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What do language models do?

Answer questions
Summarize documents
Write programs

Prove theorems

User

GPT-4

‘What is funny about this image? Describe it panel by panel.

The image shows a package for a "Lightning Cable" adapter with three panels.

Panel 1: A smartphone with a VGA connector (a large, blue, 15-pin con-
nector typically used for computer monitors) plugged into its charging port.

Panel 2: The package for the "Lightning Cable" adapter with a picture of
a VGA connector on it.

Panel 3: A close-up of the VGA connector with a small Lightning con-
nector (used for charging iPhones and other Apple devices) at the end.

The humor in this image comes from the absurdity of plugging a large,
outdated VGA connector into a small, modern smartphone charging port.
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Dial back twenty years
Which sequence is more likely to be an English sentence?

® Speech recognition
the tail of a dog
the tale of a dog

It's not easy to wreck a nice beach.
It's not easy to recognize speech.
It's not easy to wreck an ice beach.

® Machine translation
He sat on the table.
He sat on the figure.

Such a Europe would the rejection of any ethnic nationalism.
Such a Europe would mark the refusal of all ethnic nationalism.
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Problem formulation

Goal: Assign probabilities to a sequence of tokens, e.g.,
¢ p(the red fox jumped)  p(the green fox jumped)
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Problem formulation

Goal: Assign probabilities to a sequence of tokens, e.g.,
¢ p(the red fox jumped) > p(the green fox jumped)

e p(colorless green ideas sleep furiously) >
p(furiously sleep ideas green colorless)

Formulation:
® Vocabulary: a set of symbols V), e.g.
{fox, green, red, jumped, a, the}
® Sentence: a finite sequence over the vocabulary x;x2 ... x, € V" where n > 0
® The set of all sentences (of varying lengths): V*
e Assign a probability p(x) to all sentences x € V*.
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A naive solution

® Training data: a set of Nl sentences
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A naive solution

® Training data: a set of Nl sentences
® Modeling: use a multinomial distribution as our language model

_count(x)
ps(x) = N

(Exercise: Check that .. ps(x) = 1.)

® |s ps a good LM?
® Most sentences only occur once. sparsity issue
® Need to restrict the model.
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Simplification 1: sentence to tokens
Solve a smaller problem: model probability of each token

Decompose the joint probability using the probability chain rule:

p(x) = p(x1,...,xn)
= p(x1)p(x2 | x1)p(x3 | x1,x2) ... p(Xn | X1, ., Xn—1)
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Simplification 1: sentence to tokens
Solve a smaller problem: model probability of each token

Decompose the joint probability using the probability chain rule:

p(x) = p(x1,...,xn)
= p(x1)p(x2 | x1)p(x3 | x1,%2) ... p(xn [ X1, .. Xn—1)
(Doesn't have to go from left to right)
= P(Xn)P(anl | Xn) cee P(Xl | X2y .- 7Xn)

Problem reduced to modeling conditional token probabilities
the red fox — jumped

The left-to-right decomposition is also called an autoregressive model
This is a classification problem we have seen

But there is still a large number of contexts!

77149



Simplification 2: limited context

Reduce dependence on context by the Markov assumption:
® First-order Markov model

p(xi | xt, ... xi—1) = p(xi | xi-1)

p(x) =[] p(xi | xi-1)
i=1

e Number of contexts?
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Model sequences of variable lengths

Assume each sequence starts with a special start symbol: xy = .

Assume that all sequences end with a stop symbol STOP, e.g.

p(the, fox, jumped, STOP)
= p(the | *)p(fox | the)p(jumped | fox)p(STOP | jumped)

9/49



Model sequences of variable lengths

Assume each sequence starts with a special start symbol: xy = .

Assume that all sequences end with a stop symbol STOP, e.g.

p(the, fox, jumped, STOP)
= p(the | *)p(fox | the)p(jumped | fox)p(STOP | jumped)

What if we don't have the stop symbol?
® Which one is larger: p(the fox) or p(the fox jumped)?
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N-gram LM

® Unigram language model (no context):

p(x1, ..., xn) = Hp(x,-) .

