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Plan for today

® Subword tokenization
e Efficient pre-training
® Parameter efficient finetuning
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Tokenization

Goal: represent input string as a sequence of (meaningful) symbols
Approach so far: splitting string into “words”

Challenges:
® What about words unseen in training?
® Use UNK (limitations?)
® \We can guess word meaning based on its form, e.g., degrade —
degradation
® What about non-English languages? (Thai, Turkish, Chinese, Java, Lean etc.)

® Take each character as a token (limitations?)
® Very long sequences; model needs to learn to compose characters
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Subword tokenization: byte pair encoding

What is a “token"?
® Asequence of characters that carries some meaning and re-occurs in a corpora
® Can we find these character units based on their frequency?
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Subword tokenization: byte pair encoding

What is a “token"?
® Asequence of characters that carries some meaning and re-occurs in a corpora
® Can we find these character units based on their frequency?

BPE tokenization: A middle ground between "words” and "characters”

® Origin: a compression algorithm that iteratively replace the most common
character sequences by a single symbol

® Qutput: compressed text + a look-up table

Start with individual characters (or bytes) as tokens

Count the frequency of every consecutive pair of tokens

Merge the most frequent pair of tokens and treat them as a single token

Update the text with the new token and repeat the process
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BPE Example (Step-by-Step)
Initial Sequence:
e Words: banana, band, ban
® |nitial tokenization:

®banana
®band
®ban
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BPE Example (Step-by-Step)
Initial Sequence:
e Words: banana, band, ban
® |nitial tokenization:

®banana
®band
®ban

Step 1: Count Pairs
® Most frequent pair:a n

Step 2: Merge
® New token: an
® Updated tokenization:

® b an an a
® b an d

® b an
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BPE Example (Step-by-Step)

Step 3: Count Pairs Again
® Updated tokenization:

® b an an a
®ban d
® b an

® Most frequent pair: b an

Step 4: Merge
® New token: ban
® Updated tokenization:

® ban an a
® ban d
® ban
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BPE: practicalities

® Repeat the process until the desired number of merges or vocabulary size is
reached (a hyperparameter to decide).

e Typically vocabulary sizes are 32-64K

® Break ties deterministically, e.g., lexicographical order, occurrence in the corpus
etc.

® Use bytes as the initial tokens (adopted by GPT-2)
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Overview

Approaches to speed up pretraining
® Reduce model size
® Design more sample-efficient learning objectives
® Improve efficiency of self-attention

® Improve system-level efficiency
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Approach 1: Reduce model size

Idea 1: reduce the number of parameters

ALBERT (a lite BERT) [Lan et al., 2020]

* Factorization:
® Recall that in Transformer, we first need to map the one-hot encoding (of
size V) of a token to Q, K, V embeddings (of size H)
® The number of parametersis V x H
® We can instead first map it to a lower-dim space (of size £) so that the

number of paramsis V x £+ £ x H
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Approach 1: Reduce model size

Idea 1: reduce the number of parameters

ALBERT (a lite BERT) [Lan et al., 2020]

® Parameter sharing:
® Share feedforward network weights across layers
® Share self-attention weights across layers
® ALBERT: share all params across layers
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Approach 1: Reduce model size

Idea 2: reduce interaction among parameters (sparse/modular architectures)

DEMix [Gururangan et al., 2022]

@O Sk ® Replace the FFN layer with an ensemble of n
/ CDCDECDED experts
~ D SN ~ ® Route examples to experts corresponding to
T ot QLR e its domain determinstically
TS
GULLY L INFERENCE )
| g = s O FFN(h) = Z]I[x € domain /JFFN;(x)
COEnED =
T f &’\ /*] ~ ® Only a subset of params are active for each
i coviD-t9 g Githuo

Xo EED Papers =% eXampIE/batch
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https://aclanthology.org/2022.naacl-main.407.pdf

Approach 1: Reduce model size
Idea 2: reduce interaction among parameters (sparse/modular architectures)

Branch-Train-Merge [Li et al., 2022]

