Prompt Engineering

Temperature

What happens when T approach 0? How about infinity?

Тор-р

How does the following work on the left example:

- 1. Greedy search
- 2. beam search with n_beam=2
- 3. Top-k sampling
- 4. Top-p sampling

Max Length, Stop Sequences

Predict common sense results of the following actions. == Action: I didn't water the plant for 3 weeks. Result: The plant died. == Action: I went to school. Result: I got a diploma. == Action: I left the AC on all day. Result: I got a high utility bill. == Action: I helped my neighbors when their car broke down. Result: My neighbors were grateful. == Action: I put the ice cream outside for an hour. Result: The ice cream melted.

Frequency Penalty

"Write a poem where every word starts with Z"

Frequency Penalty = 0	Frequency Penalty = 2
Zebras zigzagging zealously,	Zealous zephyrs zoom, zigzagging zestily,
Zephyrs zipping, zesty, zestfully.	Zinnia zones, zenith zeppelins' zone precisely.
Zodiac's zenith, zeal's zodiac,	Zenith's ziggurats zealously zap,
Zinnias zigzag, zircon's zodiac.	Zirconium zebras zip-zap on Zanz
Zeppelin zooming, zigzag	

Basic Prompt

Prompt	Prompt:
The sky is	Complete the sentence:
Output:	The sky is
blue C	Output:
The sky is blue on a clear day. On a cloudy day, the sky may be gray or white.	so beautiful today.

Prompt Formatting

This is awesome! // Positive This is bad! // Negative Wow that movie was rad! // Positive What a horrible show! //

<Question>? <Answer> <Question>? <Answer> <Question>? <Answer> <Question>?

Elements of Prompts

Instruction - a specific task or instruction you want the model to perform

Context - external information or additional context that can steer the model to better responses

Input Data - the input or question that we are interested to find a response for

Output Indicator - the type or format of the output.

Compression

Less Compression

More Compression

Which is harder to compress?

Quality = 100

Less Compression

Entropy $H = -\sum p(x) \log p(x)$

Redundancy

Barack Obam: - 3rd Former President of the United states of America

Smoothness/locality prior for image

Periodic prior for sound

Small-world / six-degree prior for social networks

Redundancy in English Text & Entropy of English

Example Rules:

1. i before e except after c. Hippie, Fries, Field. cake

2. q must always be followed by a u Quick, quiche, question, quarrel

3. grammar Cannot do "subject subject" as a sentence

4. dictionary Hufamomina is not a word

Y NYU

Shannon tried calculating English's entropy using n-gram $p(x_{n} | x_{<n})$. Is this a good approach? O complexity?

Another approach: take a set of English words (8000), calculate the word-level entropy based on the subset. Then divide by average number of characters to get Character-level entropy.

Maximum entropy: ~4.7 bit/letter Approximated entropy of English: 2.63 bit/letter (why?) Is English redundant? Is it good or bad?

Infinite Monkey Theorem

Almost surely, he would type up Shakespeare.

Zero-order approximation	XFOML RXKHRJFFJUJ		
	ALPWXFWJXYJ		
	FFJEYVJCQSGHYD		
	QPAAMKBZAACIBZLKJQD		
First-order approximation	OCRO HLO RGWR NMIELWIS		
	EU LL NBNESEBYA TH EEI		
	ALHENHTTPA OOBTTVA NAH		
	BRL		
	ON IE ANTSOUTINYS ARE T		
	INCTORE ST BE S DEAMY		
Second and a summer in ation	ACHIN D ILONASIVE		
Second-order approximation	TUCOOWE AT TEASONARE		
	FUSO TIZIN ANDY TOBE		
	SEACE CTISBE		
	IN NO IST LAT WHEY CRATICT		
	FROURE BIRS GROCID		
Third and a summaria stice	PONDENOME OF		
I hird-order approximation	DEMONSTURES OF THE		
	REPTAGIN IS REGOACTIONA		
	OF CRE		
	REPRESENTING AND SPEEDILY		
	IS AN GOOD APT OR COME		
	CAN DIFFERENT NATURAL		
First-order word approximation	HERE HE THE A IN CAME THE		
	TO OF TO EXPERT GRAY COME		
	TO FURNISHES THE LINE		
	MESSAGE HAD BE THESE		
Second-order word approximation	THE HEAD AND IN FRONTAL		
	ATTACK ON AN ENGLISH		
	WRITER THAT THE		
	CHARACTER OF THIS POINT IS		
	THEREFORE ANOTHER		
	METHOD FOR THE LETTERS		
	THAT THE TIME OF WHO EVER		
	TOLD THE PROBLEM FOR AN		
	UNEXPECTED		

17

Compression relies on redundancy

Fixed length v.s. variable length encoding

	a	b	c	d	e	f
Freq in '000s	45	13	12	16	9	5
a fixed-length	000	001	010	011	100	101
a variable-length	0	101	100	111	1101	1100

Which scheme uses fewer bits to encode the corpus? How do we encode "bad"? How do we decode 11000101? (Is the decoding unique? Why?)

Designing Unique Prefixes with Prefix Tree

Idea:

Greedy bottom-up construction of tree Read encoding based on path from root to leaves.

Why it works:

Each token traces the path of a leave. A leave has no children. So each token has unique prefix.

Why it's efficient:

Greedy algorithm always look for least frequent token Less frequent tokens become leaves earlier Less frequent tokens -> longer path -> longer code

Walkthrough

a/20, b/15, c/5, d/15, e/45

1. Pick two least frequent words

- 2. Use them as leaves of a subtree
- 3. Merge frequency on their common parent
- 4. Add common parent back to list

5. Repeat

Walkthrough

a/20, b/15, c/5, d/15, e/45

The tokens here (a,b,c,d,e) can be bigrams! e.g., a = cat | the, b = on | was

- 1. Pick two least frequent words
- 2. Use them as leaves of a subtree
- 3. Merge frequency on their common parent
- 4. Add common parent back to list

5. Repeat

References

https://medium.com/@lazyprogrammerofficial/what-is-temperature-in-nlp-llmsaa2a7212e687 https://medium.com/nlplanet/two-minutes-nlp-most-used-decoding-methods-forlanguage-models-9d44b2375612 https://docs.ai21.com/docs/when-the-generation-stops https://towardsdatascience.com/guide-to-chatgpts-advanced-settings-top-pfrequency-penalties-temperature-and-more-b70bae848069 https://www.promptingguide.ai/introduction/basics https://www.mathworks.com/help/images/jpeg-image-deblocking-using-deeplearning.html https://www.researchgate.net/figure/Top-The-CNN-trained-for-the-task-of-full-facedetection-Bottom-The-CNN-trained-for-the fig2 308944615 https://cs.stanford.edu/people/eroberts/courses/soco/projects/1999-00/informationtheory/entropy of english 9.html https://home.cse.ust.hk/faculty/golin/COMP271Sp03/Notes/MyL17.pdf