® Bigram language model (xg = *):
p(X17 s 7Xn) = Hp(xi | Xi—l) .
i=1

® p-gram language model:

m

P(Xla-.-7Xm):HP(Xi| Xi—ntly--->Xi—1 ).
—_— ———

=1 ,
' previous n — 1 words
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Parameter estimation

Maximum likelihood estimation over a corpus (a set of sentences):

® Unigram LM
count(w)

wey count(w)

PMLE(X) = Z

® Bigram LM
count(w, w')
wey count(w, w’)

pue(w | w') =
2
® |n general, for n-gram LM,

count(w, ¢)
wey count(w, )

PMLE(W ! C) = Z

where ¢ € Y"1,
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Example

® Training corpus (after tokenization)

{The fox is red, The red fox jumped, | saw a red fox}
¢ Collect counts

count(fox) = 3

count(red) =3

count(red, fox) = 2

® Parameter estimates
p(red | fox) =
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Example

® Training corpus (after tokenization)

{The fox is red, The red fox jumped, | saw a red fox}
¢ Collect counts

count(fox) = 3

count(red) =3

count(red, fox) = 2

® Parameter estimates
p(red | fox) =2/3
p(saw | i) =1/1
® What is the probability of “The fox saw | jumped"? Zero probability on
unseen n-grams
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Generating text from an n-gram model
1. Initial condition: context = *
2. Iterate until next_word is STOP:

2.1 next.word ~ p(- | context[: —(n —1)])
2.2 context < context + next_word
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Generating text from an n-gram model
1. Initial condition: context = x

2. lterate until next_.word is STOP:

2.1 next.word ~ p(- | context[: —(n —1)])
2.2 context < context + next_word

1

gram

2

gram

3

gram

4

gram

—To him swallowed confess hear both. Which. Of save on trail for are ay device and
rote life have
—Hill he late speaks; or! a more to leg less first you enter

—Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry. Live
king. Follow.
—What means, sir. I confess she? then all sorts, he is trim, captain.

—Fly, and will rid me these news of price. Therefore the sadness of parting, as they say,
’tis done.
—This shall forbid it should be branded, if renown made it empty.

—King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A
great banquet serv’d in;
—It cannot be but so.

What is the training data?
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Perplexity

What is the loss function for learning language models?
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Perplexity
What is the loss function for learning language models?

Held-out likelihood on test data D (negative test loss):

|D|

(D) = Z log py(x; | x1:i-1) ,
i=1
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Perplexity
What is the loss function for learning language models?

Held-out likelihood on test data D (negative test loss):

|D|

(D) = Z log py(x; | x1:i-1) ,
i=1

Perplexity:

¢(D)
D

PPL(D) =2 101 .
® Base of log and exponentiation should match
® Exponentis cross entropy: H(pPdatas P9) = —Expya 108 Po(X).

® Interpretation: a model of perplexity k predicts the next word by throwing a fair
k-sided die.
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Summary

Language models: assign probabilities to sentences
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Summary

Language models: assign probabilities to sentences

N-gram language models:
® Assume each word only conditions on the previous n — 1 words
e MLE estimate: counting n-grams in the training corpus

Evaluation by held-out perplexity: how much probability mass does the model
assign to unseen text

Challenges:
® Generalization: sentences containing unseen n-grams have zero probability

® Much research in n-gram LM is dedicated to smoothing methods that allocate
probability mass to unseen n-grams
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Neural language models

Neural networks solve the generalization problem in n-gram LMs.

the brown fox Jjumped END

N N N I |

Decoder

T 1T 1T 1

START the brown fox jumped

e A decoder-only autoregressive neural language model

® Decoder can be an RNN or a transformer (with causal masking)

e What's the context size?
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Early efforts on scaling neural language models

