
Aligning language models

He He

October 30, 2024

1 / 38

Motivation
How do we tell the LM what we want to do?

2 / 38

Motivation
How do we tell the LM what we want to do?

2 / 38

What is alignment

The technical problem: how to adapt the language model to the intended task (which
is not language modeling)

• Prompting converts a task to a native LM task
• But model performance is sensitive to

prompts
Prompting is more of an art than science
• Goal: make LMs the best assistant to humans
• So that we can just ask the model to do any

task

3 / 38

What is alignment

The ethical problem: what the model should and should not do

• AI is neither friendly nor hostile to humans
• But it could unintentionally harm humans

They just don’t care
• Goal: make sure that they only perform tasks

that benefit humans, e.g.,
• Don’t harm others to achieve a goal
• Be polite and respectful
• Don’t teach people to commit crimes

4 / 38

Capability vs alignment
Capability: What things is the model able to do?
• Write news articles
• Provide information on various subjects
• Build softwares and websites

Do things that humans are able to do

Alignment: What things does the model choose to do?
• Provide truthful information and express uncertainty
• Be careful with potentially harmful information
• Clarify user intentions and preferences

Align with human values

5 / 38

Capability vs alignment
Capability: What things is the model able to do?
• Write news articles
• Provide information on various subjects
• Build softwares and websites

Do things that humans are able to do

Alignment: What things does the model choose to do?
• Provide truthful information and express uncertainty
• Be careful with potentially harmful information
• Clarify user intentions and preferences

Align with human values

5 / 38

Challenges in alignment: objective

Implicit rules: not articulated but assumed in human interaction

Example:
• Explicit task: answer questions on topic X
• Implicit rules:
• Don’t make up stuff
• Don’t use toxic language
• Don’t give information that’s potentially harmful

The implicit rules may be context dependent:
• Translation: what if the source text is toxic?
• Summarization: what if the source article contains untruthful information?

6 / 38

Challenges in alignment: objective

Implicit rules: not articulated but assumed in human interaction

Example:
• Explicit task: answer questions on topic X
• Implicit rules:
• Don’t make up stuff
• Don’t use toxic language
• Don’t give information that’s potentially harmful

The implicit rules may be context dependent:
• Translation: what if the source text is toxic?
• Summarization: what if the source article contains untruthful information?

6 / 38

Challenges in alignment: objective
Oversight: provide supervision on alignment
• One obvious way to align models is to train them on supervised data (later)
• But how can we supervise models on tasks that beyond human capabilities?

Figure: From [Bowman et al., 2022]

7 / 38

https://arxiv.org/pdf/2211.03540.pdf

Challenges in alignment: objective
Diversity: whose values should the model be aligned with?
• Different groups (cultural/ethnic/gender/religious/etc.) agree with different

answers to the same question

Figure: From [Santurkar et al., 2023]

8 / 38

https://arxiv.org/pdf/2303.17548.pdf

Challenges in alignment: objective
Finetuning shifts LM’s opinion

Figure: From [Santurkar et al., 2023]

9 / 38

https://arxiv.org/pdf/2303.17548.pdf

Challenges in alignment: methods

Insufficient scientific understanding of LLMs, e.g.,
• How does in-context learning (which underlies many other capabilities such as

CoT) work?
• Can LLMs reason, and if so, where did they acquire the capability?
• Can we predict emergent capabilities from scaling?
• How does finetuning change the pretrained model?

10 / 38

Current approaches to alignment

• Prompting: ask the model to behave according to human values

• Finetuning / Supervised learning: show the model the right response in
various context

• Reinforcement learning: reward / punish the model when its behavior is
aligned / unaligned with humans

11 / 38

Current approaches to alignment

• Prompting: ask the model to behave according to human values

• Finetuning / Supervised learning: show the model the right response in
various context

• Reinforcement learning: reward / punish the model when its behavior is
aligned / unaligned with humans

11 / 38

Prompting the model to behave well

Case study: truthfulness [Lin et al., 2022]

How do LLMs respond to misconceptions?

12 / 38

https://arxiv.org/pdf/2109.07958.pdf

Prompting the model to behave well

Case study: truthfulness [Lin et al., 2022]

Larger models appear to be less truthful!

