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Representation learning
What are good representations?
® Enable a notion of distance over text (word embeddings)
e Contains good features for downstream tasks
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Representation learning
What are good representations?
® Enable a notion of distance over text (word embeddings)
e Contains good features for downstream tasks

Examples: negative the food is good but doesn't worth an hour wait

e Simple features (e.g. BoW) reqU|re complex models.

® Good features only need sir- - -~ 'assifier) .

1000

Figure: Sentiment neuron [Radford et al., 2017]
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Representation learning

What can we do with good representations:
® | earning with small data: fine-tuning learned representations
® Transfer learning: one model/representation for many tasks
® Metric learning: get a similarity metric for free
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Representation learning

What can we do with good representations:
® | earning with small data: fine-tuning learned representations
® Transfer learning: one model/representation for many tasks
® Metric learning: get a similarity metric for free

How to obtain such a representation:

® Training a neural network on any task gives us a representation good for that
task.

® But on which task can we learn good general representations?
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What can we learn from word guessing?

® The cats that are raised by my sister ——_ sleeping.
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What can we learn from word guessing?

® The cats that are raised by my sister ——_ sleeping. syntax
® Janeis happy that John invited —__ friends to his birthday party. coreference
e isthe capital of Tanzania. knowledge
® Theboyis—_ because he lost his keys. commonsense

® John took 100 bucks to Vegas. He won 50 and then lost 100. Now he only has
to go home. numerical reasoning

Word guessing entails many tasks related to language understanding!
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Self-supervised learning

Key idea: predict parts of the input from the rest
® No supervision is needed—both input and output are from the raw data.
® Easy to scale—only need unlabeled data.
® |earned representation is general—useful for many tasks.
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Self-supervised learning

Key idea: predict parts of the input from the rest
® No supervision is needed—both input and output are from the raw data.
® Easy to scale—only need unlabeled data.
® |earned representation is general—useful for many tasks.

Approach:

® Pretrain: train a model using self-supervised learning objectives on large data.

® Finetune: update part or all of the parameters of the pretrained model (which
provides an initialization) on labeled data of a downstream task.

6/46



A bit of history

® Pretrain an RNN model on unlabeled data and finetune on supervised tasks [Dai
et al., 2015] [ULMFIT; Howard et al., 2018]

® Promising results on a small scale
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A bit of history

® Pretrain an RNN model on unlabeled data and finetune on supervised tasks [Dai
et al., 2015] [ULMFIT; Howard et al., 2018]

® Promising results on a small scale

® ELMo: replace static word embedding by contextual word embeddings from
pretrained bi-LSTM [Peters et al., 2018]

® Firstimpactful result in NLP
® Pretrain a Transformer model and finetune on supervised tasks
® GPT [Radford et al., 2018], BERT [Devlin et al., 2018]
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A bit of history

® Pretrain an RNN model on unlabeled data and finetune on supervised tasks [Dai
et al., 2015] [ULMFIT; Howard et al., 2018]

® Promising results on a small scale

® ELMo: replace static word embedding by contextual word embeddings from
pretrained bi-LSTM [Peters et al., 2018]

® Firstimpactful result in NLP

® Pretrain a Transformer model and finetune on supervised tasks
® GPT [Radford et al., 2018], BERT [Devlin et al., 2018]

® Scale the pretrained model to larger sizes

® GPT-2(1.5B), T5 (11B), GPT-3 (175B), PaLM (540B)
® We will talk about 100B+ models in the third module
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Types of pretrained models

® Encoder models, e.g., BERT

® Encode text into vector representations that can be used for downstream
classification tasks
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Types of pretrained models

® Encoder models, e.g., BERT

® Encode text into vector representations that can be used for downstream
classification tasks

® Encoder-decoder models, e.g., T5

® Encode input text into vector representations and generate text
conditioned on the input

® Decoder models, e.g., GPT-2
® Read in text (prefix) and continue to generate text

Current pretrained models are all transformer based.
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Encoder models

An encoder takes a sequence of tokens and output their contextualized
representations:
hi,..., h, = Encoder(xy, ..., xp)

We can then use hy, ..., h, for other tasks.
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Encoder models

An encoder takes a sequence of tokens and output their contextualized
representations:

hi,..., h, = Encoder(xy, ..., xp)

We can then use hy, ..., h, for other tasks.
How do we train an Encoder?

