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Text classification

• Input: text (sentence, paragraph, document)
• Predict the category or property of the input text
• Sentiment classification: Is the review positive or negative?
• Spam detection: Is the email/message spam or not?
• Hate speech detection: Is the tweet/post toxic or not?
• Stance classification: Is the opinion liberal or conservative?

• Predict the relation of two pieces of text
• Textual entailment (HW1): does the premise entail the hypothesis?

Premise: The dogs are running in the park.
Hypothesis: There are dogs in the park.
• Paraphrase detection: are the two sentences paraphrases?

Sentence 1: The dogs are in the park.
Sentence 2: There are dogs in the park.
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Intuition

• Example: sentiment classification for movie reviews
Action. Comedy. Suspense. This movie has it all. The Plot goes that 4 would be
professional thieves are invited to take part in a heist in a small town in Montana. every
type of crime movie archetype character is here. Frank, the master mind. Carlos, the
weapons expert. Max, the explosives expert. Nick, the safe cracker and Ray, the car
man. Our 4 characters meet up at the train station and from the beginning none of
them like or trust one another. Added to the mix is the fact that Frank is gone and they
are not sure why they have called together. Now Frank is being taken back to New Jersey
by the 2 detectives but soon escapes on foot and tries to make his way back to the guys
who are having all sorts of problems of their own. Truly a great film loaded with laughs
and great acting. Just an overall good movie for anyone looking for a laugh or
something a little different

• Idea: count the number of positive/negative words
• What is a “word”?
• How do we know which are positive/negative?
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Preprocessing: tokenization

Goal: Splitting a string of characters to a sequence of tokens [x1, . . . , xn].

Language-specific solutions
• Regular expression: “I didn’t watch the movie”.→ [“I”, “did”, “n’t”, “watch”, “the”,

“movie”, “.”]
• Special cases: U.S., Ph.D. etc.

• Dictionary / sequence labeler: “我没有去看电影。”→ [“我”, “没有”, “去”, “看”, “电
影”, “。”]

General solutions: don’t split by words
• Characters: [“u”, “n”, “a”, “f”, “f”, “a”, “b”, “l”, “e”]
• Subword (e.g., byte pair encoding): [“un”, “aff”, “able#”]
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Classification: problem formulation

• Input: a sequence of tokens x = (x1, . . . xn) where xi ∈ V .

• Output: binary label y ∈ {0, 1}.

• Probabilistic model:

f (x) =

{
1 if pθ(y = 1 | x) > 0.5

0 otherwise
,

where pθ is a distribution parametrized by θ ∈ Θ.

• Modeling question: what’s the parametric form of pθ?
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Modeling p(y | x)
How to write a review:

1. Decide the sentiment by flipping a coin: p(y)

2. Generate word sequentially conditioned on the sentiment p(x | y)

p(y) =

Bernoulli(α)

(1)

p(x | y) =

n∏
i=1

p(xi | y) (independent assumption)

(2)

=

n∏
i=1

Categorical(θ1,y , . . . , θ|V|,y︸ ︷︷ ︸
sum to 1

)

(3)

Bayes rule:
p(y | x) =

p(x | y)p(y)

p(x)
=

p(x | y)p(y)∑
y∈Y p(x | y)p(y)
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Naive Bayes models

Naive Bayes assumption
The input features are conditionally independent given the label:

p(x | y) =
n∏

i=1

p(xi | y) .

• A strong assumption, but works surprisingly well in practice.
• Note: p(xi | y) doesn’t have to be a categorical distribution (e.g., Gaussian

distribution)
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Learning: maximum likelihood estimation
Task: estimate parameters θ of a distribution p(y ; θ) given i.i.d. samples
D = (y1, . . . , yN) from the distribution.

Goal: find the parameters that make the observed data most probable.

Likelihood function of θ given D :

L(θ;D)
def
= p(D; θ) =

N∏
i=1

p(yi ; θ) .

Maximum (log-)likelihood estimator:

θ̂ = arg max
θ∈Θ

L(θ;D) = arg max
θ∈Θ

N∑
i=1

log p(yi ; θ) (4)
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MLE and ERM
ERM:

min
N∑
i=1

`(x (i), y (i), θ)

MLE:

max
N∑
i=1

log p(y (i) | x (i); θ)

What’s the connection between MLE and ERM?

MLE is equivalent to ERM with the negative log-likelihood (NLL) loss function:

`NLL(x (i), y (i), θ)
def
= − log p(y (i) | x (i); θ)
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MLE solution for our Naive Bayes model

count(w , y)
def
= frequency of w in documents with label y

pMLE(w | y) =
count(w , y)∑

w∈V count(w , y)

= how often the word occur in positive/negative documents
= “positive/negative score of the word”

pMLE(y = k) =

∑N
i=1 I

(
y (i) = k

)
N

= fraction of positive/negative documents
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Inference: make predictions using the model

Inference: y = arg maxy∈Y pθ(y | x)

Compare pθ(y = 1 | x) and pθ(y = 0 | x):

pθ(y = 1 | x)

pθ(y = 0 | x)
=

pθ(x | y = 1)pθ(y = 1)

pθ(x | y = 0)pθ(y = 0)

Assuming pθ(y = 1) = pθ(y = 0), we only need to compare pθ(x | y = 1) and
pθ(x | y = 0).

score of class k = log pθ(x | y = k) =
n∑

i=1

log pθ(xi | y = k)

(Adding up positive/negative scores of each word)
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Feature design

Naive Bayes doesn’t have to use single words as features

• Lexicons, e.g., LIWC.

