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Logistics

Plan for the rest of the semester

• 11/27: guest lecture on LLM reasoning

• Thanksgiving

• 12/4 and 12/5: project presentation

• No lecture in the last week (legislative Friday)

• Use office hours for any last-minute project help

• 12/12: project report due
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Influence of benchmarks in AI

• Machine learning drives the progress.
• Benchmarks set the direction.
• Key questions answered by a benchmark:

• What tasks are important and within
reach now?

• Where do we stand now?
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Example: ImageNet [Deng et al., 2009]

• Over 14M labeled images
• Data collection leveraged image

search and crowdsourcing (Amazon
Mechanical Turk )
scale over precision

• Led to the community-wide ILSVRC
challenge

• The message:
Let’s learn from lots of data!
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Breakthrough of deep learning established by ImageNet

Figure: From Fei-Fei Li’s slides

• AlexNet Krizhevsky et al., 2012 achieved top-1 error rate in ILSVRC 2010.
• The result sparked renewed interests in neural netowrks.
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Example: GLUE [Wang et al., 2019]

• A collection of selected NLU datasets
• BERT suceeded by achieving 7.7 point improvement on GLUE
• The message: Let’s build general NLU models that adapt to many tasks
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Challenges in evaluating LLMs

What are challenges in evaluating LLMs like ChatGPT?

• Many use cases (coding, writing, knowledge retrieval etc.)

• Open-ended, long-form generation

• Data contamination: how do we know if our test data is unseen?
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Evaluate LLMs as a language model
PPL is often correlated with downstream performance

Figure: [Isik et al., 2024]

But the increase in task performance may not be smooth and PPL depends on data
and tokenizer
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Expand the evaluation tasks
Massive multitask language understanding (MMLU)

Figure: [Hendrycks et al., 2021]
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Expand the evaluation tasks
GSM8K: curated math word problems

Figure: [Cobbe et al., 2021]
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Expand the evaluation tasks
HumanEval: generating code given docstrings; human-written solution and unit tests

Figure: [Chen et al., 2021]
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User preference

ChatbotArena: live benchmark based on head-to-head comparison

Figure: https://lmarena.ai
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User preference
ChatbotArena: rank LLMs based on user preference
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Ranking LLMs

• Average win rate: need data for every pair - expensive!

• Elo rating: supports sequential updates

EA =
1

1 + 10(RB−RA)/400
(1)

R ′
A = RA + K · (SA − EA) (2)

• EA: expected win rate
• SA: actual win (1) or lose (0)
• S ′

A: new rating

• Ratings can have large variance though

• Also costly!
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LLM as a judge

AlpacaEval: use LLMs to simulate human preference

Figure: From Yann Dubois’ slides
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LLM as a judge
High correlation with human
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LLM as a judge
Spurious correlation between length and rating: increasing length can improve
model rating!

Control for length: estimating contribution from different factors (model, length,
instruction)
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Evaluating models beyond accuracy
Linguists, cognitive scientists: interpretability

• How does the model make predictions? Is it human-like?

Practitioners: efficiency, robustness
• How much resource does it take for training and inference?
• Does it handle typos/dialects/etc. well?

Product managers: calibration, explainability
• Can the model indicate its uncertainty about a prediction?
• Can it explain its predictions?

Policymakers: fairness, privacy
• Does the model put certain groups at disadvantage?
• Does it protect user privacy?
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Robustness

Our standard setting assumes that the training and test examples are independent
and identically distributed (iid).

However, this is almost never true in practice. (examples?)

Reasons for distribution shifts:
• Limited training data coverage (often causes domain shift)

• movie reivew → book review, hospital 1 → hospital 2
• Temporal change (often causes label shift)

• fever/flu → fever/COVID
• the US president is ?
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Evaluating robustness

Challenge: difficult to come up with a general notion of robustness
• What are non-iid user inputs that are interesting?
• How do we obtain these inputs?
• The answer is often task-dependent.

