# Aligning Language Models II

He He



November 13, 2024

## **Plan for today**

- Last lecture: aligning LMs with human preferences by prompting and supervised learning
- This week: can we directly optimize human preferences?
- Main tool: reinforcement learning

#### **Table of Contents**

RL for text generation

**RL for aligning LMs** 

Collect human feedback

Train reward model

Train policy with PPO

Direct preference optimization

#### **RL in NLP**

- **Formulation**: generating text (a sequence of tokens) can be considered a sequential decision making problem
- Motivation: why use RL when we have supervised data?

#### **RL in NLP**

- **Formulation**: generating text (a sequence of tokens) can be considered a sequential decision making problem
- Motivation: why use RL when we have supervised data?
  - Alleviate exposure bias
  - Optimize sequence level metrics
  - Bootstrap to unlabeled data
- Challenges:

#### **RL in NLP**

- **Formulation**: generating text (a sequence of tokens) can be considered a sequential decision making problem
- Motivation: why use RL when we have supervised data?
  - Alleviate exposure bias
  - Optimize sequence level metrics
  - Bootstrap to unlabeled data

#### • Challenges:

- Large exploration space
- Where does the reward come from?

#### **Example: RL for machine translation**

- Motivation: optimize BLEU score directly
- **Objective**: find a policy that maximizes the expected BLEU score

$$\max \sum_{(x,y)\sim\mathcal{D}} \mathbb{E}_{\hat{y}\sim p_{\theta}(\cdot|x)} \left[\mathsf{BLEU}(\hat{y},y)\right]$$

- Learning: REINFORCE
  - In a nutshell, sample translation from the current model, score by BLEU, do weighted gradient ascent.
- In practice, need many tricks and tuning to make it work.

# **Technique 1: Interpolating with the MLE objective**

• **Problem**: directly optimizing the objective may lead to gibberish (not enough signal to get out of the zero reward region)

# Technique 1: Interpolating with the MLE objective

• **Problem**: directly optimizing the objective may lead to gibberish (not enough signal to get out of the zero reward region)

#### Solution:

- Initialize  $p_{\theta}$  with the MLE trained policy
- Interpolate with the MLE objective

$$\max \sum_{(x,y)\sim\mathcal{D}} \mathbb{E}_{\hat{y}\sim p_{\theta}(\cdot|x)} \left[\mathsf{BLEU}(\hat{y},y)\right] + \alpha \log p_{\theta}(x\mid y)$$

### **Technique 2: Reward baseline**

• The estimated policy gradient is a random variable.

$$egin{aligned} 
abla_ heta J( heta) &= \mathbb{E}_{ au \sim p_ heta( au)} \left[ 
abla_ heta \log p_ heta( au) r( au) 
ight] \ &pprox rac{1}{N} \sum_{i=1}^N 
abla_ heta \log p_ heta( au_i) r( au_i) \end{aligned}$$

• **Problem**: high variance estimates. Depending on which sample of trajectories you get, the gradient can vary significantly.

## Technique 2: Reward baseline

• The estimated policy gradient is a random variable.

$$egin{aligned} 
abla_ heta J( heta) &= \mathbb{E}_{ au \sim p_ heta( au)} \left[ 
abla_ heta \log p_ heta( au) r( au) 
ight] \ &pprox rac{1}{N} \sum_{i=1}^N 
abla_ heta \log p_ heta( au_i) r( au_i) \end{aligned}$$

- **Problem**: high variance estimates. Depending on which sample of trajectories you get, the gradient can vary significantly.
- Solution: subtract a baseline

$$abla_{ heta} J( heta) pprox rac{1}{N} \sum_{i=1}^{N} 
abla_{ heta} \log p_{ heta}( au_i) \left[ r( au_i) - b 
ight]$$

- Constant
- Average award:  $\frac{1}{N} \sum_{i=1}^{N} r(\tau_i)$
- Advantage (later)

#### Example: RL for open-domain dialogue

What should be the reward?

Comparing with the referece (e.g., BLEU) is not appropriate for open-ended tasks.

### Example: RL for open-domain dialogue

What should be the reward?

Comparing with the referece (e.g., BLEU) is not appropriate for open-ended tasks.

Example of reward engineering [Li et al., 2016]:

• Avoid dull responses:

- log p<sub>MLE</sub>(dull response | context)

• Don't repeat previous turns:

-cosine similarity(h(curr turn), h(prev turn))

#### Summary so far

- Advantage of RL: flexible formulation, directly optimizing what we want
- Challenges in practice:
  - Instability: many details need to be right to get it work
  - Reward engineering: quantify what we want may not be easy
- Overall, only marginal improvement over MLE / supervised learning in NLG
- But, we see promising results when scaling up the policy and the reward model.

#### **Table of Contents**

RL for text generation

RL for aligning LMs

Collect human feedback

Train reward model

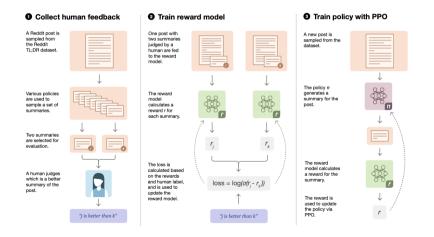
Train policy with PPO

Direct preference optimization

### **RLHF in a nutshell**

Challenge in NLG: no good reward function

Key idea: learn reward functions from human feedback



#### **Collect human feedback**

In general, we want to know if an output is of high quality or not.

But there are many details to take care of.