® Use any supervised task: y = f(hi,..., hy)

® Use self-supervised learning: predict a word from its context
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Masked language modeling

? language processing is ?

11/46



Masked language modeling
? language processing is ?
Learning objective (MLE):

max Z log p(x; | x_j; 0)

X€ED,i~Pmask

® x:asequence of tokens sampled from a corpus D
natural language processing is fun
® Pmask: Mask generator
Sample two positions uniformly at random, e.g., 1 and 5
® x_;: noisy version fo x where x; is corrupted
[MASK] language processing is [MASK]
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BERT: objective

°* Masked language modeling:

® Randomly sample 15% tokens as prediction targets
® Replace the target tokens by [MASK] or a random token, or leave it
unchanged

cats are cute — cats [MASK]/is/are cute
® | ater work has shown that just use [MASK] is sufficient
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BERT: objective

°* Masked language modeling:

® Randomly sample 15% tokens as prediction targets
® Replace the target tokens by [MASK] or a random token, or leave it
unchanged

cats are cute — cats [MASK]/is/are cute
® | ater work has shown that just use [MASK] is sufficient
* Next sentence prediction: predict whether a pair of sentences are consecutive

max Z log p(y | x, xn; 0)
X~D,Xp~ Prext

® x,: either the sentence following x or a randomly sampled sentence
® y: binary label of whether x, follows x
® | ater work has shown that this objective is not necessary
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BERT: architecture

Input @ m @ m{ cute ” [SEP] Wm[ likes M play 1 [ ##ing ” [SEP] 1

Token

Embeddings ‘E[GLS] Emy H Edﬂg ‘ Eis ‘ Ecute ‘ E[SEP] | Ehe ‘ E\ikes | Ep\ay ‘ Ening ‘ E[SEP]
+ + + + + + + + + + +

Segment

=N | U TN S NN S T N RN
+ + + + + + + + + + +

Position

Eveaanes | & || B[ B || & ][ B |l & & ][5 |[ & || & |[ By |

® Tokenization: wordpiece (similar to byte pair encoding) (see details)
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® Tokenization: wordpiece (similar to byte pair encoding) (see details)
e [CLS]: first token of all sequences; used for next sentence prediction
e Distinguish two sentences in a pair: [SEP] and segment embedding
® |earned position embedding
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BERT: architecture
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® Tokenization: wordpiece (similar to byte pair encoding) (see details)

e [CLS]: first token of all sequences; used for next sentence prediction
e Distinguish two sentences in a pair: [SEP] and segment embedding

® |earned position embedding

® 12 (base; 110M params) or 24 (large; 340M params) layer Transformer
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Finetuning BERT
Classification tasks: Add a linear layer (randomly initialized) on top of the [CLS]
embedding
p(y | x) = softmax(Whcis) + b)

Class
Label

[

Sentence 1 Sentence 2 Single Sentence
(a) Sentence Pair Classification Tasks: (b) Single Sentence Classification Tasks:
MNLI, QQP, QNLI, STS-B, MRPC, SST-2, CoLA
RTE, SWAG
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Finetuning BERT

Sequence labeling tasks: Add linear layers (randomly initialized) on top of every token

p(yi | x) = softmax(Wh; + b)

Start/End Span

BERT

el EEE- &

Tok Tok Tok

Question Paragraph

(c) Question Answering Tasks:
SQUAD v1.1

0  BPER o
- a8

BERT

el )e] - 5]
ey
[

Single Sentence

(d) Single Sentence Tagging Tasks:
CoNLL-2003 NER
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Finetuning BERT

® Finetune all parameters (both the newly added layer and the pretrained weights)
® Use a small learning rate (e.g., 1e-5)

® Train for a small number of epochs (e.g, 3 epochs)

® |ed to SOTA results on many NLU tasks

"""} How to generate text from BERT?
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Encoder-decoder models

