
Scaling Language models

He He
(credits: Nicholas Lourie and Tastu Hashimoto)

October 23, 2024

1 / 49



Table of Contents

N-gram language models

Large pretrained language models

Scaling Laws

2 / 49



What do language models do?

• Answer questions
• Summarize documents
• Write programs
• Prove theorems
• ...

3 / 49



Dial back twenty years

Which sequence is more likely to be an English sentence?

• Speech recognition
the tail of a dog
the tale of a dog
It’s not easy to wreck a nice beach.
It’s not easy to recognize speech.
It’s not easy to wreck an ice beach.

• Machine translation
He sat on the table.
He sat on the figure.
Such a Europe would the rejection of any ethnic nationalism.
Such a Europe would mark the refusal of all ethnic nationalism.

4 / 49



Problem formulation

Goal: Assign probabilities to a sequence of tokens, e.g.,
• p(the red fox jumped)

≫

p(the green fox jumped)

• p(colorless green ideas sleep furiously)

≫

p(furiously sleep ideas green colorless)

Formulation:
• Vocabulary: a set of symbols V , e.g.
{fox, green, red, jumped, a, the}
• Sentence: a finite sequence over the vocabulary x1x2 . . . xn ∈ Vn where n ≥ 0

• The set of all sentences (of varying lengths): V∗

• Assign a probability p(x) to all sentences x ∈ V∗.

5 / 49



Problem formulation

Goal: Assign probabilities to a sequence of tokens, e.g.,
• p(the red fox jumped)≫ p(the green fox jumped)

• p(colorless green ideas sleep furiously)

≫

p(furiously sleep ideas green colorless)

Formulation:
• Vocabulary: a set of symbols V , e.g.
{fox, green, red, jumped, a, the}
• Sentence: a finite sequence over the vocabulary x1x2 . . . xn ∈ Vn where n ≥ 0

• The set of all sentences (of varying lengths): V∗

• Assign a probability p(x) to all sentences x ∈ V∗.

5 / 49



Problem formulation

Goal: Assign probabilities to a sequence of tokens, e.g.,
• p(the red fox jumped)≫ p(the green fox jumped)
• p(colorless green ideas sleep furiously)

≫

p(furiously sleep ideas green colorless)

Formulation:
• Vocabulary: a set of symbols V , e.g.
{fox, green, red, jumped, a, the}
• Sentence: a finite sequence over the vocabulary x1x2 . . . xn ∈ Vn where n ≥ 0

• The set of all sentences (of varying lengths): V∗

• Assign a probability p(x) to all sentences x ∈ V∗.

5 / 49



Problem formulation

Goal: Assign probabilities to a sequence of tokens, e.g.,
• p(the red fox jumped)≫ p(the green fox jumped)
• p(colorless green ideas sleep furiously)≫

p(furiously sleep ideas green colorless)

Formulation:

• Vocabulary: a set of symbols V , e.g.
{fox, green, red, jumped, a, the}
• Sentence: a finite sequence over the vocabulary x1x2 . . . xn ∈ Vn where n ≥ 0

• The set of all sentences (of varying lengths): V∗

• Assign a probability p(x) to all sentences x ∈ V∗.

5 / 49



Problem formulation

Goal: Assign probabilities to a sequence of tokens, e.g.,
• p(the red fox jumped)≫ p(the green fox jumped)
• p(colorless green ideas sleep furiously)≫

p(furiously sleep ideas green colorless)

Formulation:
• Vocabulary: a set of symbols V , e.g.
{fox, green, red, jumped, a, the}

• Sentence: a finite sequence over the vocabulary x1x2 . . . xn ∈ Vn where n ≥ 0

• The set of all sentences (of varying lengths): V∗

• Assign a probability p(x) to all sentences x ∈ V∗.

