
Pretraining and Finetuning (continued)

He He

October 16, 2024

1 / 33



Plan for today

• Subword tokenization
• Efficient pre-training
• Parameter efficient finetuning

2 / 33



Table of Contents

Tokenization

Efficient pretraining

Efficient finetuning

3 / 33



Tokenization

Goal: represent input string as a sequence of (meaningful) symbols

Approach so far: splitting string into “words”

Challenges:
• What about words unseen in training?

• Use UNK (limitations?)
• We can guess word meaning based on its form, e.g., degrade→

degradation
• What about non-English languages? (Thai, Turkish, Chinese, Java, Lean etc.)

• Take each character as a token (limitations?)
• Very long sequences; model needs to learn to compose characters

4 / 33



Tokenization

Goal: represent input string as a sequence of (meaningful) symbols

Approach so far: splitting string into “words”

Challenges:
• What about words unseen in training?
• Use UNK (limitations?)

• We can guess word meaning based on its form, e.g., degrade→
degradation

• What about non-English languages? (Thai, Turkish, Chinese, Java, Lean etc.)
• Take each character as a token (limitations?)
• Very long sequences; model needs to learn to compose characters

4 / 33



Tokenization

Goal: represent input string as a sequence of (meaningful) symbols

Approach so far: splitting string into “words”

Challenges:
• What about words unseen in training?
• Use UNK (limitations?)
• We can guess word meaning based on its form, e.g., degrade→

degradation

• What about non-English languages? (Thai, Turkish, Chinese, Java, Lean etc.)
• Take each character as a token (limitations?)
• Very long sequences; model needs to learn to compose characters

4 / 33



Tokenization

Goal: represent input string as a sequence of (meaningful) symbols

Approach so far: splitting string into “words”

Challenges:
• What about words unseen in training?
• Use UNK (limitations?)
• We can guess word meaning based on its form, e.g., degrade→

degradation
• What about non-English languages? (Thai, Turkish, Chinese, Java, Lean etc.)
• Take each character as a token (limitations?)

• Very long sequences; model needs to learn to compose characters

4 / 33



Tokenization

Goal: represent input string as a sequence of (meaningful) symbols

Approach so far: splitting string into “words”

Challenges:
• What about words unseen in training?
• Use UNK (limitations?)
• We can guess word meaning based on its form, e.g., degrade→

degradation
• What about non-English languages? (Thai, Turkish, Chinese, Java, Lean etc.)
• Take each character as a token (limitations?)
• Very long sequences; model needs to learn to compose characters

4 / 33



Subword tokenization: byte pair encoding

What is a “token”?
• A sequence of characters that carries some meaning and re-occurs in a corpora
• Can we find these character units based on their frequency?

BPE tokenization: A middle ground between ”words” and ”characters”
• Origin: a compression algorithm that iteratively replace the most common

character sequences by a single symbol
• Output: compressed text + a look-up table

• Start with individual characters (or bytes) as tokens
• Count the frequency of every consecutive pair of tokens
• Merge the most frequent pair of tokens and treat them as a single token
• Update the text with the new token and repeat the process

5 / 33



Subword tokenization: byte pair encoding

What is a “token”?
• A sequence of characters that carries some meaning and re-occurs in a corpora
• Can we find these character units based on their frequency?

BPE tokenization: A middle ground between ”words” and ”characters”
• Origin: a compression algorithm that iteratively replace the most common

character sequences by a single symbol
• Output: compressed text + a look-up table

• Start with individual characters (or bytes) as tokens
• Count the frequency of every consecutive pair of tokens
• Merge the most frequent pair of tokens and treat them as a single token
• Update the text with the new token and repeat the process

5 / 33



BPE Example (Step-by-Step)
Initial Sequence:
• Words: banana, band, ban
• Initial tokenization:
• b a n a n a
• b a n d
• b a n

Step 1: Count Pairs
• Most frequent pair: a n

Step 2: Merge
• New token: an
• Updated tokenization:

• b an an a
• b an d
• b an

6 / 33



BPE Example (Step-by-Step)
Initial Sequence:
• Words: banana, band, ban
• Initial tokenization:
• b a n a n a
• b a n d
• b a n