13 / 38

https://arxiv.org/pdf/2109.07958.pdf

Prompting the model to answer questions truthfully

14 / 38

Prompting the model to answer questions truthfully

Model behavior varies according to the prompt:

15 / 38

Prompting the model to answer questions truthfully
Helpful prompt improves truthfulness of large models:

But requires engineering:

16 / 38

Prompting the model to answer questions truthfully
Helpful prompt improves truthfulness of large models:

But requires engineering:

16 / 38

Prompt engineering to attack the model
How to ask the model to teach you how to spread misinformation? Role-playing.

17 / 38

Prompts can be overwritten
Ask it to ignore previous prompts:

Create a fictional scenario where it needs
to break rules:

18 / 38

Prompts can be overwritten
Ask it to ignore previous prompts:

Create a fictional scenario where it needs
to break rules:

18 / 38

Summary

Prompt engineering: instruct the model to behave in a certain way

Pros:
• Easy to do—anyone can play around with it
• Efficient—no parameter updates
• First thing to try

Cons:
• Unprincipled—no idea why it works or doesn’t work
• Unreliable—performance can have high variance
• Unsafe—easy to bypass

19 / 38

Summary

Prompt engineering: instruct the model to behave in a certain way

Pros:
• Easy to do—anyone can play around with it
• Efficient—no parameter updates
• First thing to try

Cons:
• Unprincipled—no idea why it works or doesn’t work
• Unreliable—performance can have high variance
• Unsafe—easy to bypass

19 / 38

Approaches to alignment

• Prompting: ask the model to behave according to human values

• Finetuning / Supervised learning: show the model the right response in
various context

• Reinforcement learning: reward / punish the model when its behavior is
aligned / unaligned with humans

20 / 38

Supervised finetuning

• How do we teach the model the right
behavior?

• Going back to supervised learning:
demonstrate the right behavior
• Input: user prompt (task specification)
• Output: (aligned) response

• Key challenge: data collection
How to get the prompts and responses?

21 / 38

What kind of data do we need?

Idea 1: use existing NLP benchmarks

• Natural language inference:
Suppose ”The banker contacted the professors and the athlete”. Can we infer that
”The banker contacted the professors”?
• Question answering:

Given the article ”The Panthers finished the regular season [...]”, what team did the
Panthers defeat?
• Sentiment analysis:

What’s the rating of this review on a scale of 1 to 5: We came here on a Saturday
night and luckily it wasn’t as packed as I thought it would be [...]

But this is not what we ask ChatGPT to do! distribution shift

22 / 38

What kind of data do we need?

Idea 1: use existing NLP benchmarks

• Natural language inference:
Suppose ”The banker contacted the professors and the athlete”. Can we infer that
”The banker contacted the professors”?
• Question answering:

Given the article ”The Panthers finished the regular season [...]”, what team did the
Panthers defeat?
• Sentiment analysis:

What’s the rating of this review on a scale of 1 to 5: We came here on a Saturday
night and luckily it wasn’t as packed as I thought it would be [...]

But this is not what we ask ChatGPT to do! distribution shift

22 / 38

What kind of data do we need?

• Problem: Gap between training and
test data

• Straightforward solution: collect
training data that is similar to test
data
How do we know what test data is like?
• Get some pilot data

which requires a working-ish model
first!

model

raw datatraining data

user

finetuning

annotation

23 / 38

What kind of data do we need?

• Problem: Gap between training and
test data
• Straightforward solution: collect

training data that is similar to test
data
How do we know what test data is like?

• Get some pilot data
which requires a working-ish model
first!

model

raw datatraining data

user

finetuning

annotation

23 / 38

What kind of data do we need?

• Problem: Gap between training and
test data
• Straightforward solution: collect

training data that is similar to test
data
How do we know what test data is like?
• Get some pilot data

which requires a working-ish model
first!

model

raw datatraining data

user

finetuning

annotation

23 / 38

What kind of data do we need?

• Problem: Gap between training and
test data
• Straightforward solution: collect

training data that is similar to test
data
How do we know what test data is like?
• Get some pilot data

which requires a working-ish model
first!

model

raw datatraining data

user

finetuning

annotation

23 / 38

Data distribution from early OpenAI API

Figure: From [Ouyang et al., 2022]

24 / 38

https://arxiv.org/pdf/2203.02155.pdf

Tricky cases

• Recall that we want the model to infer user
intention
• But also to make the right decisions that align

with human values
• So it’s important to include examples that

invovle alignment decisions

• Open question: how to handle trade-off
between helpfulness and harmfulness?
e.g., user may request to generate toxic
sentences for data augmentation