5 / 49



Problem formulation

Goal: Assign probabilities to a sequence of tokens, e.g.,
• p(the red fox jumped)≫ p(the green fox jumped)
• p(colorless green ideas sleep furiously)≫

p(furiously sleep ideas green colorless)

Formulation:
• Vocabulary: a set of symbols V , e.g.
{fox, green, red, jumped, a, the}
• Sentence: a finite sequence over the vocabulary x1x2 . . . xn ∈ Vn where n ≥ 0

• The set of all sentences (of varying lengths): V∗

• Assign a probability p(x) to all sentences x ∈ V∗.

5 / 49



Problem formulation

Goal: Assign probabilities to a sequence of tokens, e.g.,
• p(the red fox jumped)≫ p(the green fox jumped)
• p(colorless green ideas sleep furiously)≫

p(furiously sleep ideas green colorless)

Formulation:
• Vocabulary: a set of symbols V , e.g.
{fox, green, red, jumped, a, the}
• Sentence: a finite sequence over the vocabulary x1x2 . . . xn ∈ Vn where n ≥ 0

• The set of all sentences (of varying lengths): V∗

• Assign a probability p(x) to all sentences x ∈ V∗.

5 / 49



Problem formulation

Goal: Assign probabilities to a sequence of tokens, e.g.,
• p(the red fox jumped)≫ p(the green fox jumped)
• p(colorless green ideas sleep furiously)≫

p(furiously sleep ideas green colorless)

Formulation:
• Vocabulary: a set of symbols V , e.g.
{fox, green, red, jumped, a, the}
• Sentence: a finite sequence over the vocabulary x1x2 . . . xn ∈ Vn where n ≥ 0

• The set of all sentences (of varying lengths): V∗

• Assign a probability p(x) to all sentences x ∈ V∗.

5 / 49



A naive solution

• Training data: a set of N sentences

• Modeling: use a multinomial distribution as our language model

ps(x) =
count(x)

N
.

(Exercise: Check that
∑

x∈V∗ ps(x) = 1.)

• Is ps a good LM?

• Most sentences only occur once. sparsity issue
• Need to restrict the model.

6 / 49



A naive solution

• Training data: a set of N sentences

• Modeling: use a multinomial distribution as our language model

ps(x) =
count(x)

N
.

(Exercise: Check that
∑

x∈V∗ ps(x) = 1.)

• Is ps a good LM?

• Most sentences only occur once. sparsity issue
• Need to restrict the model.

6 / 49



A naive solution

• Training data: a set of N sentences

• Modeling: use a multinomial distribution as our language model

ps(x) =
count(x)

N
.

(Exercise: Check that
∑

x∈V∗ ps(x) = 1.)

• Is ps a good LM?

• Most sentences only occur once. sparsity issue
• Need to restrict the model.

6 / 49



A naive solution

• Training data: a set of N sentences

• Modeling: use a multinomial distribution as our language model

ps(x) =
count(x)

N
.

(Exercise: Check that
∑

x∈V∗ ps(x) = 1.)

• Is ps a good LM?

• Most sentences only occur once. sparsity issue
• Need to restrict the model.

6 / 49



A naive solution

• Training data: a set of N sentences

• Modeling: use a multinomial distribution as our language model

ps(x) =
count(x)

N
.

(Exercise: Check that
∑

x∈V∗ ps(x) = 1.)

• Is ps a good LM?
• Most sentences only occur once. sparsity issue

• Need to restrict the model.

6 / 49



A naive solution

• Training data: a set of N sentences

• Modeling: use a multinomial distribution as our language model

ps(x) =
count(x)

N
.

(Exercise: Check that
∑

x∈V∗ ps(x) = 1.)

• Is ps a good LM?
• Most sentences only occur once. sparsity issue
• Need to restrict the model.