MODEL TEST PERPLEXITY NUMBER OF PARAMS [BILLIONS]
S1GMOID-RNN-2048 (J1 ET AL., 2015A) 68.3 4.1
INTERPOLATED KN 5-GRAM, 1.1B N-GRAMS (CHELBA ET AL., 2013) 67.6 1.76
SPARSE NON-NEGATIVE MATRIX LM (SHAZEER ET AL., 2015) 52.9 33
RNN-1024 + MAXENT 9-GRAM FEATURES (CHELBA ET AL., 2013) 51.3 20
LSTM-512-512 54.1 0.82
LSTM-1024-512 48.2 0.82
LSTM-2048-512 43.7 0.83
LSTM-8192-2048 (NOo DROPOUT) 37.9 3.3
LSTM-8192-2048 (50% DROPOUT) 32.2 3.3
2-LAYER LSTM-8192-1024 (BIG LSTM) 30.6 1.8
BIG LSTM+CNN INPUTS 30.0 1.04
BIG LSTM+CNN INPUTS + CNN SOFTMAX 39.8 0.29
BIG LSTM+CNN INPUTS + CNN SOFTMAX + 128-DIM CORRECTION 35.8 0.39
BIG LSTM+CNN INPUTS + CHAR LSTM PREDICTIONS 47.9 0.23

Figure: From Exploring the Limits of Language Modeling

Significant improvement in held-out perplexity given similar model sizes (~1B)
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https://arxiv.org/pdf/1602.02410.pdf

Improvement from neural language models

Mean difference in log perplexity

[l
e

N
o

-
5

|y
o

°
w

0.0

Words buckets of equal size (less frequent words on the right)

< S > With even more new technologies coming onto the market
quickly during the past three years , an increasing number of compa-
nies now must tackle the ever-changing and ever-changing environ-
mental challenges online . < .S > Check back for updates on this
breaking news story . < S > About 800 people gathered at Hever
Castle on Long Beach from noon to 2pm , three to four times that of
the funeral cortege . < S > We are aware of written instructions
from the copyright holder not to , in any way , mention Rosenberg 's
negative comments if they are relevant as indicated in the documents
,”" eBay said in a statement . < .S > It is now known that coffee and
cacao products can do no harm on the body . < S > Yuri Zhirkov
was in attendance at the Stamford Bridge at the start of the second
half but neither Drogba nor Malouda was able to push on through the
Barcelona defence .

Figure: From Exploring the Limits of Language Modeling

LSTM vs KN5: improved perplexity on tail words
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Recap: language modeling as pretraining

What can we do with a very large language model?

® The cats that are raised by my sister —______ sleeping. syntax
® Jane is happy that John invited ————_ friends to his birthday party. coreference
e isthe capital of Tanzania. knowledge
® The boy is ———— because he lost his keys. commonsense

® John took 100 bucks to Vegas. He won 50 and then lost 100. Now he only has
to go home. numerical reasoning

Predicting the next word entails many natural language understanding tasks
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Recap: Zero-shot hehaviors from GPT

Key insight: if the model has learned to understand language through predicting
next words, it should be able to perform these tasks without finetuning
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Recap: Zero-shot hehaviors from GPT

Key insight: if the model has learned to understand language through predicting
next words, it should be able to perform these tasks without finetuning

I
IS

) ——— Heuristics for zero-shot prediction:

e E fgftdhwgbg'wu ® Sentiment classification: [example] + very +
i vt {positive, negative}  prompting
é“ ® Linguistic acceptability: thresholding on log
E probabilities

® Multiple choice: predicting the answer with
the highest log probabilities

I
N}

o Learning dynamics: zero-shot performance
e # pretrining upcates h increases during pretraining
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GPT-2: going beyond finetuning

Language Models are Unsupervised Multitask Learners [Radford et al., 2019]

e Supervised learning: models must be trained (finetuned) on a curated task
dataset.

® They fail to generalize to out-of-distribution data (adversarial examples,
robustness issues etc.)

e A generalist model must be trained on many tasks—but how do we get the
datasets?