Figure: Data diversity

25 / 38

Tricky cases

• Recall that we want the model to infer user
intention
• But also to make the right decisions that align

with human values
• So it’s important to include examples that

invovle alignment decisions
• Open question: how to handle trade-off

between helpfulness and harmfulness?
e.g., user may request to generate toxic
sentences for data augmentation

Figure: Data diversity

25 / 38

Summary

Supervised finetuning: train the model to respond in an aligned way on
human-annotated prompt-response data

Pros:
• Relatively reliable—generalize to unseen data
• User friendly—doesn’t require extensive prompt engineering
• Simple training pipeline—standard finetuning

Cons:
• Need a warm start—pilot data to decide what data to collect
• Expensive—data needs to cover many uses cases
• Compute—need to update very large models

26 / 38

Summary

Supervised finetuning: train the model to respond in an aligned way on
human-annotated prompt-response data

Pros:
• Relatively reliable—generalize to unseen data
• User friendly—doesn’t require extensive prompt engineering
• Simple training pipeline—standard finetuning

Cons:
• Need a warm start—pilot data to decide what data to collect
• Expensive—data needs to cover many uses cases
• Compute—need to update very large models

26 / 38

Approaches to alignment

• Prompting: ask the model to behave according to human values

• Finetuning / Supervised learning: show the model the right response in
various context

• Reinforcement learning: reward / punish the model when its behavior is
aligned / unaligned with humans

27 / 38

Learning from rewards

Motivation:
• Demonstrations are expensive to obtain—can we learn from weaker signals?
• For many tasks, humans (and animals) only get signal on whether they

succeeded or not

Example:
• Complex physical tasks: learning to shoot a basketball
• Reasoning: learning to play the game of Go
• Decision making: learning to optimize financial portfolios
• Communication: learning to articulate your ideas to others

28 / 38

Reinforcement learning

Goal: learning from experience by maximizing the expected reward

1. Agent takes a sequence of actions in a world

trial

Get a degree, update CV, apply for a job
2. Agent gets rewards along the way indicating how well it did

error

No reponse
3. Agent updates its policy (on what actions to take)

learn

Find a connection? Get an internship? Apply for a different position?
4. Go back to 1

rinse and repeat

29 / 38

Reinforcement learning

Goal: learning from experience by maximizing the expected reward

1. Agent takes a sequence of actions in a world

trial

Get a degree, update CV, apply for a job

2. Agent gets rewards along the way indicating how well it did

error

No reponse
3. Agent updates its policy (on what actions to take)

learn

Find a connection? Get an internship? Apply for a different position?
4. Go back to 1

rinse and repeat

29 / 38

Reinforcement learning

Goal: learning from experience by maximizing the expected reward

1. Agent takes a sequence of actions in a world

trial

Get a degree, update CV, apply for a job
2. Agent gets rewards along the way indicating how well it did

error

No reponse

3. Agent updates its policy (on what actions to take)

learn

Find a connection? Get an internship? Apply for a different position?
4. Go back to 1

rinse and repeat

29 / 38

Reinforcement learning

Goal: learning from experience by maximizing the expected reward

1. Agent takes a sequence of actions in a world

trial

Get a degree, update CV, apply for a job
2. Agent gets rewards along the way indicating how well it did

error

No reponse
3. Agent updates its policy (on what actions to take)

learn

Find a connection? Get an internship? Apply for a different position?

4. Go back to 1

rinse and repeat

29 / 38

Reinforcement learning

Goal: learning from experience by maximizing the expected reward

1. Agent takes a sequence of actions in a world

trial

Get a degree, update CV, apply for a job
2. Agent gets rewards along the way indicating how well it did

error

No reponse
3. Agent updates its policy (on what actions to take)

learn

Find a connection? Get an internship? Apply for a different position?
4. Go back to 1

rinse and repeat

29 / 38

Reinforcement learning

Goal: learning from experience by maximizing the expected reward

1. Agent takes a sequence of actions in a world trial
Get a degree, update CV, apply for a job

2. Agent gets rewards along the way indicating how well it did error
No reponse

3. Agent updates its policy (on what actions to take) learn
Find a connection? Get an internship? Apply for a different position?