6 / 49



Simplification 1: sentence to tokens
Solve a smaller problem: model probability of each token

Decompose the joint probability using the probability chain rule:

p(x) = p(x1, . . . , xn)

= p(x1)p(x2 | x1)p(x3 | x1, x2) . . . p(xn | x1, . . . , xn−1)

(Doesn’t have to go from left to right)
= p(xn)p(xn−1 | xn) . . . p(x1 | x2, . . . , xn)

• Problem reduced to modeling conditional token probabilities
the red fox→ jumped
• The left-to-right decomposition is also called an autoregressive model
• This is a classification problem we have seen
• But there is still a large number of contexts!

7 / 49



Simplification 1: sentence to tokens
Solve a smaller problem: model probability of each token

Decompose the joint probability using the probability chain rule:

p(x) = p(x1, . . . , xn)

= p(x1)p(x2 | x1)p(x3 | x1, x2) . . . p(xn | x1, . . . , xn−1)

(Doesn’t have to go from left to right)
= p(xn)p(xn−1 | xn) . . . p(x1 | x2, . . . , xn)

• Problem reduced to modeling conditional token probabilities
the red fox→ jumped
• The left-to-right decomposition is also called an autoregressive model
• This is a classification problem we have seen
• But there is still a large number of contexts!

7 / 49



Simplification 1: sentence to tokens
Solve a smaller problem: model probability of each token

Decompose the joint probability using the probability chain rule:

p(x) = p(x1, . . . , xn)

= p(x1)p(x2 | x1)p(x3 | x1, x2) . . . p(xn | x1, . . . , xn−1)

(Doesn’t have to go from left to right)
= p(xn)p(xn−1 | xn) . . . p(x1 | x2, . . . , xn)

• Problem reduced to modeling conditional token probabilities
the red fox→ jumped

• The left-to-right decomposition is also called an autoregressive model
• This is a classification problem we have seen
• But there is still a large number of contexts!

7 / 49



Simplification 1: sentence to tokens
Solve a smaller problem: model probability of each token

Decompose the joint probability using the probability chain rule:

p(x) = p(x1, . . . , xn)

= p(x1)p(x2 | x1)p(x3 | x1, x2) . . . p(xn | x1, . . . , xn−1)

(Doesn’t have to go from left to right)
= p(xn)p(xn−1 | xn) . . . p(x1 | x2, . . . , xn)

• Problem reduced to modeling conditional token probabilities
the red fox→ jumped
• The left-to-right decomposition is also called an autoregressive model

• This is a classification problem we have seen
• But there is still a large number of contexts!

7 / 49



Simplification 1: sentence to tokens
Solve a smaller problem: model probability of each token

Decompose the joint probability using the probability chain rule:

p(x) = p(x1, . . . , xn)

= p(x1)p(x2 | x1)p(x3 | x1, x2) . . . p(xn | x1, . . . , xn−1)

(Doesn’t have to go from left to right)
= p(xn)p(xn−1 | xn) . . . p(x1 | x2, . . . , xn)

• Problem reduced to modeling conditional token probabilities
the red fox→ jumped
• The left-to-right decomposition is also called an autoregressive model
• This is a classification problem we have seen

• But there is still a large number of contexts!

7 / 49



Simplification 1: sentence to tokens
Solve a smaller problem: model probability of each token

Decompose the joint probability using the probability chain rule:

p(x) = p(x1, . . . , xn)

= p(x1)p(x2 | x1)p(x3 | x1, x2) . . . p(xn | x1, . . . , xn−1)

(Doesn’t have to go from left to right)
= p(xn)p(xn−1 | xn) . . . p(x1 | x2, . . . , xn)

• Problem reduced to modeling conditional token probabilities
the red fox→ jumped
• The left-to-right decomposition is also called an autoregressive model
• This is a classification problem we have seen
• But there is still a large number of contexts!