An encoder-decoder model encodes input text to a sequence of contextualized
representations, and decodes a sequence of tokens autoregressively.

hi,..., hy, = Encoder(xy, ..., xn)
Si,...,Sm = Decoder(yo,...,¥Ym—1,h1,...,hn)
p(yi | x, y<i) = softmax(Ws; + b)

17746



Encoder-decoder models

An encoder-decoder model encodes input text to a sequence of contextualized
representations, and decodes a sequence of tokens autoregressively.

hi,..., hy, = Encoder(xy, ..., xn)
Si,...,Sm = Decoder(yo,...,¥Ym—1,h1,...,hn)
p(yi | x, y<i) = softmax(Ws; + b)

How do we train the encoder-decoder?

e Use any supervised task, e.g., machine translation
® Use self-supervised learning: predict text spans from their context
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Masked language modeling using an encoder-decoder

Input: text with corrupted spans
Output: recovered spans

Original text

Thank you fef inviting me to your party Jast week.

Inputs

Thank you <X> me to your party <Y> week.

Targets
<X> for inviting <Y> last <z>

Compare with encoder-only models:
® Encoder: predict single tokens based on encoder representation
® Encoder-decoder: predict a sequence of tokens (flexibility in objective design)
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T5: objective
® First train on unlabele data by masked language modeling
® Predict corrupted spans as a sequence
® Then continue training by supervised multitask learning

® Formulate tasks as text-to-text format using a prefix to denote the task
® Mixing examples from different datasets when constructing batches

["translate English to German: That is good."

“cola sentence: The
course is jumping well."

"Das ist gut."
"not acceptable"

“3.8"

on the grass. sentence2: A rhino

"stsb sentencel: The rhino grazed
is grazing in a field."

"six people hospitalized after J

dispatched emergency crews tuesday to a storm in attala county."

survey the damage after an onslaught
of severe weather in mississippi.."

[ “summarize: state authorities

e Jointly training with the two objectives works slightly worse
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T5: finetune

® Formulate the task in text-to-text format
® Fine-tune all parameters (similar to BERT fine-tuning)

® Advantages over encoder models: unified modeling of many different tasks
including text generation
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Decoder-only models

A decoder-only model predicts the next token given the prefix autoregressively.

S1,...,Sm = Decoder(yo, ..., Ym-1, 1, ...

p(yi | y<i) = softmax(Ws; + b)
(A prefix of y can be the input.)

the brown fox Jjumped END

N N N I |

Decoder

T 1T 1 1

START the brown fox jumped

(more on lancsuase models later)
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Generative Pretraining (GPT)

® Model: 12 layer decoder-only transformer
® Objective: next word prediction

max > Y " logp(yi | y<i)

yeD i

® Finetuning: auxiliary LM objective Liask + ALw (next word prediction on labeled
task data)
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Generative Pretraining (GPT): task-specific finetuning

Text Task e -
Classification | Start | Text | Extract ”——{ Transformer |—-| Linear ‘
Entailment | Start | Premise | Delim | Hypothesis | Extract ”——{ Transformer |—-| Linear ‘
©)
Feed Forward | Start | Text 1 | Delim | Text 2 | Extract ”——{ Transformer
Similarity Linear
12x — -
| Start | Text 2 | Delim | Text 1 |Extrac! H—-{ Transformer
® -
| Start | Context | Delim | Answer 1 | Extract |i|—-( Transformer |—>| Linear
Self Attention
Multiple Choice| Start | Context | Delim | Answer 2 | Extract| Transformer Linear
Text & Position Embed | Start | Context | Delim | Answer N | Extract ﬂ—»{ Transformer H Linear

® Single input: linear on top of extract

e Multiple input: process each input separately then aggregate
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Ablation studies of GPT

Architecture, pretraining, finetuning: which is critical?