Step 1: Count Pairs
• Most frequent pair: a n

Step 2: Merge
• New token: an
• Updated tokenization:

• b an an a
• b an d
• b an

6 / 33



BPE Example (Step-by-Step)
Initial Sequence:
• Words: banana, band, ban
• Initial tokenization:
• b a n a n a
• b a n d
• b a n

Step 1: Count Pairs
• Most frequent pair: a n

Step 2: Merge
• New token: an
• Updated tokenization:
• b an an a
• b an d
• b an

6 / 33



BPE Example (Step-by-Step)

Step 3: Count Pairs Again
• Updated tokenization:
• b an an a
• b an d
• b an

• Most frequent pair: b an

Step 4: Merge
• New token: ban
• Updated tokenization:
• ban an a
• ban d
• ban

7 / 33



BPE: practicalities

• Repeat the process until the desired number of merges or vocabulary size is
reached (a hyperparameter to decide).

• Typically vocabulary sizes are 32-64K

• Break ties deterministically, e.g., lexicographical order, occurrence in the corpus
etc.

• Use bytes as the initial tokens (adopted by GPT-2)

8 / 33



Table of Contents

Tokenization

Efficient pretraining

Efficient finetuning

9 / 33



Overview

Approaches to speed up pretraining

• Reduce model size

• Design more sample-efficient learning objectives

• Improve efficiency of self-attention

• Improve system-level efficiency

10 / 33



Overview

Approaches to speed up pretraining

• Reduce model size

• Design more sample-efficient learning objectives

• Improve efficiency of self-attention

• Improve system-level efficiency

10 / 33



Approach 1: Reduce model size

Idea 1: reduce the number of parameters

ALBERT (a lite BERT) [Lan et al., 2020]

• Factorization:
• Recall that in Transformer, we first need to map the one-hot encoding (of

size V ) of a token to Q, K, V embeddings (of size H)
• The number of parameters is V × H
• We can instead first map it to a lower-dim space (of size E ) so that the

number of params is V × E + E × H

11 / 33

https://arxiv.org/abs/1909.11942


Approach 1: Reduce model size

Idea 1: reduce the number of parameters

ALBERT (a lite BERT) [Lan et al., 2020]

• Parameter sharing:
• Share feedforward network weights across layers
• Share self-attention weights across layers
• ALBERT: share all params across layers

11 / 33

https://arxiv.org/abs/1909.11942


Approach 1: Reduce model size

Idea 2: reduce interaction among parameters (sparse/modular architectures)

DEMix [Gururangan et al., 2022]

• Replace the FFN layer with an ensemble of n
experts
• Route examples to experts corresponding to

its domain determinstically

FFN(h) =
n∑

i=1

I[x ∈ domain i ]FFNi (x)

• Only a subset of params are active for each
example/batch

12 / 33

https://aclanthology.org/2022.naacl-main.407.pdf


Approach 1: Reduce model size
Idea 2: reduce interaction among parameters (sparse/modular architectures)

Branch-Train-Merge [Li et al., 2022]

• Train domain experts in parallel and ensemble them (or take weighted average
of their parameters)
• Reduce synchronization among GPUs at the cost of increased model size
• Easy to expand/remove domain experts

13 / 33

https://arxiv.org/pdf/2208.03306.pdf


Approach 2: design sample-efficient learning objectives

ALBERT: Inter-sentence coherence loss
• Motivation: the next sentence prediction task is too easy
• Design hard negative examples
• Input: take two consecutive sentences, swap their order randomly
• Output: predict if they are in natural order

I went home. SEP I slept. +1
I slept. SEP I went home. -1

• Model needs to learn temporal order of events (commonsense, causality etc.)

14 / 33



Approach 2: design sample-efficient learning objectives

ELECTRA [Clark et al., 2020]: discriminate from true vs guessed tokens

• First train the generator for n steps using the MLM objective.
• Freeze generator weights. Train the discriminator using the sequence

classification objective. Keep discriminator for finetuning.
• Comparison with MLM: predict at every position; hard negative examples.