7 / 49



Simplification 2: limited context

Reduce dependence on context by the Markov assumption:
• First-order Markov model

p(xi | x1, . . . , xi−1) = p(xi | xi−1)

p(x) =
n∏

i=1

p(xi | xi−1)

• Number of contexts?

|V|
• Number of parameters? |V|2

8 / 49



Simplification 2: limited context

Reduce dependence on context by the Markov assumption:
• First-order Markov model

p(xi | x1, . . . , xi−1) = p(xi | xi−1)

p(x) =
n∏

i=1

p(xi | xi−1)

• Number of contexts? |V|
• Number of parameters?

|V|2

8 / 49



Simplification 2: limited context

Reduce dependence on context by the Markov assumption:
• First-order Markov model

p(xi | x1, . . . , xi−1) = p(xi | xi−1)

p(x) =
n∏

i=1

p(xi | xi−1)

• Number of contexts? |V|
• Number of parameters? |V|2

8 / 49



Model sequences of variable lengths

Assume each sequence starts with a special start symbol: x0 = ∗.

Assume that all sequences end with a stop symbol STOP, e.g.

p(the, fox, jumped, STOP)
= p(the | ∗)p(fox | the)p(jumped | fox)p(STOP | jumped)

What if we don’t have the stop symbol?
• Which one is larger: p(the fox) or p(the fox jumped)?

9 / 49



Model sequences of variable lengths

Assume each sequence starts with a special start symbol: x0 = ∗.

Assume that all sequences end with a stop symbol STOP, e.g.

p(the, fox, jumped, STOP)
= p(the | ∗)p(fox | the)p(jumped | fox)p(STOP | jumped)

What if we don’t have the stop symbol?
• Which one is larger: p(the fox) or p(the fox jumped)?

9 / 49



N-gram LM
• Unigram language model (no context):

p(x1, . . . , xn) =
n∏

i=1

p(xi ) .

• Bigram language model (x0 = ∗):

p(x1, . . . , xn) =
n∏

i=1

p(xi | xi−1) .

• n-gram language model:

p(x1, . . . , xm) =
m∏
i=1

p(xi | xi−n+1, . . . , xi−1︸ ︷︷ ︸
previous n − 1 words

) .

10 / 49



Parameter estimation

Maximum likelihood estimation over a corpus (a set of sentences):
• Unigram LM

pMLE(x) =
count(w)∑

w∈V count(w)

• Bigram LM

pMLE(w | w ′) =
count(w ,w ′)∑

w∈V count(w ,w ′)

• In general, for n-gram LM,

pMLE(w | c) =
count(w , c)∑

w∈V count(w , c)

where c ∈ Vn−1.

11 / 49



Example

• Training corpus (after tokenization)
{The fox is red, The red fox jumped, I saw a red fox}

• Collect counts
count(fox) = 3
count(red) = 3
count(red, fox) = 2
. . .

• Parameter estimates
p̂(red | fox) =

2/3
p̂(saw | i) = 1/1

• What is the probability of “The fox saw I jumped”? Zero probability on
unseen n-grams

12 / 49



Example

• Training corpus (after tokenization)
{The fox is red, The red fox jumped, I saw a red fox}

• Collect counts
count(fox) = 3
count(red) = 3
count(red, fox) = 2
. . .

• Parameter estimates
p̂(red | fox) = 2/3
p̂(saw | i) =

1/1

• What is the probability of “The fox saw I jumped”? Zero probability on
unseen n-grams

12 / 49



Example

• Training corpus (after tokenization)
{The fox is red, The red fox jumped, I saw a red fox}

• Collect counts
count(fox) = 3
count(red) = 3
count(red, fox) = 2
. . .

• Parameter estimates
p̂(red | fox) = 2/3
p̂(saw | i) = 1/1

• What is the probability of “The fox saw I jumped”? Zero probability on
unseen n-grams

12 / 49



Example

• Training corpus (after tokenization)
{The fox is red, The red fox jumped, I saw a red fox}

• Collect counts
count(fox) = 3
count(red) = 3
count(red, fox) = 2
. . .

• Parameter estimates
p̂(red | fox) = 2/3
p̂(saw | i) = 1/1

• What is the probability of “The fox saw I jumped”?