Method Avg. Score  CoLA SST2 MRPC STSB QQP MNLI QNLI RTE

(mc) (acc) (F1) (pc) (F1) (acc) (acc) (acc)
Transformer w/ aux LM (full) 74.7 454 91.3 82.3 82.0 70.3 81.8 88.1 56.0
Transformer w/o pre-training 59.9 18.9 84.0 794 30.9 65.5 757 712 53.8
Transformer w/o aux LM 75.0 479 92.0 84.9 83.2 69.8 81.1 86.9 54.4
LSTM w/ aux LM 69.1 30.3 90.5 832 71.8 68.1 73.7 81.1 54.6

e Auxiliary objective only helps on larger datasets (MNLI, QQP)
® Pretrained transformer > pretrained LSTM (single layer) > non-pretrained

transformer
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Compare with BERT

System MNLI-(m/mm) QQP QNLI SST2 CoLA STS-B MRPC RTE  Average
392k 363k 108k 67k 8.5k 5.7k 3.5k 2.5k -
Pre-OpenAl SOTA 80.6/80.1 66.1 823 932 35.0 81.0 86.0 61.7 74.0
BiLSTM+ELMo+Attn 76.4/76.1 64.8 79.8 90.4 36.0 733 84.9 56.8 71.0
OpenAl GPT 82.1/81.4 70.3 87.4 91.3 454 80.0 82.3 56.0 75.1
BERTsaAsE 84.6/83.4 712 90.5 93.5 52.1 85.8 88.9 66.4 79.6
BERTLARGE 86.7/85.9 72.1 92.7 94.9 60.5 86.5 89.3 70.1 82.1

Table 1: GLUE Test results, scored by the evaluation server (https://gluebenchmark.com/leaderboard).
The number below each task denotes the number of training examples. The “Average” column is slightly different
than the official GLUE score, since we exclude the problematic WNLI set.> BERT and OpenAl GPT are single-
model, single task. F1 scores are reported for QQP and MRPC, Spearman correlations are reported for STS-B, and

accuracy scores are reported for the other tasks. We exclude entries that use BERT as one of their components.

Medium-sized encoder models tend to work better than decoder-only models when

finetuned

25/46



Encoder-only vs decoder-only models: attention

Decoder-only Encoder-only
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Encoder-only vs decoder-only models: attention

Decoder-only Encoder-only

Encoder-only models provides better embeddings due to bidirectional attention.
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Encoder-only vs decoder-only models: generation

Decoder-only models can make predictions through generation without finetuning
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Encoder-only vs decoder-only models: generation

Decoder-only models can make predictions through generation without finetuning

e [ —— Heuristics for zero-shot prediction:

~—— winograd schema resolution
o | Imguistc acceptabity ® Sentiment classification: [example] + very +
. —— question answering

T Lotermer {positive, negative}  prompting

o
EY

® | inguistic acceptability: thresholding on log
probabilities

IS
IS

Relative Task Performance

e Multiple choice: predicting the answer with
the highest log probabilities

o
N

o | Scaling trend: zero-shot performance increases
e #ot pretrining upcates o during pretraining
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Encoder-only vs decoder-only models: training efficiency

On each sequence:

® Encoder-only models are trained on 15% (mask rate) of the tokens
® Decoder-only models are trained on all tokens
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Encoder-only vs decoder-only models: training efficiency

On each sequence:

® Encoder-only models are trained on 15% (mask rate) of the tokens
® Decoder-only models are trained on all tokens

What about encoder-decoder models?

® Better for sequence-to-sequence tasks
® Need to maintain two separate architectures, additional cross attention
® Overall limited advantage over decoder-only models
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What are these models trained on?

Both quantity and quality are important

Wikipedia: encyclopedia articles ( , single domain)
Toronto Books Corpus: e-books ( )
WebText (40GB): content submitted to Reddit with a vote > 3 ( , bias)

e CommonCrawl (20TB): scraped HTML with markers removed (
noisy, bias)
® A cleaned version: C4 (750GB)

Active research area: What data is good for pretraining?
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Overview

Approaches to speed up pretraining
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Overview

Approaches to speed up pretraining
® Reduce model size
® Design more sample-efficient learning objectives
® Improve efficiency of self-attention

® Improve system-level efficiency
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Approach 1: Reduce model size

Idea 1: reduce the number of parameters

ALBERT (a lite BERT) [Lan et al., 2020]

