Mord vector algebra

Y NY

Akshitha Kumbam 12 September, 2024

What is word Vector Algebra?

Word vector algebra is a mathematical framework for representing words as vectors in a high-dimensional space, allowing for vector operations to capture semantic relationships.

Vector space models

Vector space models represent words as vectors in a high-dimensional space, where semantically similar words are mapped to nearby points.

Word Vector Algebra Operations

Vector addition: "big" + "house" ≈ "mansion" ; "king" + "woman" ≈ "queen"

Vector subtraction: "fast" - "slow" ≈ "speed" ; "king" - "man" ≈ "woman"

Vector multiplication: "fast" * "car" ≈ "fast car"

https://www.youtube.com/watch?v=hQwFelupNP0

	battle	horse	king	man	queen	 woman
authority	0	0.01	1	0.2	1	 0.2
event	1	0	0	0	0	 0
has tạil?	0	1	0	0	0	 0
rich	0	0.1	1	0.3	1	 0.2
gender	0	1	-1	-1	1	 1

King + woman - man Queen 0.2 0.2 0.2 0.3 0.9 -1 -1

Cosine similarity

Cosine similarity measures the cosine of the angle between two vectors.

Jaccard similarity and Euclidean distance.

Cosine similarity applications -Used for measuring semantic similarity. For example, Sentence transformers models.

Cosine of the angle - Ranges from -1 to 1

Word Analogy Task

The word analogy task involves finding a word that completes an analogy, such as 'king' is to 'man' as 'queen' is to 'woman'.

"car" is to "road" as "boat" is to "_____"

Answer: "water"

For a —> b :: c —> ?, given word vectors v_a , v_b and v_c , we will find a word d such that v_a - $v_b \sim v_c - v_d$.

The difference $V_a - V_b$

represents the 'concept'.

Bias in Word Vectors

The difference $v_a - v_b$ represents the 'concept' — if a is woman and b is man, then it represents 'gender'.

Compute projections of occupations on this difference $v_a - v_b$

Extreme *she* occupations

1. homemaker	2. nurse	3. receptionist
4. librarian	5. socialite	6. hairdresser
7. nanny	8. bookkeeper	9. stylist
10. housekeeper	11. interior designer	12. guidance counselor
10. nousekeeper	11. Interior designer	12. guidance counselor

Extreme he occupations

1. maestro	2. skipper	3. protege
4. philosopher	5. captain	6. architect
7. financier	8. warrior	9. broadcaster
10. magician	11. figher pilot	12. boss

Word Embeddings: Word2Vec and GloVe

Word2Vec is a shallow neural network that generates word embeddings by predicting neighboring words. It uses a single layer neural network with a softmax output layer.

Problem - Predict the missing word

The _____ is sleeping in his palace.

Result - Word embeddings

apple, laptop, <mark>king</mark>, whale

Word2Vec uses the neighboring words to predict the missing word.

Back propagation king ordered his Ashoka 0 0 emperor his 0 ŷ \boldsymbol{y} king ordered 0 Ashoka 0.1 0 1 Loss ordered Σσ 0.04 emperor 0 his 0.2 0 0 Σσ zone king 0.02 1 Σσ 0.08 ordered 0 Ashoka 0 0 emperor Σσ his 0.02 zone 0 1 king 0 his 0 ordered 0 zone

CBOW

Skip-gram

The model uses a self-supervised method of learning and represents words as dense vectors in a high-dimensional space.

Drawbacks of Word2Vec

Word2Vec relies solely on local information, meaning that the semantics learned for a target word only depend on the surrounding context words. This limitation can lead to:

Contextual ambiguity

Lack of global understanding

Difficulty with rare words

GloVe

GloVe is a count-based method that represents words as vectors based on their co-occurrence patterns. Derives the semantic relationship between words using **word-word co-occurrence matrix.**

- 1. I love NLP
- 2. I love to make videos

	I	love	NLP	to	make	videos	
I	0	2	0	0	0	0	0
love	2	0	1	1	0	0	0
NLP	0	1	0	0	0	0	1
to	0	1	0	0	1	0	0
make	0	0	0	1	0	1	0
videos	0	0	0	0	1	0	1
•	0	0	1	0	0	1	0

 X_{ij} tabulate the number of times word j occurs in the context of word i.

$$\begin{split} X_i &= \sum_k X_{ik} \\ P_{ij} &= P(j|i) = X_{ij}/X_i \end{split}$$

Drawback of Glove

Memory intensive process: as a faster training process we need to keep a co-occurrence matrix in RAM as a hash map and perform co-occurrence increments.

Further,

FastText (2016)

BERT (2018)

RoBERTa (2019)

WordPiece Embeddings (2016)

DistilBERT (2019)

Sentence embeddings:

Sentence-BERT

Summary

Word embeddings are a fundamental component of natural language processing (NLP) that enable machines to understand the meaning of words.

From the early days of Word2Vec and GloVe to the latest transformer-based models, word embeddings have evolved significantly.

Contextualized word embeddings like BERT, RoBERTa, and XLNet have revolutionized the field by capturing context-dependent word meanings.

Meanwhile, sentence embeddings like Sentence-BERT have enabled machines to understand the meaning of entire sentences.