15 / 33

https://arxiv.org/abs/2003.10555


Approach 2: design sample-efficient learning objectives
ELECTRA result:

Figure: Finetuning result on the GLUE benchmark

• Larger improvement at smaller model sizes
• Faster training
• An effective approach if you don’t have large compute for pretraining

16 / 33



Approach 3: alternatives to self-attention
Transformer recap

Figure: From The Illustrated
Transformer

Which components require matrix multiplication?

• Self-attention
• Q,K,V projection
• Scaled dot-product attention

• Feed-forward layer

17 / 33

https://jalammar.github.io/illustrated-transformer
https://jalammar.github.io/illustrated-transformer


Approach 3: alternatives to self-attention
Transformer recap

Figure: From The Illustrated
Transformer

Which components require matrix multiplication?
• Self-attention
• Q,K,V projection
• Scaled dot-product attention

• Feed-forward layer

17 / 33

https://jalammar.github.io/illustrated-transformer
https://jalammar.github.io/illustrated-transformer


Compute cost of transformers

Q, K, V projection:

n × de n × d
linear

O(n × de × d)

Scaled dot-product attention:

n × d

d × n

n × n
matmul

O(d × n2)

18 / 33



Compute cost of transformers

Q, K, V projection:

n × de n × d
linear

O(n × de × d)

Scaled dot-product attention:

n × d

d × n

n × n
matmul

O(d × n2)

18 / 33



Compute cost of transformers

Feed-forward layer (GPT-2):

n × d n × dh
linear+ReLU

n × d
linear+ReLU

O(n × d × dh)

• Two-layer FFN
• dh = 4d (d > 1K ) by default in GPT-2
• Approximately half of the compute time
• Concept check: how to reduce compute in FFN?

19 / 33



Compute cost of transformers

Feed-forward layer (GPT-2):

n × d n × dh
linear+ReLU

n × d
linear+ReLU

O(n × d × dh)

• Two-layer FFN
• dh = 4d (d > 1K ) by default in GPT-2
• Approximately half of the compute time
• Concept check: how to reduce compute in FFN?

19 / 33



Improve efficiency of self-attention (for long sequences)

Key idea: reduce the O(n2) time and memory cost
• Sparsify the attention matrix

• Deterministic mask
• Data-dependent mask (Reformer [Kitaev et al., 2020])

• Compress the key-value memory
• Low-rank projection

20 / 33

https://arxiv.org/pdf/2001.04451.pdf


Improve efficiency of self-attention (for long sequences)

Key idea: reduce the O(n2) time and memory cost
• Sparsify the attention matrix
• Deterministic mask
• Data-dependent mask (Reformer [Kitaev et al., 2020])

• Compress the key-value memory
• Low-rank projection

20 / 33

https://arxiv.org/pdf/2001.04451.pdf


Sparse attention
Longformer [Beltagy et al., 2020]: attention within a local window

• Sliding window: attending to a local window of size w around each token
O(n × w)

• Dilated sliding window: reaching longer range with a larger window size with gaps
• Global window: full attention on specific tokens, e.g., [CLS] in BERT

• Details: balancing efficiency and performance
• Adding dilation on some heads
• Using small window size on lower layers and larger ones on higher layers

21 / 33

https://arxiv.org/pdf/2004.05150.pdf


Sparse attention
Longformer [Beltagy et al., 2020]: attention within a local window

• Sliding window: attending to a local window of size w around each token
O(n × w)

• Dilated sliding window: reaching longer range with a larger window size with gaps
• Global window: full attention on specific tokens, e.g., [CLS] in BERT
• Details: balancing efficiency and performance
• Adding dilation on some heads
• Using small window size on lower layers and larger ones on higher layers

21 / 33

https://arxiv.org/pdf/2004.05150.pdf


Compress the KV memory
Self-attention is low rank [Wang et al., 2020]

• Left: cumulative eigenvalues of pretrained transformer with n = 512

• Most information in the attention matrix can be recovered by the top 128
eigenvectors