Each GPU has its own copy of the same LM Each GPU has a distinct LM

(a) Fully 2 (b) Embarrassingl
H % arameters y
Synchronized PP Q ;] g] ;] [;'] [ e Parallel Training
Tra"“ng i i i data minibatches
Train one LM on 4 randomly P ? "? ? drawn ﬁo Train k independent LMs

mono-corpus, ! ' | H asswgned domam : : in parallel on one data
= y ] 1 1 1 Il 1 I

synchronizing weights " e T domain each, without
Y g weig unified data corpus . k data domains synchronizing across LMs
across all GPUs

® Train domain experts in parallel and ensemble them (or take weighted average
of their parameters)

e Reduce synchronization among GPUs at the cost of increased model size
® Easy to expand/remove domain experts
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Approach 2: design sample-efficient learning objectives

ALBERT: Inter-sentence coherence loss
® Motivation: the next sentence prediction task is too easy
® Design hard negative examples
® Input: take two consecutive sentences, swap their order randomly

e Qutput: predict if they are in natural order
| went home. SEP|slept. +1
I slept. SEP | went home. -1

® Model needs to learn temporal order of events (commonsense, causality etc.)
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Approach 2: design sample-efficient learning objectives

ELECTRA [Clark et al., 2020]: discriminate from true vs guessed tokens

sample
the —> [MASK] —>| -> the —> —> original
chef — chef —> Gen_erator chef — Discriminator —> original
cooked —> [MASK] —>| (typically a [-> ate —> (ELECTRA) > replaced
the —» the —»| small MLM) the —> > original
meal —> meal —>| meal —> > original

® First train the generator for n steps using the MLM objective.

® Freeze generator weights. Train the discriminator using the sequence
classification objective. Keep discriminator for finetuning.

e Comparison with MLM: predict at every position; hard negative examples.
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https://arxiv.org/abs/2003.10555

Approach 2: design sample-efficient learning objectives

ELECTRA result:
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Figure: Finetuning result on the GLUE benchmark

® Larger improvement at smaller model sizes

® Faster training

® An effective approach if you don't have large compute for pretraining

16/33



Approach 3: alternatives to self-attention

Transformer recap

4 4
C( Add & Normalize )w
i ( Feed Forward ) ( Feed Forward )
R 21 zZ_*
4 __Add & Normalize 4 . . . . . .
; Which components require matrix multiplication?
|, LayerNorm( BEEH + HEE)
gl 7y 7y
H ( Self-Attention )
R e . Resas J
é§ ég
x+ [N PARE S|
Thinking Machines

Figure: From The lllustrated
Transformer
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Approach 3: alternatives to self-attention

Transformer recap

4 4

C( Add & Normalize )\
E ( Feed Forward ) ( Feed Forward )
Ty mmm T
A id & Normalize 4
é :»[ LayerNorm( BEB} + H:H;) ]
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' ( Self-Attention )
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ENCODING é éé
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Figure: From The lllustrated
Transformer

Which components require matrix multiplication?
¢ Self-attention

® Q,K\V projection
® Scaled dot-product attention

e Feed-forward layer
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Compute cost of transformers

Q, K, V projection:

n x de

linear
_—

Scaled dot-product attention:

nxd

matmul
E——

nxn
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Compute cost of transformers

Q, K, V projection:

n x de

linear
_—

Scaled dot-product attention:

nxd

nxd O(n x de x d)
dxn
matmyl nxn O(d x n?)
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Compute cost of transformers

Feed-forward layer (GPT-2):

linear+RelLU
nxd _— nx dp

O(n x d x dp)

® Two-layer FFN

® d, = 4d (d > 1K) by default in GPT-2

e Approximately half of the compute time

® Concept check: how to reduce compute in FFN?
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Compute cost of transformers

Feed-forward layer (GPT-2):

nxd

O(n x d x dp)

Two-layer FFN

dp = 4d (d > 1K) by default in GPT-2

linear+RelLU
_—

n><dh

Approximately half of the compute time

Concept check: how to reduce compute in FFN?

linear+RelLU
_
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Improve efficiency of self-attention (for long sequences)
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https://arxiv.org/pdf/2001.04451.pdf

Improve efficiency of self-attention (for long sequences)