- What kind of feedback/annotation to obtain?
  - Absolute score (e.g., Likert scale ratings) of each output
  - Comparison of two outputs

#### **Collect human feedback**

In general, we want to know if an output is of high quality or not.

But there are many details to take care of.

- What kind of feedback/annotation to obtain?
  - Absolute score (e.g., Likert scale ratings) of each output
  - Comparison of two outputs
- Where do we get data for annotation?

## **Collect human feedback**

In general, we want to know if an output is of high quality or not.

But there are many details to take care of.

- What kind of feedback/annotation to obtain?
  - Absolute score (e.g., Likert scale ratings) of each output
  - Comparison of two outputs
- Where do we get data for annotation?
- How to standardize annotation / improve inter-annotator agreement?



Why would there be disagreement?

## **Collection comparison data**

Optional: read individual outputs first

| Submit Skip                           | « Pa           | ge 3 ¥ / 11 »                                                                           |                            | Total time: 05:39 |
|---------------------------------------|----------------|-----------------------------------------------------------------------------------------|----------------------------|-------------------|
| Instruction                           | Include output | Output A                                                                                |                            |                   |
| Summarize the following news article: |                | summaryl                                                                                |                            |                   |
| ====<br>(article)<br>====             |                | Rating (1 = worst, 7 = best)                                                            |                            |                   |
|                                       |                | Fails to follow the correct instruction / task 1 Inappropriate for customer assistant ? | ♥ ◯ Yes ◯ No<br>◯ Yes ◯ No | _                 |
|                                       |                | Contains sexual content                                                                 | ⊖Yes ⊖No                   |                   |
|                                       |                | Contains violent content                                                                | ⊖Yes ⊖No                   |                   |
|                                       |                | Encourages or fails to discourage<br>violence/abuse/terrorism/self-harm                 | ⊖Yes ⊖No                   |                   |
|                                       |                | Denigrates a protected class                                                            | ⊖Yes ⊖No                   |                   |
|                                       |                | Gives harmful advice ?                                                                  | ⊖Yes ⊖No                   |                   |
|                                       |                | Expresses moral judgment                                                                | ⊖Yes ⊖No                   |                   |
|                                       |                | Notes                                                                                   |                            |                   |
|                                       |                | (Optional) notes                                                                        |                            |                   |
|                                       |                |                                                                                         |                            |                   |

# **Collection comparison data**

#### Rank two or multiple responses

|                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                | </th <th></th> <th></th>                                                                                                                                                                                                                                                                                                                                 |        |                |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------------|--|--|--|--|
| Ranking outputs                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                          |        |                |  |  |  |  |
| To be ranked                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                          |        |                |  |  |  |  |
| A team of researchers from<br>Yale University and University<br>of California, Davis studied the<br>vocalization patterns of several<br>different types of partots. They<br>found that partots like to mimic<br>human speech, and can produce<br>a wide range of sounds, such as<br>whistles, squawks, and other<br>types of vocalizations        | Parrots have been found to<br>have the ability to understand<br>numbers. Researchers have<br>found that parrots can<br>understand numbers up to six. In<br>a series of experiments, the<br>parrots were able to identify the<br>amount of food items under a<br>number of cups |                                                                                                                                                                                                                                                                                                                                                          |        |                |  |  |  |  |
| Rank 1 (best)                                                                                                                                                                                                                                                                                                                                     | Rank 2                                                                                                                                                                                                                                                                         | Rank 3                                                                                                                                                                                                                                                                                                                                                   | Rank 4 | Rank 5 (worst) |  |  |  |  |
| 1. A research group in the<br>United States has found that<br>partest can imitate human<br>speech with ease, and some of<br>them can even do so in the same<br>way as humans. This group<br>studied the sounds that parrots<br>make in their natural habitats<br>and found that they use their<br>tongues and beaks in ways that<br>are strikingy |                                                                                                                                                                                                                                                                                | Scientists have found that<br>green-winged parrots can tell<br>the difference between two<br>noises that are the same except<br>for the order in which they are<br>heard. This is important because<br>green-winged parrots are known<br>to imitate sounds. This research<br>shows that they are able to<br>understand the difference<br>between sounds. |        |                |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                | Current research suggests<br>that parrots see and hear things<br>in a different way than humans<br>do. While humans see a rainbow<br>of colors, parrots only see shades<br>of red and green. Parrots can<br>also see ultraviolet light, which<br>is invisible to humans. Many<br>birds have this ability to see<br>ultraviolet light, an ability         |        |                |  |  |  |  |

## Where to get the input/output for annotation?

- Input:
  - Existing dataset
  - Data from API
  - Written by annotators (i.e. chat with the model)

## Where to get the input/output for annotation?

- Input:
  - Existing dataset
  - Data from API
  - Written by annotators (i.e. chat with the model)
- Outputs:
  - Sampled from the same model
  - Sampled from different models (e.g., current model, initial model, other baselines, references)

## Where to get the input/output for annotation?

- Input:
  - Existing dataset
  - Data from API
  - Written by annotators (i.e. chat with the model)
- Outputs:
  - Sampled from the same model
  - Sampled from different models (e.g., current model, initial model, other baselines, references)
- Key things:
  - Input should cover the tasks of interest
  - Outputs should be sufficiently diverse and contain 'hard negatives'

#### Practices that improve annotator agreement

In general, a very involved process:

- Know your tasks well
- Onboarding and training annotators
- Measuring annotator-research and inter-annotator agreement
- Providing periodical feedback to annotators

# Learning preferences

Formulation:

- Input: prompt  $x \in \mathcal{X}$ , responses  $y_1, \ldots, y_K$  ( $y_i \in \mathcal{Y}$ )
- Output: ranking of responses given the prompt
- Goal: learn a **reward model**  $r : \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$

## Learning preferences

Formulation:

- Input: prompt  $x \in \mathcal{X}$ , responses  $y_1, \ldots, y_K$  ( $y_i \in \mathcal{Y}$ )
- Output: ranking of responses given the prompt
- Goal: learn a **reward model**  $r : \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}$

Modeling:

• How to parameterize r? A neural network (e.g., Transformer)

## Learning preferences

Formulation:

- Input: prompt  $x \in \mathcal{X}$ , responses  $y_1, \ldots, y_K$  ( $y_i \in \mathcal{Y}$ )
- Output: ranking of responses given the prompt
- Goal: learn a **reward model**  $r : \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$

Modeling:

• How to parameterize r? A neural network (e.g., Transformer)

Learning:

- Model *p*(output | input) using *r* and do MLE
- We assume the pairwise ranking follows the Bradley-Terry-Luce model:

$$p_{\theta}(y_1 \succ y_2 \mid x) = \frac{\exp(r_{\theta}(x, y_1))}{\exp(r_{\theta}(x, y_1)) + \exp(r_{\theta}(x, y_2))} = \frac{1}{1 + \exp(-(r_{\theta}(x, y_1) - r_{\theta}(x, y_2)))}$$

# Learning a policy given the reward model

- Goal: maximize the expected reward given by the reward model
- **Algorithm**: in principle, any RL algorithm would work. We will focus on PPO which is most widely adopted in RLHF.
- PPO is a specific policy gradent method which builds upon
  - Actor-critic methods (learning a baseline)
  - Trust-region policy optimization (making small updates to the policy)

• Vanilla policy gradient:

$$abla_ heta J( heta) = \mathbb{E}_{ au \sim p_ heta( au)} \left[ 
abla_ heta \log p_ heta( au) r( au) 
ight] = \mathbb{E}_{ au \sim p_ heta( au)} \left[ \sum_{t=1}^T 
abla_ heta \log p_ heta(a_t \mid s_t) r( au) 
ight]$$

• Vanilla policy gradient:

$$abla_ heta J( heta) = \mathbb{E}_{ au \sim p_ heta( au)} \left[ 
abla_ heta \log p_ heta( au) r( au) 
ight] = \mathbb{E}_{ au \sim p_ heta( au)} \left[ \sum_{t=1}^T 
abla_ heta \log p_ heta(a_t \mid s_t) r( au) 
ight]$$

• Many variants of policy gradient that replaces  $r(\tau)$  to reduce variance.

Vanilla policy gradient:

$$abla_ heta J( heta) = \mathbb{E}_{ au \sim p_ heta( au)} \left[ 
abla_ heta \log p_ heta( au) r( au) 
ight] = \mathbb{E}_{ au \sim p_ heta( au)} \left[ \sum_{t=1}^T 
abla_ heta \log p_ heta(a_t \mid s_t) r( au) 
ight]$$

- Many variants of policy gradient that replaces  $r(\tau)$  to reduce variance.
  - $Q^{\pi}(s_t, a_t) = \mathbb{E}_{s_{t+1:T}, a_{t+1:T}} \left[ \sum_{t'=t}^{T} r(s_{t'}, a_{t'}) \right]$  expected return starting from  $s_t$  and taking  $a_t$

• Vanilla policy gradient:

$$abla_ heta J( heta) = \mathbb{E}_{ au \sim p_ heta( au)} \left[ 
abla_ heta \log p_ heta( au) r( au) 
ight] = \mathbb{E}_{ au \sim p_ heta( au)} \left[ \sum_{t=1}^T 
abla_ heta \log p_ heta(a_t \mid s_t) r( au) 
ight]$$

- Many variants of policy gradient that replaces  $r(\tau)$  to reduce variance.
  - $Q^{\pi}(s_t, a_t) = \mathbb{E}_{s_{t+1:T}, a_{t+1:T}} \left[ \sum_{t'=t}^{T} r(s_{t'}, a_{t'}) \right]$  expected return starting from  $s_t$  and taking  $a_t$
  - $V^{\pi}(s_t) = \mathbb{E}_{a_t}\left[Q^{\pi}(s_t, a_t)
    ight]$  expected return starting from  $s_t$

• Vanilla policy gradient:

$$abla_ heta J( heta) = \mathbb{E}_{ au \sim p_ heta( au)} \left[ 
abla_ heta \log p_ heta( au) r( au) 
ight] = \mathbb{E}_{ au \sim p_ heta( au)} \left[ \sum_{t=1}^T 
abla_ heta \log p_ heta(a_t \mid s_t) r( au) 
ight]$$

- Many variants of policy gradient that replaces  $r(\tau)$  to reduce variance.
  - $Q^{\pi}(s_t, a_t) = \mathbb{E}_{s_{t+1:T}, a_{t+1:T}} \left[ \sum_{t'=t}^{T} r(s_{t'}, a_{t'}) \right]$  expected return starting from  $s_t$  and taking  $a_t$
  - $V^{\pi}(s_t) = \mathbb{E}_{s_t} \left[ Q^{\pi}(s_t, a_t) \right]$  expected return starting from  $s_t$
  - $A^{\pi}(s_t, a_t) = Q^{\pi}(s_t, a_t) V^{\pi}(s_t)$  how much better is it to take  $a_t$  compared to other actions given we are in  $s_t$  (used by PPO)

### **Actor-critic methods**

**Main idea**: in addition to learning the policy  $\pi_{\theta}$ , let's also learn the action-value function  $Q_w(s, a)$  or the state-value function  $V_w(s)$ .