• Right: cumulative eigenvalues of the top 128 eigenvalues across layers

• Higher layers are more low-rank

• Idea: instead of attending to n tokens, attend to k principal components

22 / 33

https://arxiv.org/pdf/2006.04768.pdf


Compress the KV memory
Self-attention is low rank [Wang et al., 2020]

• Left: cumulative eigenvalues of pretrained transformer with n = 512

• Most information in the attention matrix can be recovered by the top 128
eigenvectors

• Right: cumulative eigenvalues of the top 128 eigenvalues across layers

• Higher layers are more low-rank

• Idea: instead of attending to n tokens, attend to k principal components

22 / 33

https://arxiv.org/pdf/2006.04768.pdf


Compress the KV memory
Self-attention is low rank [Wang et al., 2020]

• Left: cumulative eigenvalues of pretrained transformer with n = 512

• Most information in the attention matrix can be recovered by the top 128
eigenvectors

• Right: cumulative eigenvalues of the top 128 eigenvalues across layers

• Higher layers are more low-rank
• Idea: instead of attending to n tokens, attend to k principal components

22 / 33

https://arxiv.org/pdf/2006.04768.pdf


Compress the KV memory
Self-attention is low rank [Wang et al., 2020]

• Left: cumulative eigenvalues of pretrained transformer with n = 512

• Most information in the attention matrix can be recovered by the top 128
eigenvectors

• Right: cumulative eigenvalues of the top 128 eigenvalues across layers
• Higher layers are more low-rank

• Idea: instead of attending to n tokens, attend to k principal components

22 / 33

https://arxiv.org/pdf/2006.04768.pdf


Compress the KV memory
Self-attention is low rank [Wang et al., 2020]

• Left: cumulative eigenvalues of pretrained transformer with n = 512

• Most information in the attention matrix can be recovered by the top 128
eigenvectors

• Right: cumulative eigenvalues of the top 128 eigenvalues across layers
• Higher layers are more low-rank

• Idea: instead of attending to n tokens, attend to k principal components

22 / 33

https://arxiv.org/pdf/2006.04768.pdf


Summarize the KV memory

Linformer [Wang et al., 2020]: compute self-attention in a lower dimension

• Reduce dimensionality of the “memory”: Map K, V from
n × d to k × d

• Attend to the lower-dimensional memory:
softmax

(
Qn×dK

T
k×d/

√
d
)

• What’s the dimension of the attention matrix?
• What’s the dimension of the self-attention output?

• Computation cost: O(dnk) (linear in n)
• Downside of uisng Linformer as a decoder?

• Unclear how to mask: past and future are mixed

23 / 33

https://arxiv.org/pdf/2006.04768.pdf


Summarize the KV memory

Linformer [Wang et al., 2020]: compute self-attention in a lower dimension

• Reduce dimensionality of the “memory”: Map K, V from
n × d to k × d

• Attend to the lower-dimensional memory:
softmax

(
Qn×dK

T
k×d/

√
d
)

• What’s the dimension of the attention matrix?
• What’s the dimension of the self-attention output?

• Computation cost: O(dnk) (linear in n)
• Downside of uisng Linformer as a decoder?

• Unclear how to mask: past and future are mixed

23 / 33

https://arxiv.org/pdf/2006.04768.pdf


Summarize the KV memory

Linformer [Wang et al., 2020]: compute self-attention in a lower dimension

• Reduce dimensionality of the “memory”: Map K, V from
n × d to k × d

• Attend to the lower-dimensional memory:
softmax

(
Qn×dK

T
k×d/

√
d
)

• What’s the dimension of the attention matrix?

• What’s the dimension of the self-attention output?
• Computation cost: O(dnk) (linear in n)
• Downside of uisng Linformer as a decoder?

• Unclear how to mask: past and future are mixed

23 / 33

https://arxiv.org/pdf/2006.04768.pdf


Summarize the KV memory

Linformer [Wang et al., 2020]: compute self-attention in a lower dimension

• Reduce dimensionality of the “memory”: Map K, V from
n × d to k × d

• Attend to the lower-dimensional memory:
softmax

(
Qn×dK

T
k×d/

√
d
)

• What’s the dimension of the attention matrix?
• What’s the dimension of the self-attention output?