Key idea: reduce the O(n?) time and memory cost
e Sparsify the attention matrix

® Deterministic mask
® Data-dependent mask (Reformer [Kitaev et al., 2020])

® Compress the key-value memory
® | ow-rank projection
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Sparse attention
Longformer [Beltagy et al., 2020]: attention within a local window

’:E:% a En"n un"a e !
e i
IR F < S {SEER
(a) Full n? attention (b) Sliding window attention (c) Dilated sliding window (d) Global+sliding window

e Sliding window: attending to a local window of size w around each token

O(n x w)
e Dilated sliding window: reaching longer range with a larger window size with gaps
e Global window: full attention on specific tokens, e.g., [CLS] in BERT
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https://arxiv.org/pdf/2004.05150.pdf

Sparse attention

Longformer [Beltagy et al., 2020]: attention within a local window

i R

' ; i_r”
i g HEEE.
(a) Full n? attention (b) Sliding window attention (c) Dilated sliding window (d) Global+sliding window

Sliding window: attending to a local window of size w around each token
O(n x w)
Dilated sliding window: reaching longer range with a larger window size with gaps
Global window: full attention on specific tokens, e.g., [CLS] in BERT
Details: balancing efficiency and performance
® Adding dilation on some heads
® Using small window size on lower layers and larger ones on higher layers
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Compress the KV memory
Self-attention is low rank [Wang et al., 2020]

0 12-layers Transformer 24-layers Transformer
g
i 096
5 094
Sos ’
2
207 0.92
5 06 0.90
3 :
g 05 — s — e .33
E —— Wikil03 —— Wiki103

0.40 128 512 0 128 512 012 34567891011

Eigenvalue index Hgenvalue index Head index

® Left: cumulative eigenvalues of pretrained transformer with n = 512
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Compress the KV memory
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® Left: cumulative eigenvalues of pretrained transformer with n = 512
® Most information in the attention matrix can be recovered by the top 128
eigenvectors
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Compress the KV memory
Self-attention is low rank [Wang et al., 2020]
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® Left: cumulative eigenvalues of pretrained transformer with n = 512
® Most information in the attention matrix can be recovered by the top 128
eigenvectors
® Right: cumulative eigenvalues of the top 128 eigenvalues across layers
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Compress the KV memory
Self-attention is low rank [Wang et al., 2020]
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® Left: cumulative eigenvalues of pretrained transformer with n = 512

® Most information in the attention matrix can be recovered by the top 128
eigenvectors

® Right: cumulative eigenvalues of the top 128 eigenvalues across layers
® Higher layers are more low-rank
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Compress the KV memory
Self-attention is low rank [Wang et al., 2020]

Normalized cumulative eigenvalue
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Left: cumulative eigenvalues of pretrained transformer with n = 512
® Most information in the attention matrix can be recovered by the top 128

eigenvectors

Right: cumulative eigenvalues of the top 128 eigenvalues across layers

® Higher layers are more low-rank

Idea: instead of attending to n tokens, attend to k principal components

0.96
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0.90

0.88
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Summarize the KV memory

Linformer [\Wang et al., 2020]: compute self-attention in a lower dimension

e Reduce dimensionality of the “memory”: Map K, V from

nxdtokxd

1
Scaled Dot-Product
Attention e
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Summarize the KV memory

Linformer [\Wang et al., 2020]: compute self-attention in a lower dimension

.

1
Scaled Dot-Product
Attention

1l

1

Projection

Projection

nxdtokxd
e Attend to the lower-dimensional memory:

softmax (andeTxd/\/H)

e Reduce dimensionality of the “memory”: Map K, V from
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Summarize the KV memory

Linformer [\Wang et al., 2020]: compute self-attention in a lower dimension

e Reduce dimensionality of the “memory”: Map K, V from

nxdtokxd

e Attend to the lower-dimensional memory:

e softmax ( Qnxg K/ V)
1l 1 1 e What's the dimension of the attention matrix?