• Task-specific features, e.g., is the email subject all caps.

• Bytes and characters, e.g., used in language ID detection.
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Summary of Naive Bayes models

• Modeling: the conditional indepedence assumption simplifies the problem
• Learning: MLE (or ERM with negative log-likelihood loss)
• Inference: very fast (adding up scores of each word)
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Discriminative models

Idea: directly model the conditional distribution p(y | x)

generative models discriminative models

modeling joint: p(x , y) conditional: p(y | x)

assumption on y yes yes

assumption on x yes no

development generative story feature extractor
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Model p(y | x)
How to model p(y | x)?

y is a Bernoulli variable:

p(y | x) = αy (1− α)(1−y)

Bring in x :
p(y | x) = h(x)y (1− h(x))(1−y) h(x) ∈ [0, 1]

Parametrize h(x) using a linear function:

h(x) = w · φ(x) + b φ : X → Rd

Problem: h(x) ∈ R (score)
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Logistic regression
Map w · φ(x) ∈ R to a probability by the logistic function

p(y = 1 | x ;w) =
1

1 + e−w ·φ(x)
(y ∈ {0, 1})

p(y = k | x ;w) =
ewk ·φ(x)∑
i∈Y e

wi ·φ(x)
(y ∈ {1, . . . ,K}) “softmax”
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Inference

ŷ = arg max
k∈Y

p(y = k | x ;w) (5)

= arg max
k∈Y

ewk ·φ(x)∑
i∈Y e

wi ·φ(x)
(6)

= arg max
k∈Y

ewk ·φ(x) (7)

= arg max
k∈Y

wk · φ(x)︸ ︷︷ ︸
score for class k

(8)
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MLE for logistic regression

• Likelihood function is concave / NLL is convex
• No closed-form solution
• Use stochastic gradient ascent
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BoW representation
Example:

V = {the, a, an, in, for, penny, pound}
sentence = in for a penny, in for a pound

x = (in, for, a, penny, in, for, a, pound)

Feature extractor: φ : Vn → Rd .

Idea: a sentence is the “sum” of words.

φBoW(x) =
n∑

i=1

φone-hot(xi )

φone-hot(x1) =
[
0 0 0 1 0 0 0

]
the sentence contains the word “in”

φBoW(x) =
[
0 2 0 2 2 1 1

]
the sentence contains 2 occurrences of “in”
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N-gram features

Potential problems with the the BoW representation?

N-gram features:

in for a penny , in for a pound

• Unigram: in, for, a, ...
• Bigram: in/for, for/a, a/penny, ...
• Trigram: in/for/a, for/a/penny, ...

What are the pros/cons of using higher order n-grams?

22 / 30



N-gram features

Potential problems with the the BoW representation?

N-gram features:

in for a penny , in for a pound

• Unigram: in, for, a, ...
• Bigram: in/for, for/a, a/penny, ...
• Trigram: in/for/a, for/a/penny, ...

What are the pros/cons of using higher order n-grams?

22 / 30



Feature extractor

Logistic regression allows for richer features (what’s the limitation of NB?)

Define each feature as a function φi : X → R.

φ1(x) =

{
1 x contains “happy”
0 otherwise

,

φ2(x) =

{
1 x contains words with suffix “yyyy”
0 otherwise

.

In practice, use a dictionary

feature vector["prefix=un+suffix=ing"] = 1

23 / 30



Table of Contents

Generative models: naive Bayes

Discriminative models: logistic regression

Regularization, model selection, evaluation

24 / 30



Error decomposition

Let’s ignore the optimization error, assuming we always find the optimum

risk(ĥ)− risk(h∗) = approximation error + estimation error

• Approximation error: risk(best hypo inH)− risk(h∗)
Does my hypothesis space contain the true hypothesis?

• Estimation error: risk(ĥ)− risk(best hypo inH)
Can I find the best hypothesis given limited data?

Larger hypothesis class: approximation error ↓, estimation error ↑

Smaller hypothesis class: approximation error ↑, estimation error ↓

How to control the size of the hypothesis class?
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Reduce the dimensionality

Linear predictors: H =
{
w : w ∈ Rd

}
Reduce the number of features. (Ideas for text classification?)

For other predictors:
• Depth of decision trees
• Degree of polynomials
• Number of decision stumps in boosting
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Regularization

Reduce the “size” of w :

min
w

1

N

N∑
i=1

L(x (i), y (i),w)︸ ︷︷ ︸
average loss

+
λ

2
‖w‖2

2︸ ︷︷ ︸
`2 norm

Why is small norm good? Small change in the input doesn’t cause large change in the
output.
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Gradient descent with `2 regularization

Run SGD on

min
w

1

N

N∑
i=1

L(x (i), y (i),w)︸ ︷︷ ︸
average loss

+
λ

2
‖w‖2

2︸ ︷︷ ︸
`2 norm

Also called weight decay in the deep learning literature:

w ← w − η(∇wL(x , y ,w) + λw)

Shrink w in each update.
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Hyperparameter tuning

Hyperparameters: parameters of the learning algorithm (not the model)

Example: use MLE to learn a logistic regression model using BoW features

How do we select hyperparameters?
Pick those minimizing the training error?
Pick those minimizing the test error?
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Validation

Validation set: a subset of the training data reserved for tuning the learning
algorithm (also called the development set).

K -fold cross validation
[board]

It’s important to look at the data and errors during development, but not the test set.
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