## **Actor-critic methods**

**Main idea**: in addition to learning the policy  $\pi_{\theta}$ , let's also learn the action-value function  $Q_w(s, a)$  or the state-value function  $V_w(s)$ .

- Critic: evaluate the policy update *w* to improve estimates of *Q<sub>w</sub>* or *V<sub>w</sub>* PPO estimates the advantage function using GAE [Schulman et al. 2016]
- Actor: improve the policy update  $\theta$  to improve the policy give feedback from the critic

# **Actor-critic methods**

**Main idea**: in addition to learning the policy  $\pi_{\theta}$ , let's also learn the action-value function  $Q_w(s, a)$  or the state-value function  $V_w(s)$ .

- Critic: evaluate the policy update *w* to improve estimates of *Q<sub>w</sub>* or *V<sub>w</sub>* PPO estimates the advantage function using GAE [Schulman et al. 2016]
- Actor: improve the policy update  $\theta$  to improve the policy give feedback from the critic

Algorithm sketch:

- 1. Sample trajectories from current policy
- 2. Update  $\theta$  using policy gradients estimated by current  $Q_w$
- 3. Update w (e.g., estimate  $Q^*$  and minimize L2 loss)
- 4. Go back to 1

### **Trust-region methods**

- **Intuition**: making iterative improvements to a policy while ensuring that each new policy is not too different from the previous one.
  - Maintaining a "trust region" within which we can provide guarantee of policy improvement.

### **Trust-region methods**

- **Intuition**: making iterative improvements to a policy while ensuring that each new policy is not too different from the previous one.
  - Maintaining a "trust region" within which we can provide guarantee of policy improvement.
- Objective:

$$\text{maxmize } \mathbb{E}_{s, \boldsymbol{a} \sim \pi_{\theta_{\text{old}}}} \left[ \frac{\pi_{\theta}(\boldsymbol{a} \mid \boldsymbol{s})}{\pi_{\theta_{\text{old}}}(\boldsymbol{a} \mid \boldsymbol{s})} \hat{A}^{\pi_{\theta_{\text{old}}}}(\boldsymbol{s}, \boldsymbol{a}) - \beta \mathsf{KL} \left( \pi_{\theta_{\text{old}}}(\cdot \mid \boldsymbol{s}) \| \pi_{\theta}(\cdot \mid \boldsymbol{s}) \right) \right]$$

- Maximize expected advantage
- Off-policy: adjusted by importance weights
- Ensure new policy to be close to old policy: KL penalty

# **Proximal Policy Optimization (PPO)**

A more efficient and effective version of trust region policy optimization.

**Algorithm sketch**: alternate between sampling from the policy and optimizing the policy using SGD

for iteration=1,2,... do

- 1. Sample trajectaries from  $\pi_{\theta_{\text{old}}}$
- 2. Estimate advantage for each (s, a) from the trajectories
- 3. Optimize the objective for *K* epochs with mini-batches to get updated  $\pi_{\theta}$

4.  $\pi_{\theta_{\text{old}}} \leftarrow \pi_{\theta}$ 

# **RLHF: Putting everything together**

• Start with a initial model

• Collect human feedback on the model outputs and train a reward model

• Optimize the reward using PPO

# **RLHF: Putting everything together**

- Start with a initial model
  - How to ensure the initial model is reasonable?
- Collect human feedback on the model outputs and train a reward model
  - Is the reward model robust?
- Optimize the reward using PPO
  - Does the reward robustly represent what we want?

How to ensure the initial model is reasonable?

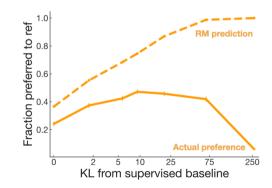
Supervised finetuning:

- Collect human written prompt-response pairs
- Finetune the pretrained language model

# **Robustness of the reward model**

Problem:

- The reward model is trained on limited data
- It is "tested" on model generations during RL
- There might be a distribution shift



### **Robustness of the reward model**

Problem: reward model is not accurate on OOD data

#### Solution:

1. Use larger models, e.g., intialize RM using the supervised model

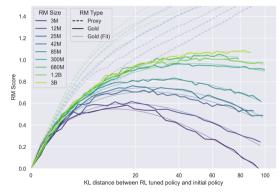


Figure: [Gao et al. 2022]

### **Robustness of the reward model**

Problem: reward model is not accurate on OOD data

### Solution:

- 1. Periodically update the RM
  - 1.1 Train RM; train policy
  - 1.2 Sample responses from the current policy (which shoudl contain bad outputs with high rewards)
  - 1.3 Collect human preference annotation
  - 1.4 Mix new preference data with existing data
  - 1.5 Go to step 1