Zero probability on
unseen n-grams

12 / 49



Example

• Training corpus (after tokenization)
{The fox is red, The red fox jumped, I saw a red fox}

• Collect counts
count(fox) = 3
count(red) = 3
count(red, fox) = 2
. . .

• Parameter estimates
p̂(red | fox) = 2/3
p̂(saw | i) = 1/1

• What is the probability of “The fox saw I jumped”? Zero probability on
unseen n-grams

12 / 49



Generating text from an n-gram model
1. Initial condition: context = ∗
2. Iterate until next word is STOP:

2.1 next word ∼ p(· | context[: −(n − 1)])
2.2 context← context + next word

What is the training data?

13 / 49



Generating text from an n-gram model
1. Initial condition: context = ∗
2. Iterate until next word is STOP:

2.1 next word ∼ p(· | context[: −(n − 1)])
2.2 context← context + next word

What is the training data?
13 / 49



Perplexity

What is the loss function for learning language models?

Held-out likelihood on test data D (negative test loss):

ℓ(D) =

|D|∑
i=1

log pθ(xi | x1:i−1) ,

Perplexity:
PPL(D) = 2

− ℓ(D)
|D| .

• Base of log and exponentiation should match
• Exponent is cross entropy: H(pdata, pθ) = −Ex∼pdata log pθ(x).
• Interpretation: a model of perplexity k predicts the next word by throwing a fair
k-sided die.

14 / 49



Perplexity

What is the loss function for learning language models?

Held-out likelihood on test data D (negative test loss):

ℓ(D) =

|D|∑
i=1

log pθ(xi | x1:i−1) ,

Perplexity:
PPL(D) = 2

− ℓ(D)
|D| .

• Base of log and exponentiation should match
• Exponent is cross entropy: H(pdata, pθ) = −Ex∼pdata log pθ(x).
• Interpretation: a model of perplexity k predicts the next word by throwing a fair
k-sided die.

14 / 49



Perplexity

What is the loss function for learning language models?

Held-out likelihood on test data D (negative test loss):

ℓ(D) =

|D|∑
i=1

log pθ(xi | x1:i−1) ,

Perplexity:
PPL(D) = 2

− ℓ(D)
|D| .

• Base of log and exponentiation should match
• Exponent is cross entropy: H(pdata, pθ) = −Ex∼pdata log pθ(x).
• Interpretation: a model of perplexity k predicts the next word by throwing a fair

k-sided die.

14 / 49



Summary

Language models: assign probabilities to sentences

N-gram language models:
• Assume each word only conditions on the previous n − 1 words
• MLE estimate: counting n-grams in the training corpus

Evaluation by held-out perplexity: how much probability mass does the model
assign to unseen text

Challenges:
• Generalization: sentences containing unseen n-grams have zero probability
• Much research in n-gram LM is dedicated to smoothing methods that allocate

probability mass to unseen n-grams

15 / 49



Summary

Language models: assign probabilities to sentences

N-gram language models:
• Assume each word only conditions on the previous n − 1 words
• MLE estimate: counting n-grams in the training corpus

Evaluation by held-out perplexity: how much probability mass does the model
assign to unseen text

Challenges:
• Generalization: sentences containing unseen n-grams have zero probability
• Much research in n-gram LM is dedicated to smoothing methods that allocate

probability mass to unseen n-grams

15 / 49



Summary

Language models: assign probabilities to sentences

N-gram language models:
• Assume each word only conditions on the previous n − 1 words
• MLE estimate: counting n-grams in the training corpus

Evaluation by held-out perplexity: how much probability mass does the model
assign to unseen text

Challenges:
• Generalization: sentences containing unseen n-grams have zero probability
• Much research in n-gram LM is dedicated to smoothing methods that allocate

probability mass to unseen n-grams

15 / 49



Summary

Language models: assign probabilities to sentences

N-gram language models:
• Assume each word only conditions on the previous n − 1 words
• MLE estimate: counting n-grams in the training corpus

Evaluation by held-out perplexity: how much probability mass does the model
assign to unseen text

Challenges:
• Generalization: sentences containing unseen n-grams have zero probability
• Much research in n-gram LM is dedicated to smoothing methods that allocate

probability mass to unseen n-grams

15 / 49



Neural language models
Neural networks solve the generalization problem in n-gram LMs.