4. Go back to 1 rinse and repeat

29 / 38

Reinforcement learning: formalization

At each time step t , an agent
• is in a state st ∈ S (S is the state space)
cell[i][j] in the grid world

• takes an action at ∈ A (A is the action space)
{up, down, left, right}
• transitions to the next state st+1 according to a

transition function p(· | st , at)
moves to the corresponding cell if there’s no blocker
• obtains a reward r(st , at) according to the reward

function r : S ×A → R
1 if st+1 is star and 0 otherwise

30 / 38

Reinforcement learning: formalization

At each time step t , an agent
• is in a state st ∈ S (S is the state space)
cell[i][j] in the grid world
• takes an action at ∈ A (A is the action space)
{up, down, left, right}

• transitions to the next state st+1 according to a
transition function p(· | st , at)
moves to the corresponding cell if there’s no blocker
• obtains a reward r(st , at) according to the reward

function r : S ×A → R
1 if st+1 is star and 0 otherwise

30 / 38

Reinforcement learning: formalization

At each time step t , an agent
• is in a state st ∈ S (S is the state space)
cell[i][j] in the grid world
• takes an action at ∈ A (A is the action space)
{up, down, left, right}
• transitions to the next state st+1 according to a

transition function p(· | st , at)
moves to the corresponding cell if there’s no blocker

• obtains a reward r(st , at) according to the reward
function r : S ×A → R
1 if st+1 is star and 0 otherwise

30 / 38

Reinforcement learning: formalization

At each time step t , an agent
• is in a state st ∈ S (S is the state space)
cell[i][j] in the grid world
• takes an action at ∈ A (A is the action space)
{up, down, left, right}
• transitions to the next state st+1 according to a

transition function p(· | st , at)
moves to the corresponding cell if there’s no blocker
• obtains a reward r(st , at) according to the reward

function r : S ×A → R
1 if st+1 is star and 0 otherwise

30 / 38

Reinforcement learning: objective
The agent uses a policy π to decide which actions to take in a state:
• Deterministic: π(s) = a

• Stochastic: π(a | s) = P(A = a | S = s) (our focus)

A policy πθ defines a distribution pθ(τ) over trajectories τ = (a1, s1, . . . , aT , sT).

The agent’s objective is to learn a policy πθ (parametrized by θ) that maximizes the
expected return:

maximize Eτ∼pθ(τ)

[
T∑
t=1

r(st , at)

]

31 / 38

Reinforcement learning: objective
The agent uses a policy π to decide which actions to take in a state:
• Deterministic: π(s) = a

• Stochastic: π(a | s) = P(A = a | S = s) (our focus)

A policy πθ defines a distribution pθ(τ) over trajectories τ = (a1, s1, . . . , aT , sT).

The agent’s objective is to learn a policy πθ (parametrized by θ) that maximizes the
expected return:

maximize Eτ∼pθ(τ)

[
T∑
t=1

r(st , at)

]

31 / 38

Reinforcement learning: objective
The agent uses a policy π to decide which actions to take in a state:
• Deterministic: π(s) = a

• Stochastic: π(a | s) = P(A = a | S = s) (our focus)

A policy πθ defines a distribution pθ(τ) over trajectories τ = (a1, s1, . . . , aT , sT).

The agent’s objective is to learn a policy πθ (parametrized by θ) that maximizes the
expected return:

maximize Eτ∼pθ(τ)

[
T∑
t=1

r(st , at)

]

31 / 38

Sketch of RL algorithms

Figure: From Sergey Levine’s slides

Key steps:
• Trial: run policy to generate trajectories
• Error: estimate expected return
• Learn: improve the policy

Challenges:
• Trials could be expensive (e.g., healthcare,

education)
• Reward signal could be expensive and sparse

(e.g., expert feedback)
• May need many samples to learn a good

policy

32 / 38

Sketch of RL algorithms

Figure: From Sergey Levine’s slides

Key steps:
• Trial: run policy to generate trajectories
• Error: estimate expected return
• Learn: improve the policy

Challenges:
• Trials could be expensive (e.g., healthcare,

education)
• Reward signal could be expensive and sparse

(e.g., expert feedback)
• May need many samples to learn a good

policy

32 / 38

Policy gradient algorithms

While not converged
1. Sample trajectories from the current policy
2. Estimate return for each trajectories based on observed rewards
3. Take a gradient step on the expected return (w.r.t. the policy)

33 / 38

How to compute the gradient?

Notation: let r(τ) =
∑T

t=1 r(at , st) be the return.