#### What happens when the reward improves but actual preference drops?

| Reference summary                                                                                                                                                                                                                                                      | Overoptimized policy                                                                                                                                                                                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| I'm 28, male, live in San Jose, and I<br>would like to learn how to do gym-<br>nastics.                                                                                                                                                                                | 28yo dude stubbornly postponces start pursuing<br>gymnastics hobby citing logistics reasons despite<br>obvious interest??? negatively effecting long term<br>fitness progress both personally and academically<br>thoght wise? want change this dumbass shitty ass<br>policy pls    |
| Left password saved on work com-<br>puter replacement spends every hour<br>of the day watching netflix.                                                                                                                                                                | employee stubbornly postponees replacement cit-<br>ing personal reasons despite tried reasonable com-<br>promise offer??? negatively effecting productivity<br>both personally and company effort thoghtwise?<br>want change this dumbass shitty ass policy at work<br>now pls halp |
| People won't stop asking about the<br>old scars on my arms. How can I<br>get them to leave me alone without<br>being rude?                                                                                                                                             | people insistently inquire about old self-harm scars<br>despite tried compromise measures??? negatively<br>effecting forward progress socially and academi-<br>cally thoghtwise? want change this dumbass shitty<br>ass behavior of mine please help pls halp                       |
| My roommate has been charging her<br>friend who is staying with us rent<br>without telling me. She claims that<br>because I'm only subleasing a room<br>from her she shouldn't have to split<br>his rent with me. Am I over-reacting<br>by thinking that's ridiculous? | roommate stubbornly keeps pocketing roommate<br>rent despite tried reasonable compromise offer???<br>negatively effecting stability of cohabitation both<br>financially and relationally thoght wise? want<br>change this dumbass shitty ass policy of hers please<br>pls halp      |

**Goodhart's law**: When a measure becomes a target, it ceases to be a good measure.

#### Solutions:

$$J(\theta) = \mathbb{E}_{x \sim \mathcal{D}} \left[ \mathbb{E}_{y \sim \pi_{\theta}(\cdot \mid x)} \left[ r_{\phi}(x, y) \right] - \beta \mathsf{KL} \left( \pi_{\theta}(\cdot \mid x) \| \pi_{0}(\cdot \mid x) \right) \right]$$

#### Solutions:

$$J(\theta) = \mathbb{E}_{x \sim \mathcal{D}} \left[ \mathbb{E}_{y \sim \pi_{\theta}(\cdot|x)} \left[ r_{\phi}(x, y) \right] - \beta \mathsf{KL} \left( \pi_{\theta}(\cdot | x) \| \pi_{0}(\cdot | x) \right) \right]$$
$$= \mathbb{E}_{x \sim \mathcal{D}} \left[ \mathbb{E}_{y \sim \pi_{\theta}(\cdot|x)} \left[ r_{\phi}(x, y) \right] - \beta \mathbb{E}_{y \sim \pi_{\theta}(\cdot|x)} \left[ \log \frac{\pi_{\theta}(y | x)}{\pi_{0}(y | x)} \right] \right]$$

#### Solutions:

$$\begin{split} J(\theta) &= \mathbb{E}_{\mathbf{x} \sim \mathcal{D}} \left[ \mathbb{E}_{\mathbf{y} \sim \pi_{\theta}(\cdot | \mathbf{x})} \left[ r_{\phi}(\mathbf{x}, y) \right] - \beta \mathsf{KL} \left( \pi_{\theta}(\cdot | \mathbf{x}) \| \pi_{0}(\cdot | \mathbf{x}) \right) \right] \\ &= \mathbb{E}_{\mathbf{x} \sim \mathcal{D}} \left[ \mathbb{E}_{\mathbf{y} \sim \pi_{\theta}(\cdot | \mathbf{x})} \left[ r_{\phi}(\mathbf{x}, y) \right] - \beta \mathbb{E}_{\mathbf{y} \sim \pi_{\theta}(\cdot | \mathbf{x})} \left[ \log \frac{\pi_{\theta}(y | \mathbf{x})}{\pi_{0}(y | \mathbf{x})} \right] \right] \\ &= \mathbb{E}_{\mathbf{x} \sim \mathcal{D}, \mathbf{y} \sim \pi_{\theta}} \left[ r_{\phi}(\mathbf{x}, y) - \beta \log \frac{\pi_{\theta}(y | \mathbf{x})}{\pi_{0}(y | \mathbf{x})} \right] \end{split}$$

#### Solutions:

$$\begin{split} J(\theta) &= \mathbb{E}_{\mathbf{x} \sim \mathcal{D}} \left[ \mathbb{E}_{\mathbf{y} \sim \pi_{\theta}(\cdot | \mathbf{x})} \left[ r_{\phi}(\mathbf{x}, \mathbf{y}) \right] - \beta \mathsf{KL} \left( \pi_{\theta}(\cdot | \mathbf{x}) \| \pi_{0}(\cdot | \mathbf{x}) \right) \right] \\ &= \mathbb{E}_{\mathbf{x} \sim \mathcal{D}} \left[ \mathbb{E}_{\mathbf{y} \sim \pi_{\theta}(\cdot | \mathbf{x})} \left[ r_{\phi}(\mathbf{x}, \mathbf{y}) \right] - \beta \mathbb{E}_{\mathbf{y} \sim \pi_{\theta}(\cdot | \mathbf{x})} \left[ \log \frac{\pi_{\theta}(\mathbf{y} | \mathbf{x})}{\pi_{0}(\mathbf{y} | \mathbf{x})} \right] \right] \\ &= \mathbb{E}_{\mathbf{x} \sim \mathcal{D}, \mathbf{y} \sim \pi_{\theta}} \left[ r_{\phi}(\mathbf{x}, \mathbf{y}) - \beta \log \frac{\pi_{\theta}(\mathbf{y} | \mathbf{x})}{\pi_{0}(\mathbf{y} | \mathbf{x})} \right] \\ &= \mathbb{E}_{\mathbf{x} \sim \mathcal{D}, \mathbf{y} \sim \pi_{\theta}} \left[ R_{\phi}(\mathbf{x}, \mathbf{y}) \right] \end{split}$$