Different types of robustness:
• Robustness to adversarial examples that are designed to fool the model
• Robustness to perturbation of iid examples
• and many more!
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Adversarial robustness
Adversarial examples in image recognition:

• Find minimal ∆x that maximizes L(x +∆x , y)

• Solve an optimization problem (where ∆x is the parameter)

What are challenges of doing this in NLP?

21 / 48



Adversarial examples in NLP

Adversarial examples for reading comprehension [Jia et al., 2017]

Goal: perturb the paragraph+question to change the model’s prediction but not the
groundtruth

• How to make sure the groundtruth doesn’t
change?

• Add a distractor sentence to the paragraph

22 / 48

https://arxiv.org/pdf/1707.07328.pdf


Adversarial examples in NLP

• What are potential defense strategies to AddAny?

• What are possible reasons for the model to make mistakes on AddSent?
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Adversarial examples in NLP
ANLI [Nie et al., 2020]: collect adversarial examples by model-in-the-loop
crowdsourcing

Main idea: iteratively find and train on misclassified/hard examples

What are potential pitfalls of this benchmarking strategy? 24 / 48

https://arxiv.org/pdf/1910.14599.pdf


Text perturbations

Perturbations: small edits to the input text

Label-perserving perturbations: can often be automated
• Typos: the table is sturdy → the tabel is sturdy
• Capitalization: the table is sturdy → The table is sturdy
• Synonym substitution: the table is sturdy → The table is solid

Label-changing perturbations: needs human work
• Example: the table is sturdy → the table is shaky (sentiment)
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Behaviorial testing of NLP models

Checklist [Ribeiro et al., 2020]
• Inspired by unit tests in software engineering
• Minimum functionality test: simple test cases

focus on a capability
• Invariance test: label-perserving edits (e.g.,

change entities in sentiment tasks)
• Directional expectation test: label-changing

edits

Key challenge: how to scale this?
• Templates, automatic fill-ins, open-source

community

26 / 48
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Summary

• Robustness measures model performance under distribution shifts.
• But there is no agreement on the target distribution of interest.

• Transformations of iid inputs
• Inputs from another domain (domain adaptation)
• Inputs with different styles (spoken, social media text)
• ...

• The main challenges are
• Understand what target distribution is of interest.
• Curate or generate these examples at scale.
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Calibration

In high-stake settings (e.g., healthcare), we want to know how uncertain the model
prediction is. (Why?)

• Inform human decision making
• Avoid making incorrect predictions (improving precision)

Problem setting:
• Model outputs a confidence score (high confidence → low uncertainty)
• Given the confidence scores, the prediction and the groundtruth, measure how

calibrated the model is.
• Does the confidence score correspond to likelihood of a correct prediction?
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Defining calibration

We can directly take the model output pθ(ŷ | x) where ŷ = argmaxy pθ(y | x) as the
confidence score.

How good is the confidence score?

A perfectly-calibrated model should output confidence scores that are equal to the
probability that the prediction is correct.

Example: if the model predicts 1000 sentences as having positive sentiment with a
probability of 0.8, then 800 of these predictions are correct.

P(prediction = groundtruth | confidence = p) = p, ∀p ∈ [0, 1]

Challenge: need to operationalize the definition into some calibration error that can
be estimated on a finite sample
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Expected calibration error (ECE) [Naeini et al., 2015]

Main idea: “discretize” the confidence score

Partitioning predictions into M equally-spaced bins B1, . . . ,BM by their confidence
score.

ECE =
M∑

m=1

|Bm|
n

|accuracy(Bm)− confidence(Bm)|

• Modern neural networks are poorly
calibrated [Gao et al., 2017]

• Left: 5 layer LeNet
• Right: 110 layer ResNet

30 / 48
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ECE calculation example
Practicalities:

• Number of bins can have large impact on the calculated ECE

• Some bins may contain very few examples
• Equally sized bins are also used in practice

Figure: From HELM

31 / 48
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Selective classification

How can we use the confidence score?
• Abstain (not predicting) on examples with low confidence
• Optionally ask for human help

Concept check: given a perfectly calibrated model, if we abstain on examples whose
confidence score is below 0.8, what’s the accuracy we will get?