* Factorization:
® Recall that in Transformer, we first need to map the one-hot encoding (of
size V) of a token to Q, K, V embeddings (of size H)
® The number of parametersis V x H
® We can instead first map it to a lower-dim space (of size £) so that the

number of paramsis V x £+ £ x H
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Approach 1: Reduce model size

Idea 1: reduce the number of parameters

ALBERT (a lite BERT) [Lan et al., 2020]

® Parameter sharing:
® Share feedforward network weights across layers
® Share self-attention weights across layers
® ALBERT: share all params across layers
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Approach 1: Reduce model size

Idea 2: reduce interaction among parameters (sparse/modular architectures)

DEMix [Gururangan et al., 2022]

@O Sk ® Replace the FFN layer with an ensemble of n
/ CDCDECDED experts
~ D SN ~ ® Route examples to experts corresponding to
T ot QLR e its domain determinstically
TS
GULLY L INFERENCE )
| g = s O FFN(h) = Z]I[x € domain /JFFN;(x)
COEnED =
T f &’\ /*] ~ ® Only a subset of params are active for each
i coviD-t9 g Githuo

Xo EED Papers =% eXampIE/batch
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Approach 1: Reduce model size
Idea 2: reduce interaction among parameters (sparse/modular architectures)

Branch-Train-Merge [Li et al., 2022]

Each GPU has its own copy of the same LM Each GPU has a distinct LM

(a) Fully 2 (b) Embarrassingl
H % arameters y
Synchronized PP Q ;] g] ;] [;'] [ e Parallel Training
Tra"“ng i i i data minibatches
Train one LM on 4 randomly P ? "? ? drawn ﬁo Train k independent LMs

mono-corpus, ! ' | H asswgned domam : : in parallel on one data
= y ] 1 1 1 Il 1 I

synchronizing weights " e T domain each, without
Y g weig unified data corpus . k data domains synchronizing across LMs
across all GPUs

® Train domain experts in parallel and ensemble them (or take weighted average
of their parameters)

e Reduce synchronization among GPUs at the cost of increased model size
® Easy to expand/remove domain experts
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Approach 2: design sample-efficient learning objectives

ALBERT: Inter-sentence coherence loss
® Motivation: the next sentence prediction task is too easy
® Design hard negative examples
® Input: take two consecutive sentences, swap their order randomly

e Qutput: predict if they are in natural order
| went home. SEP|slept. +1
I slept. SEP | went home. -1

® Model needs to learn temporal order of events (commonsense, causality etc.)
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Approach 2: design sample-efficient learning objectives

ELECTRA [Clark et al., 2020]: discriminate from true vs guessed tokens

sample
the —> [MASK] —>| -> the —> —> original
chef — chef —> Gen_erator chef — Discriminator —> original
cooked —> [MASK] —>| (typically a [-> ate —> (ELECTRA) > replaced
the —» the —»| small MLM) the —> > original
meal —> meal —>| meal —> > original

® First train the generator for n steps using the MLM objective.

® Freeze generator weights. Train the discriminator using the sequence
classification objective. Keep discriminator for finetuning.

e Comparison with MLM: predict at every position; hard negative examples.
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Approach 2: design sample-efficient learning objectives

ELECTRA result:

=

&7

2 80

@ 64

3

257 .

2 75

g w

237 ERLE

£ 24
=8 ELECTRA ; 1 —— ELECTRA-256
®- BERT E T 65 — BERT-256

2o

o

@

T T T T T T T T T T T T T T T
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Figure: Finetuning result on the GLUE benchmark

® Larger improvement at smaller model sizes

® Faster training

® An effective approach if you don't have large compute for pretraining
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Approach 3: alternatives to self-attention

Transformer recap

4 4
C( Add & Normalize )w
i ( Feed Forward ) ( Feed Forward )
R 21 zZ_*
4 __Add & Normalize 4 . . . . . .
; Which components require matrix multiplication?
|, LayerNorm( BEEH + HEE)
gl 7y 7y
H ( Self-Attention )
R e . Resas J
é§ ég
x+ [N PARE S|
Thinking Machines