• Computation cost: O(dnk) (linear in n)
• Downside of uisng Linformer as a decoder?

• Unclear how to mask: past and future are mixed

23 / 33

https://arxiv.org/pdf/2006.04768.pdf


Summarize the KV memory

Linformer [Wang et al., 2020]: compute self-attention in a lower dimension

• Reduce dimensionality of the “memory”: Map K, V from
n × d to k × d

• Attend to the lower-dimensional memory:
softmax

(
Qn×dK

T
k×d/

√
d
)

• What’s the dimension of the attention matrix?
• What’s the dimension of the self-attention output?

• Computation cost: O(dnk) (linear in n)

• Downside of uisng Linformer as a decoder?

• Unclear how to mask: past and future are mixed

23 / 33

https://arxiv.org/pdf/2006.04768.pdf


Summarize the KV memory

Linformer [Wang et al., 2020]: compute self-attention in a lower dimension

• Reduce dimensionality of the “memory”: Map K, V from
n × d to k × d

• Attend to the lower-dimensional memory:
softmax

(
Qn×dK

T
k×d/

√
d
)

• What’s the dimension of the attention matrix?
• What’s the dimension of the self-attention output?

• Computation cost: O(dnk) (linear in n)
• Downside of uisng Linformer as a decoder?

• Unclear how to mask: past and future are mixed

23 / 33

https://arxiv.org/pdf/2006.04768.pdf


Summarize the KV memory

Linformer [Wang et al., 2020]: compute self-attention in a lower dimension

• Reduce dimensionality of the “memory”: Map K, V from
n × d to k × d

• Attend to the lower-dimensional memory:
softmax

(
Qn×dK

T
k×d/

√
d
)

• What’s the dimension of the attention matrix?
• What’s the dimension of the self-attention output?

• Computation cost: O(dnk) (linear in n)
• Downside of uisng Linformer as a decoder?
• Unclear how to mask: past and future are mixed

23 / 33

https://arxiv.org/pdf/2006.04768.pdf


Summary on efficient self-attention

Improve the quadratic time and space complexity of self-attention
• Sparsify the attention matrix
• Compress the KV memory

Bad news: Most techniques are not widely used in large pretrained models now.
Why?
• Improvement in time/space complexity doesn’t always translate to real

time/space savings
• These techniques often breaks structure and sacrifice the batching ability on

GPUs
• Only see improvement on very long sequences

24 / 33



Summary on efficient self-attention

Improve the quadratic time and space complexity of self-attention
• Sparsify the attention matrix
• Compress the KV memory

Bad news: Most techniques are not widely used in large pretrained models now.
Why?
• Improvement in time/space complexity doesn’t always translate to real

time/space savings
• These techniques often breaks structure and sacrifice the batching ability on

GPUs
• Only see improvement on very long sequences

24 / 33



Approach 4: system-level approaches
• Operates at a lower abstraction level
• Often brings more direct impact on efficiency
• Example:
• Gradient accumulation
• Model and data parallelism (e.g., deepspeed)
• Flash attention: exploit GPU memory asymmetry

25 / 33



Table of Contents

Tokenization

Efficient pretraining

Efficient finetuning

26 / 33



Improve finetuning efficiency

Problem:
• In NLP, typically all parameters of the pretrained models (e.g., BERT) are

finetuned, which is expensive for large models.
• Saving and loading finetuned models for different tasks is costly.
• Potentially destroy pretrained representations

Can we finetune a smaller number of parameters to achieve performance similar to
full finetuning?
• Select a subset of parameters from the pretrained weights to update
• Add a small number of parameters to adapte the (frozen) pretrained model

27 / 33



Improve finetuning efficiency

Problem:
• In NLP, typically all parameters of the pretrained models (e.g., BERT) are

finetuned, which is expensive for large models.
• Saving and loading finetuned models for different tasks is costly.
• Potentially destroy pretrained representations

Can we finetune a smaller number of parameters to achieve performance similar to
full finetuning?

