k \sigma(v_k^T x)$$
(2)

• The **hyperbolic tangent** is a common activation function:

 $\sigma(x) = \tanh(x).$

• More recently, the **rectified linear** (**ReLU**) function has been very popular:

 $\sigma(x) = \max(0, x).$

- Much faster to calculate, and to calculate its derivatives.
- Work well empirically.

Multilayer perceptron / Feed-forward neural networks

- Wider: more hidden units.
- Deeper: more hidden layers.

• Each subsequent hidden layer takes the output $o \in \mathbb{R}^m$ of previous layer and produces

$$h^{(j)}(o^{(j-1)}) = \sigma \left(W^{(j)}o^{(j-1)} + b^{(j)} \right), \text{ for } j = 2, \dots, L$$

where $W^{(j)} \in \mathbb{R}^{m \times m}$, $b^{(j)} \in \mathbb{R}^m$.

• Each subsequent hidden layer takes the output $o \in \mathbb{R}^m$ of previous layer and produces

$$h^{(j)}(o^{(j-1)}) = \sigma \left(W^{(j)}o^{(j-1)} + b^{(j)} \right), \text{ for } j = 2, \dots, L$$

where $W^{(j)} \in \mathbb{R}^{m \times m}$, $b^{(j)} \in \mathbb{R}^m$.

• Last layer is an *affine* mapping (no activation function):

$$a(o^{(L)}) = W^{(L+1)}o^{(L)} + b^{(L+1)},$$

where $W^{(L+1)} \in \mathbb{R}^{k \times m}$ and $b^{(L+1)} \in \mathbb{R}^k$.

• Each subsequent hidden layer takes the output $o \in \mathbb{R}^m$ of previous layer and produces

$$h^{(j)}(o^{(j-1)}) = \sigma \left(W^{(j)}o^{(j-1)} + b^{(j)} \right), \text{ for } j = 2, \dots, L$$

where $W^{(j)} \in \mathbb{R}^{m \times m}$, $b^{(j)} \in \mathbb{R}^m$.

• Last layer is an *affine* mapping (no activation function):

$$a(o^{(L)}) = W^{(L+1)}o^{(L)} + b^{(L+1)},$$

where $W^{(L+1)} \in \mathbb{R}^{k \times m}$ and $b^{(L+1)} \in \mathbb{R}^k$.

• The full neural network function is given by the *composition* of layers:

$$f(x) = \left(a \circ h^{(L)} \circ \dots \circ h^{(1)}\right)(x) \tag{3}$$

• Each subsequent hidden layer takes the output $o \in \mathbb{R}^m$ of previous layer and produces

$$h^{(j)}(o^{(j-1)}) = \sigma \left(W^{(j)}o^{(j-1)} + b^{(j)} \right), \text{ for } j = 2, \dots, L$$

where $W^{(j)} \in \mathbb{R}^{m \times m}$, $b^{(j)} \in \mathbb{R}^m$.

• Last layer is an *affine* mapping (no activation function):

$$a(o^{(L)}) = W^{(L+1)}o^{(L)} + b^{(L+1)},$$

where $W^{(L+1)} \in \mathbb{R}^{k \times m}$ and $b^{(L+1)} \in \mathbb{R}^k$.

• The full neural network function is given by the *composition* of layers:

$$f(x) = \left(a \circ h^{(L)} \circ \dots \circ h^{(1)}\right)(x) \tag{3}$$

Last layer typically gives us a score. (How to do classification?)