Figure: From The lllustrated
Transformer
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Approach 3: alternatives to self-attention

Transformer recap

4 4

C( Add & Normalize )\
E ( Feed Forward ) ( Feed Forward )
Ty mmm T
A id & Normalize 4
é :»[ LayerNorm( BEB} + H:H;) ]
= ' 7y 4
% E [I{Ij [I{I:
' ( Self-Attention )
H 4 4
e XL g
POSITIONAL
ENCODING é éé
x1 [ x- [N
Thinking Machines

Figure: From The lllustrated
Transformer

Which components require matrix multiplication?
¢ Self-attention

® Q,K\V projection
® Scaled dot-product attention

e Feed-forward layer
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Compute cost of transformers

Q, K, V projection:

n x de

linear
_—

Scaled dot-product attention:

nxd

matmul
E——

nxn
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Compute cost of transformers

Q, K, V projection:

n x de

linear
_—

Scaled dot-product attention:

nxd

nxd O(n x de x d)
dxn
matmyl nxn O(d x n?)
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Compute cost of transformers

Feed-forward layer (GPT-2):

nxd

O(n x d x dp)

® Two-layer FFN
® d, = 4d (d > 1K) by default in GPT-2

linear+RelLU
—_—

nth

® Approximately half of the compute time
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Compute cost of transformers

Feed-forward layer (GPT-2):

nxd

O(n x d x dp)

® Two-layer FFN
® d, = 4d (d > 1K) by default in GPT-2

linear+RelLU
—_—

nth

® Approximately half of the compute time

linear+RelLU
—_—
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Improve efficiency of self-attention (for long sequences)
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Improve efficiency of self-attention (for long sequences)

Key idea: reduce the O(n?) time and memory cost
e Sparsify the attention matrix

® Deterministic mask
® Data-dependent mask (Reformer [Kitaev et al., 2020])

® Compress the key-value memory

® | ow-rank projection
® Attention-based projection
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Sparse attention
Longformer [Beltagy et al., 2020]: attention within a local window

’:E:% a En"n un"a e !
e i
IR F < S {SEER
(a) Full n? attention (b) Sliding window attention (c) Dilated sliding window (d) Global+sliding window

e Sliding window: attending to a local window of size w around each token

O(n x w)
e Dilated sliding window: reaching longer range with a larger window size with gaps
e Global window: full attention on specific tokens, e.g., [CLS] in BERT
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Sparse attention

Longformer [Beltagy et al., 2020]: attention within a local window

i R

' ; i_r”
i g HEEE.
(a) Full n? attention (b) Sliding window attention (c) Dilated sliding window (d) Global+sliding window

Sliding window: attending to a local window of size w around each token
O(n x w)
Dilated sliding window: reaching longer range with a larger window size with gaps
Global window: full attention on specific tokens, e.g., [CLS] in BERT
Details: balancing efficiency and performance
® Adding dilation on some heads
® Using small window size on lower layers and larger ones on higher layers
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Compresse the KV memory
Self-attention is low rank [Wang et al., 2020]

0 12-layers Transformer 24-layers Transformer
g
i 096
5 094
Sos ’
2
207 0.92
5 06 0.90
3 :
g 05 — s — e .33
E —— Wikil03 —— Wiki103

0.40 128 512 0 128 512 012 34567891011

Eigenvalue index Hgenvalue index Head index

® Left: cumulative eigenvalues of pretrained transformer with n = 512
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Compresse the KV memory
Self-attention is low rank [Wang et al., 2020]
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Eigenvalue index Hgenvalue index Head index

® Left: cumulative eigenvalues of pretrained transformer with n = 512
® Most information in the attention matrix can be recovered by the top 128
eigenvectors

43/46


https://arxiv.org/pdf/2006.04768.pdf

Compresse the KV memory
Self-attention is low rank [Wang et al., 2020]
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® Left: cumulative eigenvalues of pretrained transformer with n = 512
® Most information in the attention matrix can be recovered by the top 128
eigenvectors
® Right: cumulative eigenvalues of the top 128 eigenvalues across layers
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Compresse the KV memory
Self-attention is low rank [Wang et al., 2020]
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® Left: cumulative eigenvalues of pretrained transformer with n = 512