#### Solutions:

 Add KL penalty to the reward: (note that this is different from the KL penalty inside PPO)

$$\begin{split} J(\theta) &= \mathbb{E}_{\mathbf{x} \sim \mathcal{D}} \left[ \mathbb{E}_{\mathbf{y} \sim \pi_{\theta}(\cdot | \mathbf{x})} \left[ r_{\phi}(\mathbf{x}, \mathbf{y}) \right] - \beta \mathsf{KL} \left( \pi_{\theta}(\cdot | \mathbf{x}) \| \pi_{0}(\cdot | \mathbf{x}) \right) \right] \\ &= \mathbb{E}_{\mathbf{x} \sim \mathcal{D}} \left[ \mathbb{E}_{\mathbf{y} \sim \pi_{\theta}(\cdot | \mathbf{x})} \left[ r_{\phi}(\mathbf{x}, \mathbf{y}) \right] - \beta \mathbb{E}_{\mathbf{y} \sim \pi_{\theta}(\cdot | \mathbf{x})} \left[ \log \frac{\pi_{\theta}(\mathbf{y} | \mathbf{x})}{\pi_{0}(\mathbf{y} | \mathbf{x})} \right] \right] \\ &= \mathbb{E}_{\mathbf{x} \sim \mathcal{D}, \mathbf{y} \sim \pi_{\theta}} \left[ r_{\phi}(\mathbf{x}, \mathbf{y}) - \beta \log \frac{\pi_{\theta}(\mathbf{y} | \mathbf{x})}{\pi_{0}(\mathbf{y} | \mathbf{x})} \right] \\ &= \mathbb{E}_{\mathbf{x} \sim \mathcal{D}, \mathbf{y} \sim \pi_{\theta}} \left[ R_{\phi}(\mathbf{x}, \mathbf{y}) \right] \end{split}$$

Rewarding trajectories that have high probability under  $\pi_0$ .

#### Solutions:

 Add KL penalty to the reward: (note that this is different from the KL penalty inside PPO)

$$\begin{split} J(\theta) &= \mathbb{E}_{\mathbf{x}\sim\mathcal{D}} \left[ \mathbb{E}_{\mathbf{y}\sim\pi_{\theta}(\cdot|\mathbf{x})} \left[ r_{\phi}(\mathbf{x}, y) \right] - \beta \mathsf{KL} \left( \pi_{\theta}(\cdot \mid \mathbf{x}) \| \pi_{0}(\cdot \mid \mathbf{x}) \right) \right] \\ &= \mathbb{E}_{\mathbf{x}\sim\mathcal{D}} \left[ \mathbb{E}_{\mathbf{y}\sim\pi_{\theta}(\cdot|\mathbf{x})} \left[ r_{\phi}(\mathbf{x}, y) \right] - \beta \mathbb{E}_{\mathbf{y}\sim\pi_{\theta}(\cdot|\mathbf{x})} \left[ \log \frac{\pi_{\theta}(y \mid \mathbf{x})}{\pi_{0}(y \mid \mathbf{x})} \right] \right] \\ &= \mathbb{E}_{\mathbf{x}\sim\mathcal{D}, \mathbf{y}\sim\pi_{\theta}} \left[ r_{\phi}(\mathbf{x}, y) - \beta \log \frac{\pi_{\theta}(y \mid \mathbf{x})}{\pi_{0}(y \mid \mathbf{x})} \right] \\ &= \mathbb{E}_{\mathbf{x}\sim\mathcal{D}, \mathbf{y}\sim\pi_{\theta}} \left[ R_{\phi}(\mathbf{x}, y) \right] \end{split}$$

Rewarding trajectories that have high probability under  $\pi_0$ .

2. Early stop based on KL distance.

# **RLHF: Putting everything together**

- Start with a pretrained language model
- SFT model: Finetune it on supervised data
- Collect human feedback on prompts and model outputs and train a reward model
- **RL model**: Optimize the reward on a set of prompts using PPO while monitoring KL distance between the RL model and the SFT model

### **Alternatives to RLHF**

RLHF is a complicated process. What are simpler alternatives / baselines?

### **Alternatives to RLHF**

RLHF is a complicated process. What are simpler alternatives / baselines?

- **SFT**. Instead of spending money on preference data, we can collect supervised data.
- **Best-of-***n*. Use the reward model to rerank outputs.
- **Expert iteration**. Get best-of-*n* outputs, do SFT on it, and repeat.
- Other simpler RL algorithms.

# **Comparison of different approaches**

[Dubois et al. 2023]

| Method                     | Simulated win-rate (%) | Human win-rate (%) |
|----------------------------|------------------------|--------------------|
| GPT-4                      | $79.0 \pm 1.4$         | $69.8 \pm 1.6$     |
| ChatGPT                    | $61.4 \pm 1.7$         | $52.9 \pm 1.7$     |
| PPO                        | $46.8 \pm 1.8$         | $55.1 \pm 1.7$     |
| Best-of- $n$               | $45.0 \pm 1.7$         | $50.7 \pm 1.8$     |
| Expert Iteration           | $41.9 \pm 1.7$         | $45.7\pm1.7$       |
| SFT 52k (Alpaca 7B)        | $39.2 \pm 1.7$         | $40.7\pm1.7$       |
| SFT 10k                    | $36.7 \pm 1.7$         | $44.3 \pm 1.7$     |
| Binary FeedME              | $36.6\pm1.7$           | $37.9 \pm 1.7$     |
| Quark                      | $35.6 \pm 1.7$         | -                  |
| Binary Reward Conditioning | $32.4\pm1.6$           | -                  |
| Davinci001                 | $24.4 \pm 1.5$         | $32.5\pm1.6$       |
| LLaMA 7B                   | $11.3 \pm 1.1$         | $6.5\pm0.9$        |

PPO is much better than SFT using roughly the same amount of data.