Our objective: J(θ) = Eτ∼pθ(τ) [r(τ)] =
∑
τ

pθ(τ)r(τ)

∇θJ(θ) = ∇θ

∑
τ

pθ(τ)r(τ)

=
∑
τ

∇θpθ(τ)r(τ)

=
∑
τ

pθ(τ)∇θ log pθ(τ)r(τ)

= Eτ∼pθ(τ) [∇θ log pθ(τ)r(τ)]

log derivative trick

pθ(τ)∇θ log pθ(τ)

=pθ(τ)
∇θpθ(τ)

pθ(τ)

=∇θpθ(τ)

34 / 38

How to compute the gradient?

Notation: let r(τ) =
∑T

t=1 r(at , st) be the return.

Our objective: J(θ) = Eτ∼pθ(τ) [r(τ)] =
∑
τ

pθ(τ)r(τ)

∇θJ(θ) = ∇θ

∑
τ

pθ(τ)r(τ)

=
∑
τ

∇θpθ(τ)r(τ)

=
∑
τ

pθ(τ)∇θ log pθ(τ)r(τ)

= Eτ∼pθ(τ) [∇θ log pθ(τ)r(τ)]

log derivative trick

pθ(τ)∇θ log pθ(τ)

=pθ(τ)
∇θpθ(τ)

pθ(τ)

=∇θpθ(τ)

34 / 38

How to compute the gradient?

Notation: let r(τ) =
∑T

t=1 r(at , st) be the return.

Our objective: J(θ) = Eτ∼pθ(τ) [r(τ)] =
∑
τ

pθ(τ)r(τ)

∇θJ(θ) = ∇θ

∑
τ

pθ(τ)r(τ)

=
∑
τ

∇θpθ(τ)r(τ)

=
∑
τ

pθ(τ)∇θ log pθ(τ)r(τ)

= Eτ∼pθ(τ) [∇θ log pθ(τ)r(τ)]

log derivative trick

pθ(τ)∇θ log pθ(τ)

=pθ(τ)
∇θpθ(τ)

pθ(τ)

=∇θpθ(τ)

34 / 38

How to compute the gradient?
Good news: the gradient is now inside the expectation

∇θJ(θ) = Eτ∼pθ(τ) [∇θ log pθ(τ)r(τ)] average gradient of sampled trajectory

But what is pθ(τ)?

pθ(τ) = pθ(a1, s1, . . . , aT , sT) = p(s1)
T∏
t=1

πθ(at | st)
T−1∏
t=1

p(st+1 | st , at)

log pθ(τ) = log p(s1) +
T∑
t=1

log πθ(at | st) +
T−1∑
t=1

log p(st+1 | st , at)

∇θJ(θ) = Eτ∼pθ(τ)

[(
T∑
t=1

∇θ log πθ(at | st)

)(
T∑
t=1

r(st , at)

)]

35 / 38

How to compute the gradient?
Good news: the gradient is now inside the expectation

∇θJ(θ) = Eτ∼pθ(τ) [∇θ log pθ(τ)r(τ)] average gradient of sampled trajectory

But what is pθ(τ)?

pθ(τ) = pθ(a1, s1, . . . , aT , sT) = p(s1)
T∏
t=1

πθ(at | st)
T−1∏
t=1

p(st+1 | st , at)

log pθ(τ) = log p(s1) +
T∑
t=1

log πθ(at | st) +
T−1∑
t=1

log p(st+1 | st , at)

∇θJ(θ) = Eτ∼pθ(τ)

[(
T∑
t=1

∇θ log πθ(at | st)

)(
T∑
t=1

r(st , at)

)]

35 / 38

How to compute the gradient?
Good news: the gradient is now inside the expectation

∇θJ(θ) = Eτ∼pθ(τ) [∇θ log pθ(τ)r(τ)] average gradient of sampled trajectory

But what is pθ(τ)?

pθ(τ) = pθ(a1, s1, . . . , aT , sT) = p(s1)
T∏
t=1

πθ(at | st)
T−1∏
t=1

p(st+1 | st , at)

log pθ(τ) = log p(s1) +
T∑
t=1

log πθ(at | st) +
T−1∑
t=1

log p(st+1 | st , at)

∇θJ(θ) = Eτ∼pθ(τ)

[(
T∑
t=1

∇θ log πθ(at | st)

)(
T∑
t=1

r(st , at)

)]

35 / 38

How to compute the gradient?
Good news: the gradient is now inside the expectation