Decoder

START the brown fox jumped

the brown fox jumped END

• A decoder-only autoregressive neural language model
• Decoder can be an RNN or a transformer (with causal masking)
• What’s the context size?

16 / 49



Early efforts on scaling neural language models

Figure: From Exploring the Limits of Language Modeling

Significant improvement in held-out perplexity given similar model sizes (∼1B)
17 / 49

https://arxiv.org/pdf/1602.02410.pdf


Improvement from neural language models

Figure: From Exploring the Limits of Language Modeling

LSTM vs KN5: improved perplexity on tail words

18 / 49

https://arxiv.org/pdf/1602.02410.pdf


Table of Contents

N-gram language models

Large pretrained language models

Scaling Laws

19 / 49



Recap: language modeling as pretraining

What can we do with a very large language model?

• The cats that are raised by my sister sleeping. syntax

• Jane is happy that John invited friends to his birthday party. coreference

• is the capital of Tanzania. knowledge

• The boy is because he lost his keys. commonsense

• John took 100 bucks to Vegas. He won 50 and then lost 100. Now he only has
to go home. numerical reasoning

Predicting the next word entails many natural language understanding tasks

20 / 49



Recap: Zero-shot behaviors from GPT

Key insight: if the model has learned to understand language through predicting
next words, it should be able to perform these tasks without finetuning

Heuristics for zero-shot prediction:
• Sentiment classification: [example] + very +
{positive, negative} prompting

• Linguistic acceptability: thresholding on log
probabilities

• Multiple choice: predicting the answer with
the highest log probabilities

Learning dynamics: zero-shot performance
increases during pretraining

21 / 49



Recap: Zero-shot behaviors from GPT

Key insight: if the model has learned to understand language through predicting
next words, it should be able to perform these tasks without finetuning

Heuristics for zero-shot prediction:
• Sentiment classification: [example] + very +
{positive, negative} prompting
• Linguistic acceptability: thresholding on log

probabilities
• Multiple choice: predicting the answer with

the highest log probabilities
Learning dynamics: zero-shot performance
increases during pretraining

21 / 49



GPT-2: going beyond finetuning

Language Models are Unsupervised Multitask Learners [Radford et al., 2019]

• Supervised learning: models must be trained (finetuned) on a curated task
dataset.
• They fail to generalize to out-of-distribution data (adversarial examples,

robustness issues etc.)
• A generalist model must be trained on many tasks—but how do we get the

datasets?
• Hypothesis: a (large enough) LM should be able to infer and learn tasks

demonstrated in natural language, effectively performing unsupervised
multitask learning

22 / 49

https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf


GPT-2 details

• Similar to GPT-1 but scaled up (1.5B parameters)
• Data (WebText): ∼40GB of web pages scraped from the internet that was

curated to include high-quality text
• Tokenization: BPE over byte sequences for universal text processing.
• Small base vocabulary (256)
• Can process any text data regardless of pre-processing, tokenization, or

vocab size.
• Larger context size (1024 tokens)

23 / 49



Zero-shot performance: cloze test

Larger models quickly closes the gap with human performance

24 / 49



Zero-shot performance: generative QA

25 / 49



Zero-shot performance: summarization

• Challenge: not a “native” LM task
• Induce the task: [document] + [TL;DR]
• Not much better than copying 3 random sentences from the document
• Key question in the zero-shot paradigm: how do we tell the model what the

intended task is?