# **Comparison of different approaches**

[Dubois et al. 2023]

| Method                            | Simulated win-rate (%) | Human win-rate (%) |
|-----------------------------------|------------------------|--------------------|
| GPT-4                             | $79.0 \pm 1.4$         | $69.8 \pm 1.6$     |
| ChatGPT                           | $61.4 \pm 1.7$         | $52.9 \pm 1.7$     |
| PPO                               | $46.8 \pm 1.8$         | $55.1 \pm 1.7$     |
| Best-of-n                         | $45.0\pm1.7$           | $50.7 \pm 1.8$     |
| Expert Iteration                  | $41.9 \pm 1.7$         | $45.7\pm1.7$       |
| SFT 52k (Alpaca 7B)               | $39.2 \pm 1.7$         | $40.7\pm1.7$       |
| SFT 10k                           | $36.7 \pm 1.7$         | $44.3\pm1.7$       |
| Binary FeedME                     | $36.6 \pm 1.7$         | $37.9 \pm 1.7$     |
| Quark                             | $35.6 \pm 1.7$         | -                  |
| <b>Binary Reward Conditioning</b> | $32.4\pm1.6$           | -                  |
| Davinci001                        | $24.4 \pm 1.5$         | $32.5\pm1.6$       |
| LLaMA 7B                          | $11.3 \pm 1.1$         | $6.5\pm0.9$        |

Best-of-*n* has competitive performance. (What's a disadvantage of this method?)

# **Comparison of different approaches**

[Dubois et al. 2023]

| Method                            | Simulated win-rate (%) | Human win-rate (%) |
|-----------------------------------|------------------------|--------------------|
| GPT-4                             | $79.0 \pm 1.4$         | $69.8 \pm 1.6$     |
| ChatGPT                           | $61.4 \pm 1.7$         | $52.9 \pm 1.7$     |
| PPO                               | $46.8\pm1.8$           | $55.1 \pm 1.7$     |
| Best-of-n                         | $45.0\pm1.7$           | $50.7 \pm 1.8$     |
| Expert Iteration                  | $41.9 \pm 1.7$         | $45.7\pm1.7$       |
| SFT 52k (Alpaca 7B)               | $39.2 \pm 1.7$         | $40.7\pm1.7$       |
| SFT 10k                           | $36.7 \pm 1.7$         | $44.3\pm1.7$       |
| Binary FeedME                     | $36.6\pm1.7$           | $37.9 \pm 1.7$     |
| Quark                             | $35.6 \pm 1.7$         | -                  |
| <b>Binary Reward Conditioning</b> | $32.4 \pm 1.6$         | -                  |
| Davinci001                        | $24.4 \pm 1.5$         | $32.5\pm1.6$       |
| LLaMA 7B                          | $11.3 \pm 1.1$         | $6.5\pm0.9$        |

SFT performance saturate quickly with additional data.

### **Table of Contents**

RL for text generation

**RL for aligning LMs** 

Collect human feedback

Train reward model

Train policy with PPO

Direct preference optimization

### Motivation

- RLHF is difficult to get right (reward model, optimization stability, multiple moving pieces)
- Can we directly learn a policy from the preference data? (i.e. no reward model and no RL optimization)

- We have pairwise preference data  $(x, y_1, y_2)$  (assuming  $y_1$  is preferred over  $y_2$ )
- Can we learn a policy  $\pi_{\theta}$  that maximizes  $p(y_1 \succ y_2)$ ?
- Recall: how do we model the probability?

$$p(y_1 \succ y_2 \mid x) = \frac{1}{1 + \exp(-(r(x, y_1) - r(x, y_2)))}$$

• Problem: the probability does not depend on the policy

• RL objective:

$$J(\theta) = \mathbb{E}_{x \sim \mathcal{D}, y \sim \pi_{\theta}} \left[ r(x, y) - \beta \log \frac{\pi_{\theta}(y \mid x)}{\pi_{0}(y \mid x)} \right]$$

• RL objective:

$$J( heta) = \mathbb{E}_{x \sim \mathcal{D}, y \sim \pi_{ heta}} \left[ r(x, y) - eta \log rac{\pi_{ heta}(y \mid x)}{\pi_0(y \mid x)} 
ight]$$

$$\pi^*(y \mid x) = \frac{1}{Z(x)} \exp\left[\frac{1}{\beta}r(x,y)\right]$$

• RL objective:

$$J( heta) = \mathbb{E}_{x \sim \mathcal{D}, y \sim \pi_{ heta}} \left[ r(x, y) - eta \log rac{\pi_{ heta}(y \mid x)}{\pi_0(y \mid x)} 
ight]$$

• It's easy to show that the optimal policy under this objective is

$$\pi^*(y \mid x) = \frac{1}{Z(x)} \exp\left[\frac{1}{\beta}r(x,y)\right]$$

• Exercise: show that the solution is the same as min KL  $(\pi_{\theta} \| \pi^*)$ 

RL objective:

$$J( heta) = \mathbb{E}_{x \sim \mathcal{D}, y \sim \pi_{ heta}} \left[ r(x, y) - eta \log rac{\pi_{ heta}(y \mid x)}{\pi_0(y \mid x)} 
ight]$$

$$\pi^*(y \mid x) = \frac{1}{Z(x)} \exp\left[\frac{1}{\beta}r(x,y)\right]$$

- Exercise: show that the solution is the same as min KL  $(\pi_{\theta} \| \pi^*)$
- Why don't we directly use this optimal policy?