® Hypothesis: a (large enough) LM should be able to infer and learn tasks
demonstrated in natural language, effectively performing unsupervised
multitask learning
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https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf

GPT-2 details

Similar to GPT-1 but scaled up (1.5B parameters)

Data (WebText): ~40GB of web pages scraped from the internet that was
curated to include high-quality text

® Tokenization: BPE over byte sequences for universal text processing.

® Small base vocabulary (256)
® Can process any text data regardless of pre-processing, tokenization, or
vocab size.

® |arger context size (1024 tokens)
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Zero-shot performance: cloze test

S: l nr. croppex was opposed to our hiring you
ot he had any personal objection to you , but he is set
aqaxnst fenare seachers , and when a Cropper is set there is nothing on earth can
change
3 e says "eenale teachers ca n't keep orde
He 's started in with a spite at you on general principles , and the boys know

5 They know he '11 back them up in secret , no matter what they do , just to prove
his opinions .
§ Cropper is sly and slippery , and it is hard to corner him . '°
the boys 2
s quened Esther amnonsly .

1o hireesn and fourtean and big for their age .
11 You ca n't whip ‘em -- that is the trouble
12 A man might , but they 'd twist you around their fingers .
13 You '11 have your hands full , I 'm afraid
14 But maybe they ‘11 behave all right after all .
15 Mr. Baxter privately had no hope that they would , but Esther hoped for the

best.
16 She could not believe that Mr. Cropper would carry his prejudices into a
personal application .

17 This conviction was strengthened when he overtook her walking from school the
next day and drove her hor

18 He was a big ith a very suave , polite manner

15 Ho asked interestedly about hot school and her vork , hoped she was getting on
well , and said he had two young rascals of his own to send soon .

20 Esther felt relieved .

had exaggerated matters a little .

She thought that Mr.
Baxter, Cropper, Esther, course, fingers, manner, objection, opinion, right, spite.

® QQ

Baxter

Accuracy

Common Nouns

Named Entities

100
Human -
95 95
90 > 90
©
=1
g
851 < 85
Bajgar et al. (2016) ---
80 80
Bajgar et al. (2016) - =
75, 75,
117m 345M 762M 1542M 117M 345M 762M 1542M

# of parameters in LM

Larger models quickly closes the gap with human performance

# of parameters in LM
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Zero-shot performance: generative QA

Question Generated Answer Correct ~ Probability
‘Who wrote the book the origin of species? Charles Darwin v 83.4%
‘Who is the founder of the ubuntu project? Mark Shuttleworth v 82.0%
‘Who is the quarterback for the green bay packers? Aaron Rodgers v 81.1%
Panda is a national animal of which country? China v 76.8%
‘Who came up with the theory of relativity? Albert Einstein v 76.4%
‘When was the first star wars film released? 1977 v 71.4%
‘What is the most common blood type in sweden? A X 70.6%
‘Who is regarded as the founder of psychoanalysis? Sigmund Freud v 69.3%
‘Who took the first steps on the moon in 1969? Neil Armstrong v 66.8%
‘Who is the largest supermarket chain in the uk? Tesco v 65.3%
‘What is the meaning of shalom in english? peace v 64.0%
‘Who was the author of the art of war? Sun Tzu v 59.6%
Largest state in the us by land mass? California X 59.2%
Green algae is an example of which type of reproduction? parthenogenesis X 56.5%
Vikram samvat calender is official in which country? India v 55.6%
‘Who is mostly responsible for writing the declaration of independence? Thomas Jefferson v 53.3%
‘What us state forms the western boundary of montana? Montana X 52.3%
‘Who plays ser davos in game of thrones? Peter Dinklage X 52.1%
‘Who appoints the chair of the federal reserve system? Janet Yellen X 51.5%
State the process that divides one nucleus into two genetically identical nuclei?  mitosis v 50.7%
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Zero-shot performance: summarization

| R-1  R2 RL |RAVG
Bottom-Up Sum | 4122 18.68 3834 | 3275
Lede-3 4038 17.66 36.62 | 31.55
Seq2Seq+Attn | 31.33 11.81 28.83 | 23.99
GPT-2TL;DR: | 2934 827 2658 | 21.40
Random-3 2878 863 2552 | 2098
GPT-2nohint | 21.58 4.03 1947 | 15.03