26 / 49



Zero-shot performance: machine translation

• Induce the task through a demonstration example:

translation ∼ p(· | [french sentence] = [english sentence]; [french sentence] =)

• WMT-14 French-English test set: 11.5 BLEU (worse than unsupervised MT)
• But, there’s only 10MB french data in the 40GB training data!
• Typical unsupervised MT methods require crosslingual embeddings or

monolingual corpora

27 / 49



Has the model memorized everything?

Is there data contamination (test data in training set)?

• Approach: check percentage of 8-grams that occur in both training and test data
(using Bloom filters)

• Overlap is not higher than existing overlap on train and test in datasets

• Overlap between test and WebText: 3.2%
• Overlap between test and their own training split: 5.9%

• Model performance does get better when the test data is in pretraining

• E.g., on CoQA, 3 F1 better on leaked documents

• Verifying data contamination is an active research area!

28 / 49



Has the model memorized everything?

Is there data contamination (test data in training set)?

• Approach: check percentage of 8-grams that occur in both training and test data
(using Bloom filters)
• Overlap is not higher than existing overlap on train and test in datasets

• Overlap between test and WebText: 3.2%
• Overlap between test and their own training split: 5.9%

• Model performance does get better when the test data is in pretraining

• E.g., on CoQA, 3 F1 better on leaked documents

• Verifying data contamination is an active research area!

28 / 49



Has the model memorized everything?

Is there data contamination (test data in training set)?

• Approach: check percentage of 8-grams that occur in both training and test data
(using Bloom filters)
• Overlap is not higher than existing overlap on train and test in datasets
• Overlap between test and WebText: 3.2%

• Overlap between test and their own training split: 5.9%
• Model performance does get better when the test data is in pretraining

• E.g., on CoQA, 3 F1 better on leaked documents

• Verifying data contamination is an active research area!

28 / 49



Has the model memorized everything?

Is there data contamination (test data in training set)?

• Approach: check percentage of 8-grams that occur in both training and test data
(using Bloom filters)
• Overlap is not higher than existing overlap on train and test in datasets
• Overlap between test and WebText: 3.2%
• Overlap between test and their own training split: 5.9%

• Model performance does get better when the test data is in pretraining

• E.g., on CoQA, 3 F1 better on leaked documents

• Verifying data contamination is an active research area!

28 / 49



Has the model memorized everything?

Is there data contamination (test data in training set)?

• Approach: check percentage of 8-grams that occur in both training and test data
(using Bloom filters)
• Overlap is not higher than existing overlap on train and test in datasets
• Overlap between test and WebText: 3.2%
• Overlap between test and their own training split: 5.9%

• Model performance does get better when the test data is in pretraining

• E.g., on CoQA, 3 F1 better on leaked documents
• Verifying data contamination is an active research area!

28 / 49



Has the model memorized everything?

Is there data contamination (test data in training set)?

• Approach: check percentage of 8-grams that occur in both training and test data
(using Bloom filters)
• Overlap is not higher than existing overlap on train and test in datasets
• Overlap between test and WebText: 3.2%
• Overlap between test and their own training split: 5.9%

• Model performance does get better when the test data is in pretraining
• E.g., on CoQA, 3 F1 better on leaked documents

• Verifying data contamination is an active research area!

28 / 49



Has the model memorized everything?

Is there data contamination (test data in training set)?

• Approach: check percentage of 8-grams that occur in both training and test data
(using Bloom filters)
• Overlap is not higher than existing overlap on train and test in datasets
• Overlap between test and WebText: 3.2%
• Overlap between test and their own training split: 5.9%

• Model performance does get better when the test data is in pretraining
• E.g., on CoQA, 3 F1 better on leaked documents

• Verifying data contamination is an active research area!

28 / 49



Has the model memorized everything?
Test the model on novel tasks:

29 / 49



GPT-3: scaling up
• GPT-2 shows promise for zero-shot learning, but performance is still unsatisfying
• GPT-3 scales up model size, data size and diversity, and number of training steps
• Notable improvement in zero-shot and few-shot performance
• Inducing a task through natural language task descriptions

30 / 49



What does scaling mean?