Projection Projection
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Summarize the KV memory

Linformer [\Wang et al., 2020]: compute self-attention in a lower dimension

e Reduce dimensionality of the “memory”: Map K, V from

nxdtokxd

e Attend to the lower-dimensional memory:

e softmax ( Qnxg K/ V)
1l 1 1 e What's the dimension of the attention matrix?

Wafzston | || Bzt ® What's the dimension of the self-attention output?
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Summarize the KV memory

Linformer [\Wang et al., 2020]: compute self-attention in a lower dimension

e Reduce dimensionality of the “memory”: Map K, V from
nxdtokxd

B e Attend to the lower-dimensional memory:
Scaled Dot-Product / softmax <and Kk-l;d / ﬂ)

Attention <

® \What's the dimension of the attention matrix?

I 4
| Pmmfm H e |1 ® What's the dimension of the self-attention output?

e Computation cost: O(dnk) (linear in n)
Linear ] Linear ] [ Linear 1
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Summarize the KV memory

Linformer [\Wang et al., 2020]: compute self-attention in a lower dimension

e Reduce dimensionality of the “memory”: Map K, V from

nxdtokxd

[ e Attend to the lower-dimensional memory:
Scaled Dot-Product softmax <Qn>< d Kk-l;d / ﬂ)

= g
(o ) (e ) (e )
I I

AN | ® \What's the dimension of the attention matrix?
® What's the dimension of the self-attention output?

e Computation cost: O(dnk) (linear in n)

¢ Downside of uisng Linformer as a decoder?
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Summarize the KV memory

Linformer [\Wang et al., 2020]: compute self-attention in a lower dimension

e Reduce dimensionality of the “memory”: Map K, V from

nxdtokxd

[ e Attend to the lower-dimensional memory:
Scaled Dot-Product softmax <Qn>< d Kk-l;d / ﬂ)

Attention «
[ Linear ]. [ Linear ]. [ Linear ].

| 1 ® What's the dimension of the attention matrix?
® What's the dimension of the self-attention output?

e Computation cost: O(dnk) (linear in n)

¢ Downside of uisng Linformer as a decoder?
® Unclear how to mask: past and future are mixed
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Summary on efficient self-attention

Improve the quadratic time and space complexity of self-attention
e Sparsify the attention matrix
® Compress the KV memory

24/33



Summary on efficient self-attention

Improve the quadratic time and space complexity of self-attention
e Sparsify the attention matrix
® Compress the KV memory

Bad news: Most techniques are not widely used in large pretrained models now.
Why?
® Improvement in time/space complexity doesn't always translate to real
time/space savings

® These techniques often breaks structure and sacrifice the batching ability on
GPUs

e Only see improvement on very long sequences
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Approach 4: system-level approaches
® QOperates at a lower abstraction level

e Often brings more direct impact on efficiency
® Example:

® Gradient accumulation
® Model and data parallelism (e.g., deepspeed)
® Flash attention: exploit GPU memory asymmetry

Standard Attention Implementation Flash Attention
Load
QK Load
KV
s-qK
Write S =Q Load Kernel operations fused
— together, reducing
Q0 m,
reads & writes
Load S
':;E:;’ Compute P = softmax(s) ":::;;Y compute| 5-QK/
" m = rowmax of S
Write P
P=exp(s-m)
L= rowsum of P
_ m = max(i,, m)
Load P, V. 0=PV Write O; L;v; calculate O from L& m
—_— —
Write O

Initialize O, | and m matrices with zeroes. m and | are used to calculate

cumulative softmax. Divide G, K, V into blocks (due to SRAM's memory limits)

and iterate over them, for i is row & is column.
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Improve finetuning efficiency

Problem:

® In NLP, typically all parameters of the pretrained models (e.g., BERT) are
finetuned, which is expensive for large models.

® Saving and loading finetuned models for different tasks is costly.
® Potentially destroy pretrained representations
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Improve finetuning efficiency

Problem:

® In NLP, typically all parameters of the pretrained models (e.g., BERT) are
finetuned, which is expensive for large models.

® Saving and loading finetuned models for different tasks is costly.
® Potentially destroy pretrained representations

Can we finetune a smaller number of parameters to achieve performance similar to
full finetuning?