Challenge: not a “native” LM task

Induce the task: [document] + [TL;DR]
Not much better than copying 3 random sentences from the document
Key question in the zero-shot paradigm: how do we tell the model what the

intended task is?
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Zero-shot performance: machine translation

® Induce the task through a demonstration example:
translation ~ p(- | [french sentence] = [english sentence]; [french sentence] =)

® WMT-14 French-English test set: 11.5 BLEU (worse than unsupervised MT)
® But, there's only T0MB french data in the 40GB training data!l

® Typical unsupervised MT methods require crosslingual embeddings or
monolingual corpora
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Has the model memorized everything?

Is there data contamination (test data in training set)?

® Approach: check percentage of 8-grams that occur in both training and test data
(using Bloom filters)
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Is there data contamination (test data in training set)?

® Approach: check percentage of 8-grams that occur in both training and test data
(using Bloom filters)

e QOverlap is not higher than existing overlap on train and test in datasets

® QOverlap between test and WebText: 3.2%
® Qverlap between test and their own training split: 5.9%

® Model performance does get better when the test data is in pretraining
® E.g., on CoQA, 3 F1 better on leaked documents
® Verifying data contamination is an active research areal!
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Has the model memorized everything?

Test the model on novel tasks:

Context (human-written): In a shocking finding, scientist discovered a herd of unicorns living
in a remote, previously unexplored valley, in the Andes Mountains. Even more surprising to the
researchers was the fact that the unicorns spoke perfect English.

GPT-2: The scientist named the population, after their distinctive horn, Ovid’s Unicorn. These
four-horned, silver-white unicorns were previously unknown to science.

Now, after almost two centuries, the mystery of what sparked this odd phenomenon is fi-
nally solved.

Dr. Jorge Pérez, an evolutionary biologist from the University of La Paz, and several com-
panions, were exploring the Andes Mountains when they found a small valley, with no other animals
or humans. Pérez noticed that the valley had what appeared to be a natural fountain, surrounded by
two peaks of rock and silver snow.
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GPT-3: scaling up

® GPT-2 shows promise for zero-shot learning, but performance is still unsatisfying
® GPT-3 scales up model size, data size and diversity, and number of training steps
® Notable improvement in zero-shot and few-shot performance

¢ Inducing a task through natural language task descriptions

Training Petaflop/s-days

Total Compute Used During Training

10000

1000

10

Q? as

& «>f e

2 A
& & 9’5‘ r§ q«"’ & & 0 é?

%
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What does scaling mean?

Q% @

M Mode Training Training
a | tokens compute
size
Model size Training Training compute |Resources
(# parameters) data (FLOPs)
{# tokens)
BERT-base (2018) 109M 250B 1.6e20 64 TPU v2 for 4 days
16 V100 GPU for 33 hrs
GPT-3 (2020) 175B 3008B 3.1e23 ~1,000x BERT-base
PaLM (2022) 540B 780B 2.5e24 6k TPU v4 for 2 months

Figure: From Jason Wei's slides
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Training data

Quantity Weight in Epochs elapsed when
Dataset (tokens)  training mix training for 300B tokens
Common Crawl (filtered) 410 billion 60% 0.44
WebText2 19 billion 22% 29
Booksl 12 billion 8% 1.9
Books2 55 billion 8% 0.43
Wikipedia 3 billion 3% 34

Key challenge: data quality control

Filter CommonCrawl based on similarity to high-quality reference corpora

Fuzzy deduplication: avoid redundancy and data contamination

Mix in known high quality data
Upsampling high quality data during training
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Evaluation settings

The three settings we explore for in-context learning

Traditional fine-tuning (not used for GPT-3)

Zero-shot

The model predicts the answer given only a natural language
description of the task. No gradient updates are performed.