Figure: From Jason Wei’s slides

31 / 49



Training data

Key challenge: data quality control

• Filter CommonCrawl based on similarity to high-quality reference corpora
• Fuzzy deduplication: avoid redundancy and data contamination
• Mix in known high quality data
• Upsampling high quality data during training

32 / 49



Evaluation settings

33 / 49



Results: natural language understanding

Comparable to supervised results
34 / 49



Results: few-shot machine translation

• Pretraining data: 93% English, 7% other languages
• Zero-shot is still worse than unsupervised MT
• But even giving one examples significantly boosts the result (+7 BLEU points)
• Results much better when translation into English
• Also see [Briakou et al., 2023] for the impact of bilingual data on MT performance

35 / 49

https://arxiv.org/pdf/2305.10266.pdf


Results: arithmetic

• ”Emergent” ability at certain model scale
• Not systemic: works better on frequent numbers [Razeghi et al., 2022]

36 / 49

https://arxiv.org/abs/2202.07206


Results: generation

Generated text is hard to detect from human-written text

37 / 49



Analysis: data contamination

• Overlap can be large (e.g., many reading comprehension articles come from
wikipedia)
• Result on clean part of the benchmark doesn’t change much

38 / 49



Summary

• Premise: a perfect language model on all human-written text can do all
text-based tasks
• What about unwritten knowledge?

• New behaviors that are not written in the training objective emerge (e.g.,
in-context learning)
• Open questions:
• How much are they memorizing vs generalizing?
• How do new abilities emerge?
• How to mitigate harmful, toxic, biased responses?

39 / 49



Table of Contents

N-gram language models

Large pretrained language models

Scaling Laws

40 / 49



Motivation

• We have seen larger language models trained on more data consistently give
better performance.

• Can we be more precise about how scaling affect performance?

• Any other factors affecting scaling (architecture, task, etc.)?

• Can we predict performance of larger models from smaller models?

41 / 49



Scaling data drives down error

Figure: [Hestness et al., 2017]

L = BD−b + E (1)

L: loss; B: data-dependent constant; D: data size; E: irreducible error
42 / 49

https://arxiv.org/abs/1712.00409


Fit empirical learning curve

(a) language modeling (b) machine translation

• Scaling law shows up in different domains
• Prior theory on generalization bounds suggests exponent=0.5 or 1, but

empirically it’s much smaller (lots of room for improvement)
43 / 49



Model data joint scaling

Figure: [Rosenfeld et al., 2019]

• Fixing data size, scaling model size decreases error initially, but then saturates
(bottlenecked by data)
• Functional form:

L = AM−a + BD−b + E
44 / 49

https://arxiv.org/pdf/1909.12673


Model data joint scaling

Figure: [Kaplan et al., 2020]

• Larger data is bottlenecked by small models
• Functional form:

L = (AM−a/b + BD−1)b

45 / 49

https://arxiv.org/pdf/2001.08361


How should we trade off model vs data?

• compute ∝ data x parameter

• Given a target loss, we can minimize compute to get the optimal model data
ratio

• Kaplan et al. suggests D ∝ M0.74: model size should scale faster than data

• Chinchilla law suggests that model size and data should roughly scale at the
same rate

46 / 49



Designing large models using scaling law

LSTMs or Transformers?

Figure: [Kaplan et al., 2020]

47 / 49

https://arxiv.org/pdf/2001.08361


Designing large models using scaling law

Depth vs width

Figure: [Kaplan et al., 2020]

48 / 49

https://arxiv.org/pdf/2001.08361


Takeaways

• The main inputs to deep learning systems are data and compute.

• Scaling the two inputs reliably increases performance

• Scaling laws exist and capture the relationship between compute and
performance

• Scaling law allows you to design models (architecture, optimizer etc.) at smaller
scale then extrapolate the design to a larger scale

• You should also look at scaling behavior of your method

49 / 49


	N-gram language models
	Large pretrained language models
	Scaling Laws