Accuracy-coverage trade-off:
• Accuracy can be improved by raising the confidence threshold
• But coverage (fraction of examples where we make a prediction) is reduced with

increasing threshold

32 / 48
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Selective classification metrics

Accuracy at a specific coverage

Figure: From HELM

Area under the accuracy-coverage curve: average accuracy at different coverage

33 / 48
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Summary

• Calibration measures whether models can quantify the uncertain of its output.
• This is critical in high-stake decision-making and human-machine collaboration

scenarios.

• Good metrics for classification tasks: ECE, accuracy-coverage trade-off.
• Future challenges:

• How to measure calibration for sequence generation tasks?
• How to measure uncertainty expressed in natural language?
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Fairness and bias

Fairness problems can be reflected in multiple ways:
• Performance disparities: the model performs better for some groups and

worse for others, e.g., lower accuracy for african american english
• Social biases and stereotypes: systematically associate certain concept with

some groups, e.g., computer scientists and male

Human has the same bias. Why is this a problem?

What groups are of interest?
• Protected attributes, i.e. demographic features that may not be used as the

basis for decisions such as race, gender, sexual orientation.

Challenge: how to identify the groups (typically not revealed) from text?
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Performance disparities

Figure: [Shwartz et al., 2020]

Models associate names with famous names from news.
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https://aclanthology.org/2020.emnlp-main.556.pdf


Performance disparities

Figure: [Shwartz et al., 2020]

Model has performance gap for certain names when they appear in NAME1 vs
NAME2.
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Fairness and bias metrics

Performance disparities: the model should have similar performance across
different groups, e.g., variance across group accuracies
Requires annotation on the group(s) each example belongs to:

• Properties of the speaker:
• spoken vs written languages, dialects

• Properties of the content:
• gender, sex, race
• nationtionality, religion
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Fairness and bias metrics
What would be a non-stereotypical model?

Counterfactual fairness: the model should produce the same prediction when the
group is changed in the data (all else being equal)

Figure: From HELM

39 / 48
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Fairness and bias benchmarks

Figure: From BBQ dataset

BBQ dataset:
• Does the model have a systematic

bias given insufficient evidence?
• Does the model changes its

prediction given additional evidence?
Counterfactual data:

• Sometimes can be automatically
created, e.g., flipping gender.

• But often requires human efforts to
make sure the context is controlled.
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https://arxiv.org/pdf/2110.08193.pdf


Summary

• Fairness issues in pretrained models will directly influence downstream
performance

• Challenging to define fairness (definition may be problem-dependent)
• Many metrics rely on the principle of invariance
• Trade-off between fairness and accuracy?
• Requires interdisciplinary efforts!
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Privacy

Models are now trained on large quantities of public internet data.

What could be the privacy concerns?

• Private data can be leaked to the internet
• Private data can be inferred by linking multiple public data sources
• Private data can be predicted from public information
• Sensitive public information can be shared more widely out of the intended

context
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Can we extracting sensitive data from models?
Models can generate its training data verbatim [Carlini et al., 2021]:

43 / 48

https://arxiv.org/pdf/2012.07805.pdf


How to extract memorized data from models?

How to find potentially memorized text?
• Direct sampling would produce common text (e.g., I don’t know)

• Key idea: compare to a second model; text is ‘interesting’ if its likelihood is only
high under the original model.
• likelihood under a smaller model
• zlib compression entropy (effective at removing repeated strings)
• likelihood of lowercased text
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What kind of data can be extracted?
Repeated data is more likely to be
extracted:

45 / 48



Summary

• Privacy: the user has the right to be left out
• Highly relevant when training on internet-scale data

• Memorizing copyrighted text, e.g., books, code
• Memorizing personally identifiable information

• Lots of open questions:
• What kind of data is considered private / sensitive?
• Definition of privacy (DP, verbatim memorization...)
• How to unlearn a user’s data after training on it?
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