1 Translate English to French: < task description
2 cheese => «—— prompt
One-shot

In addition to the task description, the model sees a single
example of the task. No gradient updates are performed.

1 Translate English to French: E task description

2 sea otter => loutre de mer < example

3 cheese => < prompt
Few-shot

In addition to the task description, the model sees a few
examples of the task. No gradient updates are performed.

Fine-tuning
The model is trained via repeated gradient updates using a
large corpus of example tasks.

sea otter => loutre de mer « example #1

radient update

<_|<_

peppermint => menthe poivrée « example #2

gradient update

éIe

v

plush giraffe => girafe peluche <« — example #N

gradient update

cheese => ¢ prompt
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Results: natural language understanding

SuperGLUE Performance

—8— Zero-shot

Fine-funed SOTA ~ -~ ---=7 —@— One-shot
—8— Few-shot (K=32)

80

Fine-tuned BERT++

~

0

SuperGLUE Score

50

40
0.1 04 08 13 26 6.7 13 175

Billions of Parameters in LM

Comparable to supervised results

In-Context Learning on SuperGLUE

—8— Few-shot GPT-3 175B
Human

80

Fine-tuned BERT +

60

50

0
01234 8 16 32
Number of Examples in Context (K)
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Results: few-shot machine translation

Translation (Multi-BLEU)

40
35
30
25
@
a 20
15 e P "7 —e— French->English
T o --e- English -> French
10 ,/:/' ’.,_——"' —e— German -> English
/) ’ e --e- English -> German
54 //" —e— Romanian -> English
- --e- English -> Romanian
0
0.1B 0.4B 08B 1.3B 26B 6.7B  13B 175B

Parameters in LM (Billions)
Pretraining data: 93% English, 7% other languages
Zero-shot is still worse than unsupervised MT
But even giving one examples significantly boosts the result (+7 BLEU points)
Results much better when translation into English

Also see [Briakou et al., 2023] for the impact of bilingual data on MT performance
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https://arxiv.org/pdf/2305.10266.pdf

Results: arithmetic

Arithmetic (few-shot)

100
—e— Two Digit Addition

—e— Two Digit Subtraction
—e— Three Digit Addition
—e— Three Digit Subtraction
—e— Four Digit Addition
—e— Four Digit Subtraction
—o— Five Digit Addition
Five Digit Subtraction
—o— Two Digit Multiplication
Single Digit Three Ops

Accuracy

20

0.1B 04B 08B 1.3B 26B 6.7B  13B 175B
Parameters in LM (Billions)

® "Emergent” ability at certain model scale
e Not systemic: works better on frequent numbers [Razeghi et al., 2022]
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https://arxiv.org/abs/2202.07206

Results: generation

Human ability to detect model generated news articles

control (86%)

Accuracy (%)

1e8 1e9 1e10 lell
Number of parameters (log scale)

Generated text is hard to detect from human-written text
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Analysis: data contamination

30%
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Winograd
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3 [ ]
Anagrams 2 ® 9

Anagrams 1

Reversed Words -@

100%

N

eval on only
clean data
did better

eval on all data
(including dirty)
did better

e QOverlap can be large (e.g., many reading comprehension articles come from

wikipedia)

® Result on clean part of the benchmark doesn't change much
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Summary

® Premise: a perfect language model on all human-written text can do all
text-based tasks
® What about unwritten knowledge?
® New behaviors that are not written in the training objective emerge (e.g.,
in-context learning)
® Open questions:
® How much are they memorizing vs generalizing?

® How do new abilities emerge?
® How to mitigate harmful, toxic, biased responses?
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Motivation

® We have seen larger language models trained on more data consistently give
better performance.

Can we be more precise about how scaling affect performance?

