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Rule-based approach

Figure: Fig 1-1 from Hands-On Machine Learning with Scikit-Learn and TensorFlow by Aurelien
Geron (2017).
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Machine learning approach

Figure: Fig 1-2 from Hands-On Machine Learning with Scikit-Learn and TensorFlow by Aurelien
Geron (2017).
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Example: spam filter

• Rules
Contains “Viagra”
Contains “Rolex”
Subject line is all caps
...

• Learning from data
1. Collect emails labeled as spam or non-spam
2. Design features, e.g., first word of the subject, nouns in the main text
3. Learn a binary classifier

Pros and cons of each approach?
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Key challenges in machine learning

• Availability of large amounts of (annotated) data
• Data collection: scraping, crowdsourcing, expert annotation
• Quality control: data quality can have large impact on the final model

(garbage in garbage out)
• Don’t take it for granted: always check the data source!

How would you collect a dataset for the spam filtering task?
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Key challenges in machine learning

• Generalize to unseen samples
• We want to build a model: h : X (input space)→ Y (output space)
• It is easy to achieve high accuracy on the training set.
• But we want the model to perform well on unseen data, too.
• How should we evaluate the model?
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Empirical risk minimization (ERM)
• Assume a data generating distribution D over X × Y (e.g., spam writers and

non-spam writers)

• We have access to a training set: m samples from D
{
(x (i), y (i))

}m
i=1

• We can measure the goodness of a prediction h(x) by comparing it against the
groundtruth y using some loss function
• Our goal is to minimize the expected loss over D (risk):

minimize E(x ,y)∼D [error(h, x , y)] ,

but it cannot be computed (why?).
• Instead, we minimize the average loss on the training set (empirical risk)

minimize
1

m

m∑
i=1

error(h, x (i), y (i))

• Key question: does small empirical risk imply small risk?
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Overfitting vs underfitting

[board]
• Trivial solution to (unconstrained) ERM: memorize the data points
• Need to extrapolate information from one part of the input space to

unobserved parts!
• Solution: constrain the prediction function to a subset, i.e. a hypothesis space

h ∈ H.

• Trade-off between complexity ofH and generalization
• Question for us: how to choose a goodH for certain domains
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Summary

1. Obtain training data Dtrain =
{
(x (i), y (i))

}n
i=1

.

2. Choose a loss function L and a hypothesis classH (domain knowledge).

3. Learn a predictor by minimizing the empirical risk (optimization).
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Setup

• Task: binary classification y ∈ {+1,−1}

• Model: fw : X → R parametrized by w ∈ Rd

• Output a score for each example

• Prediction: sign(fw (x))
• Positive scores are mapped to the positive class

• Goal: quantify the goodness of the model output fw (x) given y
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Zero-one loss
First idea: check if the prediction is the same as the label

L(x , y , fw ) = I [sign(fw (x)) = y ] = I

 yfw (x)︸ ︷︷ ︸
margin

≤ 0

 (1)

Problem: not differentiable
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Hinge loss

L(x , y , fw ) = max(1− yfw (x), 0)

• A (sub)differentiable upperbound of the zero-one loss
• Not differentiable at margin = 1 (use subgradients)
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Logistic loss

L(x , y , fw ) = log(1 + e−yfw (x))

• Differentiable
• Always wants more margin (loss is never 0)
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Summary

1. Obtain training data Dtrain =
{
(x (i), y (i))

}n
i=1
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2. Choose a loss function L and a hypothesis classH (domain knowledge).

3. Learn a predictor by minimizing the empirical risk (optimization).
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Gradient descent

• The gradient of a function F at a point w ∈ Rd is the direction of fastest increase
in the function value
• To minimze F (w), move in the opposite direction

w ← w − η∇wF (w)

• Converge to a local minimum (also global minimum if F (w) is convex) with
carefully chosen step sizes η
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Stochastic gradient descent

• Gradient descent (GD) for ERM

w ← w − η∇w

n∑
i=1

L(x (i), y (i),w)︸ ︷︷ ︸
training set loss

• Stochastic gradient descent (SGD): take noisy but faster updates

For each (x , y) ∈ Dtrain :

w ← w − η∇w L(x , y , fw )︸ ︷︷ ︸
example loss
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GD vs SGD

Figure: Minimize 1.25(x + 6)2 + (y − 8)2. Example from “Understanding Machine Learning:
From Theory to Algorithms”

SGD step is noisier as it gets closer to the optimum; need to reduce step size
gradually.
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SGD summary

• Each update is efficient in both time and space

• Can be slow to converge

• Popular in large-scale ML, including non-convex problems

• In practice,
• Randomly sample examples.
• Fixed or diminishing step sizes, e.g. 1/t , 1/

√
t.

• Stop when objective does not improve.

• Our main optimization techinque
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Summary

• Choose hypothesis class based on domain knowledge

• Learning algorithm: empirical risk minimization

• Optimization: stochastic gradient descent
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