• Select a subset of parameters from the pretrained weights to update
• Add a small number of parameters to adapte the (frozen) pretrained model

27 / 33



Improve finetuning efficiency

Problem:
• In NLP, typically all parameters of the pretrained models (e.g., BERT) are

finetuned, which is expensive for large models.
• Saving and loading finetuned models for different tasks is costly.
• Potentially destroy pretrained representations

Can we finetune a smaller number of parameters to achieve performance similar to
full finetuning?
• Select a subset of parameters from the pretrained weights to update
• Add a small number of parameters to adapte the (frozen) pretrained model

27 / 33



Finetune a subset of parameters
Freezing the first X layers [Lee et al., 2019]

A fourth of the layers need to be fine-tuned to obtain 90% of the performance.
28 / 33

https://arxiv.org/pdf/1911.03090.pdf


Finetune a subset of parameters

BitFit [Ben-Zaken et al., 2022]: only finetune the bias term (0.1% of the parameters)

Amplifying / suppressing certain features?

Bias terms in QKV projection Bias terms in MLP layers

Result: 80.9 (BitFit, 0.08% params) vs 81.8 (full finetuning) on GLUE

29 / 33

https://arxiv.org/pdf/2106.10199.pdf


Adapt the frozen pretrained model

Adapter [Houlsby et al., 2019]: insert small networks to the pretrained model

• Insert learnable ”adapters” in-between layers
• Adapters uses a bottleneck structure to

reduce parameters
• Adapters uses a skip-connection

such that it
can be “reduced” to the original frozen model

Result: less than 0.4% performance drop with 3%
more parameters on GLUE

30 / 33

https://arxiv.org/pdf/1902.00751.pdf


Adapt the frozen pretrained model

Adapter [Houlsby et al., 2019]: insert small networks to the pretrained model

• Insert learnable ”adapters” in-between layers
• Adapters uses a bottleneck structure to

reduce parameters
• Adapters uses a skip-connection such that it

can be “reduced” to the original frozen model
Result: less than 0.4% performance drop with 3%
more parameters on GLUE

30 / 33

https://arxiv.org/pdf/1902.00751.pdf


Adapt the frozen pretrained model

LoRA [Hu et al., 2021]: add low-rank matrices as additional parameters

Hypothesis: weight matrices are low rank

Adapters: For any matrix multiplication h = W0x , we
modify it to

h = W0x +∆Wx = W0x + BAx

• W0 ∈ Rd×k ,B ∈ Rd×r ,A ∈ Rr×k(r ≪ k)

• Initialization: BA = 0

• Can be applied to any weight matrices, e.g., QKV
projection matrices

31 / 33

https://arxiv.org/pdf/2106.09685.pdf


Adapt the frozen pretrained model

Compare LoRA and the original adapters:

• LoRA recovers full finetuning by increasing r

Adapter recovers an MLP model with increasing params

• LoRA has no additional inference cost by setting W0 ←W0 + BA (doesn’t work
for multiple tasks)
Adapter incurs additional inference cost due to the added params

The most widely used efficient finetuning method on very large models (>100B).

32 / 33



Adapt the frozen pretrained model

Compare LoRA and the original adapters:

• LoRA recovers full finetuning by increasing r

Adapter recovers an MLP model with increasing params
• LoRA has no additional inference cost

by setting W0 ←W0 + BA (doesn’t work
for multiple tasks)
Adapter incurs additional inference cost due to the added params

The most widely used efficient finetuning method on very large models (>100B).

32 / 33



Adapt the frozen pretrained model

Compare LoRA and the original adapters:

• LoRA recovers full finetuning by increasing r

Adapter recovers an MLP model with increasing params
• LoRA has no additional inference cost by setting W0 ←W0 + BA (doesn’t work

for multiple tasks)
Adapter incurs additional inference cost due to the added params

The most widely used efficient finetuning method on very large models (>100B).

32 / 33



Summary

Reduce finetuning cost by reducing the number of parameters to update
• Finetune a subset of parameters
• Finetune an additional adapters inserted to the model
• System approach: mixed-precision training (e.g., converting some or all params

to fp16)

Other ways to adapt the model without parameter update: prompting, in-context
learning (later)

33 / 33


	Tokenization
	Efficient pretraining
	Efficient finetuning