Any other factors affecting scaling (architecture, task, etc.)?

Can we predict performance of larger models from smaller models?

41/49



Scaling data drives down error

Small Data
Region

Best Guess Error

Power-law Region

Irreducible
Error
Region

Generalization Error (Log-scale)

Irreducible Error

Training Data Set Size (Log-scale)

Figure: [Hestness et al., 2017]

L: loss; B: data-dependent constant; D: data size; E: irreducible error

L=BD b+ E
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https://arxiv.org/abs/1712.00409

Fit empirical learning curve

Minimum Validation Loss (Log-scale)

g(m) = 12.0 m06¢

NN
&(m) = 11.9 m0%%6 N3

SN
&(m) = 11.7 m09% \\:

—— 2-Layer LSTMs

- 4-Layer LSTMs
= Depth-5 RHNs
== 2-Layer LSTMs Trend
== 4-Layer LSTMs Trend
== Depth-5 RHNs Trend

220 1 2 g3 g

225 g% 21 o8

Training Data Set Size, Millions of Words (Log-scale)

(a) language modeling

Minimum Test Loss (Log-scale)

® Scaling law shows up in different domains

~— Token Error Rate
Token Error Rate Trend

&(m) = 3.87 m°13

P30 220 221 222 223 224 225 226 227
Training Data Set Size, Number of Tokens (Log-scale)

(b) machine translation

® Prior theory on generalization bounds suggests exponent=0.5 or 1, but
empirically it's much smaller (lots of room for improvement)
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Model data joint scaling

& 3
log10(err)

2
acti, -
Ctio)  © &

(a) Wikil03 error (cross entropy) landscape. (b) CIFARI10 error (top1) landscape.

Figure: [Rosenfeld et al., 2019]

® Fixing data size, scaling model size decreases error initially, but then saturates

(bottlenecked by data)

® Functional form:
L=AM"2+BD°+E
44/49


https://arxiv.org/pdf/1909.12673

Model data joint scaling

Loss vs Model and Dataset Size

@i, @ttt o
u;:”*< O @ °..
e, ..
§.. W

107 108 10° 101

Tokens in Dataset

Figure: [Kaplan et al., 2020]

® |arger data is bottlenecked by small models

® Functional form:

L= (AM~/b 4+ BpD1)b

Params

708M
302M
85M
3M
25M
393.2K
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https://arxiv.org/pdf/2001.08361

How should we trade off model vs data?

® compute x data x parameter

® Given a target loss, we can minimize compute to get the optimal model data
ratio

e Kaplan et al. suggests D oc M%74: model size should scale faster than data

e Chinchilla law suggests that model size and data should roughly scale at the
same rate
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Designing large models using scaling law

LSTMs or Transformers?

Transformers asymptotically outperform LSTMs
due to improved use of long contexts

Test Loss 5.4

4.8

4.2

Per-token
Test Loss

LSTMs
/-

3.6
1 Layer
2 Layers
3.0 Transformers — 4 Layers
24
108 108 107 108 100

Parameters (non-embedding)

6

LSTM plateaus after <100 tokens
Transformer improves through the whole context

Parameters:
400K

400K
2M

am

200M

300M

101 102
Token Index in Context

Figure: [Kaplan et al., 2020]
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https://arxiv.org/pdf/2001.08361

Designing large models using scaling law

Depth vs width

Test Loss

7
6
5
4
—e— 1 Layer
—e— 2 Layers
3] — 3 Layers \
—=— 6 Layers \‘\
> 6 Layers
2

108 10° 105 10° 107 108  10°
Parameters (non-embedding)

Figure: [Kaplan et al., 2020]
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Takeaways

® The main inputs to deep learning systems are data and compute.
® Scaling the two inputs reliably increases performance

e Scaling laws exist and capture the relationship between compute and
performance

e Scaling law allows you to design models (architecture, optimizer etc.) at smaller
scale then extrapolate the design to a larger scale

® You should also look at scaling behavior of your method
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