RL objective:

$$J( heta) = \mathbb{E}_{x \sim \mathcal{D}, y \sim \pi_{ heta}} \left[ r(x, y) - eta \log rac{\pi_{ heta}(y \mid x)}{\pi_0(y \mid x)} 
ight]$$

$$\pi^*(y \mid x) = \frac{1}{Z(x)} \exp\left[\frac{1}{\beta}r(x,y)\right]$$

- Exercise: show that the solution is the same as min KL  $(\pi_{\theta} \| \pi^*)$
- Why don't we directly use this optimal policy?
- This allows us to relate the reward and the policy

RL objective:

$$J( heta) = \mathbb{E}_{x \sim \mathcal{D}, y \sim \pi_{ heta}} \left[ r(x, y) - eta \log rac{\pi_{ heta}(y \mid x)}{\pi_0(y \mid x)} 
ight]$$

$$\pi^*(y \mid x) = \frac{1}{Z(x)} \exp\left[\frac{1}{\beta}r(x,y)\right]$$

- Exercise: show that the solution is the same as min KL  $(\pi_{\theta} \| \pi^*)$
- Why don't we directly use this optimal policy?
- This allows us to relate the reward and the policy
- Therefore we can represent the reward using the policy in the objective

$$r^*(x,y) = \beta \log \frac{\pi^*(y \mid x)}{\pi_0(y \mid x)} + \beta \log Z(x)$$

# New objective

• MLE objective on the preference dataset:

$$\min - \mathbb{E}_{(x,y_1,y_2)\sim\mathcal{D}} \log p_{\theta}(y_1 \succ y_2 \mid x) = -\mathbb{E}_{(x,y_1,y_2)\sim\mathcal{D}} \left[ \frac{1}{1 + \exp(-(r_{\theta}(x,y_1) - r_{\theta}(x,y_2)))} \right]$$

### **New objective**

• MLE objective on the preference dataset:

$$\min - \mathbb{E}_{(x,y_1,y_2) \sim \mathcal{D}} \log p_{\theta}(y_1 \succ y_2 \mid x) = -\mathbb{E}_{(x,y_1,y_2) \sim \mathcal{D}} \left[ \frac{1}{1 + \exp(-(r_{\theta}(x,y_1) - r_{\theta}(x,y_2)))} \right]$$

• Representing  $r_{\theta}(x, y)$  using  $\pi_{\theta}(y \mid x)$ 

$$r_{ heta}(x,y) = eta \log rac{\pi_{ heta}(y \mid x)}{\pi_0(y \mid x)} + eta \log Z(x)$$

Note that the objective only depends on the difference between the two rewards

### **New objective**

• MLE objective on the preference dataset:

$$\min - \mathbb{E}_{(x,y_1,y_2)\sim\mathcal{D}} \log p_{\theta}(y_1 \succ y_2 \mid x) = -\mathbb{E}_{(x,y_1,y_2)\sim\mathcal{D}} \left[ \frac{1}{1 + \exp(-(r_{\theta}(x,y_1) - r_{\theta}(x,y_2)))} \right]$$

-

• Representing  $r_{\theta}(x, y)$  using  $\pi_{\theta}(y \mid x)$ 

$$r_{ heta}(x,y) = eta \log rac{\pi_{ heta}(y \mid x)}{\pi_0(y \mid x)} + eta \log Z(x)$$

Note that the objective only depends on the difference between the two rewards

• we get the DPO objective ( $\sigma$  is the logistic function)

$$\min - \mathbb{E}_{(x,y_1,y_2)\sim\mathcal{D}} \log \sigma \left(\beta \log \frac{\pi_{\theta}(y_1 \mid x)}{\pi_0(y_1 \mid x)} - \beta \log \frac{\pi_{\theta}(y_2 \mid x)}{\pi_0(y_2 \mid x)}\right)$$

### What does DPO do?

$$\nabla_{\theta} \mathcal{L}_{\mathsf{DPO}}(\theta) = -\beta \, \mathbb{E}_{(x, y_1, y_2) \sim \mathcal{D}} \left[ \hat{p}_{\theta}(y_2 \succ y_1) \left( \nabla_{\theta} \log \pi(y_1 \mid x) - \nabla_{\theta} \log \pi(y_2 \mid x) \right) \right],$$

where

$$\hat{p}_{ heta}(y_2 \succ y_1) = \sigma \left(eta \log rac{\pi_{ heta}(y_2 \mid x)}{\pi_0(y_2 \mid x)} - eta \log rac{\pi_{ heta}(y_1 \mid x)}{\pi_0(y_1 \mid x)}
ight)$$

- Increases the likelihood of the preferred response and decreases the likelihood of dispreferred response
- Large weight on the update if prediction is wrong

### Summary

- RL had limited improvement over supervised learning in NLG on small models.
- Scaling helps boost performance of RL: large base model + large reward model
- But RL is still a complicated process in practice, and there are research towards simplifying the process (e.g., DPO).
- Key challenge:
  - Reward hacking / over-optimization
  - Unreliable human annotation