∇θJ(θ) = Eτ∼pθ(τ) [∇θ log pθ(τ)r(τ)] average gradient of sampled trajectory

But what is pθ(τ)?

pθ(τ) = pθ(a1, s1, . . . , aT , sT) = p(s1)
T∏
t=1

πθ(at | st)
T−1∏
t=1

p(st+1 | st , at)

log pθ(τ) = log p(s1) +
T∑
t=1

log πθ(at | st) +
T−1∑
t=1

log p(st+1 | st , at)

∇θJ(θ) = Eτ∼pθ(τ)

[(
T∑
t=1

∇θ log πθ(at | st)

)(
T∑
t=1

r(st , at)

)]

35 / 38

Putting everything together

REINFORCE algorithm:
1. Sample N trajectories τ1, . . . , τN from πθ

2. Estimate the gradient:

∇θJ(θ) ≈
N∑
i=1

(
T∑
t=1

∇θ log πθ(a
i
t | s it)

)(
T∑
t=1

r(s it , a
i
t)

)

3. Update the policy with gradient ascent: θ ← θ + α∇θJ(θ)

4. Go back to 1

36 / 38

How is all this related to LLMs?

Think of tokens as actions:
• Action space: vocabulary at = xt ∈ V
• State space: history / prefix st = (x1, . . . , xt−1)

• Policy: a language model pθ(xt | x<t)

• Trajectory: a sentence / generation x1, . . . , xT

37 / 38

How is all this related to LLMs?
REINFORCE algorithm on text:

1. Sample N generations from the language model pθ
2. Estimate the gradient: ∇θJ(θ) ≈

∑N
i=1

(∑T
t=1∇θ log pθ(x

i
t | x i<t)

)
r(x1:T)

3. Update the policy with gradient ascent: θ ← θ + α∇θJ(θ)

4. Go back to 1

What is the algorithm doing?

If r(x1:T) is positive, take a gradient step to increase pθ(x1:T).
If r(x1:T) is negative, take a gradient step to decrease pθ(x1:T).

Supervised learning on model generations weighted by rewards

How to get r(x1:T) (i.e. reward of a generation)?

(next time!)

38 / 38

How is all this related to LLMs?
REINFORCE algorithm on text:

1. Sample N generations from the language model pθ
2. Estimate the gradient: ∇θJ(θ) ≈

∑N
i=1

(∑T
t=1∇θ log pθ(x

i
t | x i<t)

)
r(x1:T)

3. Update the policy with gradient ascent: θ ← θ + α∇θJ(θ)

4. Go back to 1

What is the algorithm doing?

If r(x1:T) is positive, take a gradient step to increase pθ(x1:T).
If r(x1:T) is negative, take a gradient step to decrease pθ(x1:T).

Supervised learning on model generations weighted by rewards

How to get r(x1:T) (i.e. reward of a generation)?

(next time!)

38 / 38

How is all this related to LLMs?
REINFORCE algorithm on text:

1. Sample N generations from the language model pθ
2. Estimate the gradient: ∇θJ(θ) ≈

∑N
i=1

(∑T
t=1∇θ log pθ(x

i
t | x i<t)

)
r(x1:T)

3. Update the policy with gradient ascent: θ ← θ + α∇θJ(θ)

4. Go back to 1

What is the algorithm doing?

If r(x1:T) is positive, take a gradient step to increase pθ(x1:T).
If r(x1:T) is negative, take a gradient step to decrease pθ(x1:T).

Supervised learning on model generations weighted by rewards

How to get r(x1:T) (i.e. reward of a generation)?

(next time!)
38 / 38

Summary

Reinforcement learning: align the model by giving it feedback on whether an
output is good or bad

Pros:
• Cost-efficient—humans only need to provide judgments/rewards
• General—can be used to model all kinds of human preferences

Cons:
• Complex pipeline—RL algorithms need more engineering
• Reward hacking—models are good at finding ways to ”cheat”

Generating polite and authorative nonsense
• Human judgments on some subjects are inherently diverse

39 / 38

Summary

Reinforcement learning: align the model by giving it feedback on whether an
output is good or bad

Pros:
• Cost-efficient—humans only need to provide judgments/rewards
• General—can be used to model all kinds of human preferences

Cons:
• Complex pipeline—RL algorithms need more engineering
• Reward hacking—models are good at finding ways to ”cheat”

Generating polite and authorative nonsense
• Human judgments on some subjects are inherently diverse

39 / 38