® Select a subset of parameters from the pretrained weights to update
® Add a small number of parameters to adapte the (frozen) pretrained model
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Finetune a subset of parameters
Freezing the first X layers [Lee et al., 2019]

ColA-base SST-2-base MRPC-base STS-B-base
0.0 0.00 g 0.00 0.00
I8) ;005 / —0.05 -0.05
Q02 Q 'y Q
= <_0.10 —0.10 ~0.10
-0.4
-0.15 -0.15 -0.15
061110 6 8 7 6 0200109 &8 7 6 02001109 8 7 6 0200110 9 8 7 6
ColLA-large SST-2-large MRPC-large STS-B-large
0.0 0.00 0,00 -++--sseemmmr oo eeoracesr et 0.00
. —0.05 —-0.05 / -0.05
8}
-0.2 / g -
0 8 & = a
= / <_0.10 ~0.10 ~0.10
-0.4
-0.15 -0.15 -0.15
~0-63i 22 20 18 16 14 12 ~020322 20 18 16 14 12 ~0-20532 20 18 16 14 12 ~020575 20 18 16 14 12
—— BERT RoBERTa

A fourth of the layers need to be fine-tuned to obtain 90% of the performance.
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Finetune a subset of parameters

BitFit [Ben-Zaken et al., 2022]: only finetune the bias term (0.1% of the parameters)

Amplifying / suppressing certain features?

Bias terms in QKV projection Bias terms in MLP layers

m,{ _ m,f m,{ h = Dropout(W?, -h{ + bl,)
Q™" (x) = Wi"x + by vy
3 = i p 3

K™ (x) = W x 4+ b b _ GELUOWEhE 4 bl

hé = Dr()p()ut(Wf;qLS . hﬁ + b )

m3
(hf +h§) —p
5 03 +'bibb

V™ (x) = Wittx 4 b

out’ = gé Ny ©

Result: 80.9 (BitFit, 0.08% params) vs 81.8 (full finetuning) on GLUE
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Adapt the frozen pretrained model

Adapter [Houlsby et al., 2019]: insert small networks to the pretrained model

® |nsert learnable "adapters” in-between layers
e Adapters uses a bottleneck structure to

| Transformer
! Layer

P i
: reduce parameters

® Adapters uses a skip-connection

Feedforward
down-project

Feed-forward layer

Multi-headed
attention
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Adapt the frozen pretrained model

Adapter [Houlsby et al., 2019]: insert small networks to the pretrained model

® |nsert learnable "adapters” in-between layers
e Adapters uses a bottleneck structure to
reduce parameters

e Adapters uses a skip-connection such that it
can be “reduced"” to the original frozen model

Feedforward

T || Result: less than 0.4% performance drop with 3%
more parameters on GLUE

Feed-forward layer
Multi-headed
attention
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Adapt the frozen pretrained model

LoRA [Hu et al., 2021]: add low-rank matrices as additional parameters
Hypothesis: weight matrices are low rank

Adapters: For any matrix multiplication h = Wpx, we
modify it to

Pretrained h=Wox + AWx = Wpx + BAx
Weights

e Wy € Rk B e RI*r A e R*K(r < k)

® |nitialization: BA=10

® Can be applied to any weight matrices, e.g., QKV
projection matrices
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Adapt the frozen pretrained model

Compare LoRA and the original adapters:

® LoRA recovers full finetuning by increasing r
Adapter recovers an MLP model with increasing params
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Adapt the frozen pretrained model

Compare LoRA and the original adapters:

® LoRA recovers full finetuning by increasing r
Adapter recovers an MLP model with increasing params

® LoRA has no additional inference cost by setting Wy <— Wp 4+ BA (doesn't work
for multiple tasks)
Adapter incurs additional inference cost due to the added params

The most widely used efficient finetuning method on very large models (>100B).
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Summary

Reduce finetuning cost by reducing the number of parameters to update
® Finetune a subset of parameters
® Finetune an additional adapters inserted to the model
® System approach: mixed-precision training (e.g., converting some or all params
to fp16)

Other ways to adapt the model without parameter update: prompting, in-context
learning (later)
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