® Most information in the attention matrix can be recovered by the top 128
eigenvectors

® Right: cumulative eigenvalues of the top 128 eigenvalues across layers
® Higher layers are more low-rank
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Compresse the KV memory
Self-attention is low rank [Wang et al., 2020]

Normalized cumulative eigenvalue
o o o o o =~
D & 4 ®» b o

S
x

12-layers Transformer 24-layers Transformer

— mDB — M8
— wiki103 — Wiki103

)

128 512 0 128 512 012345678910I11
Eigenvalue index Eigenvalue index Head index

Left: cumulative eigenvalues of pretrained transformer with n = 512
® Most information in the attention matrix can be recovered by the top 128

eigenvectors

Right: cumulative eigenvalues of the top 128 eigenvalues across layers

® Higher layers are more low-rank

Idea: instead of attending to n tokens, attend to k principal components

0.96

094

0.92

0.90

0.88
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Summarize the KV memory

Linformer [\Wang et al., 2020]: compute self-attention in a lower dimension

e Reduce dimensionality of the “memory”: Map K, V from

nxdtokxd

1
Scaled Dot-Product
Attention e
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Summarize the KV memory

Linformer [\Wang et al., 2020]: compute self-attention in a lower dimension

.

1
Scaled Dot-Product
Attention

1l

1

Projection

Projection

nxdtokxd
e Attend to the lower-dimensional memory:

softmax (andeTxd/\/H)

e Reduce dimensionality of the “memory”: Map K, V from
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Summarize the KV memory

Linformer [\Wang et al., 2020]: compute self-attention in a lower dimension

e Reduce dimensionality of the “memory”: Map K, V from

nxdtokxd

e Attend to the lower-dimensional memory:

e softmax ( Qnxg K/ V)
1l 1 1 e What's the dimension of the attention matrix?

Projection Projection
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Summarize the KV memory

Linformer [\Wang et al., 2020]: compute self-attention in a lower dimension

e Reduce dimensionality of the “memory”: Map K, V from

nxdtokxd

e Attend to the lower-dimensional memory:

e softmax ( Qnxg K/ V)
1l 1 1 e What's the dimension of the attention matrix?

Wafzston | || Bzt ® What's the dimension of the self-attention output?
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Summarize the KV memory

Linformer [\Wang et al., 2020]: compute self-attention in a lower dimension

e Reduce dimensionality of the “memory”: Map K, V from

nxdtokxd

B e Attend to the lower-dimensional memory:
Scaled Dot-Product / softmax <and Kk-l;d / ﬂ)

Attention «

T ® What's the dimension of the attention matrix?
® What's the dimension of the self-attention output?

-
(o ) (o ) (e )
I I

e Computation cost: O(nk) (linear in n)
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Summarize the KV memory

Linformer [\Wang et al., 2020]: compute self-attention in a lower dimension

e Reduce dimensionality of the “memory”: Map K, V from

nxdtokxd

[ e Attend to the lower-dimensional memory:
Scaled Dot-Product softmax <Qn>< d Kk-l;d / ﬂ)

= g
(o ) (e ) (e )
I I

AN | ® \What's the dimension of the attention matrix?
® What's the dimension of the self-attention output?

e Computation cost: O(nk) (linear in n)

¢ Downside of uisng Linformer as a decoder?

44/46


https://arxiv.org/pdf/2006.04768.pdf

Summarize the KV memory

Linformer [\Wang et al., 2020]: compute self-attention in a lower dimension

e Reduce dimensionality of the “memory”: Map K, V from

nxdtokxd

[ e Attend to the lower-dimensional memory:
Scaled Dot-Product softmax <Qn>< d Kk-l;d / ﬂ)

Attention «
[ Linear ]. [ Linear ]. [ Linear ].

| 1 ® What's the dimension of the attention matrix?
® What's the dimension of the self-attention output?

e Computation cost: O(nk) (linear in n)

¢ Downside of uisng Linformer as a decoder?
® Unclear how to mask: past and future are mixed
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Summary on efficient self-attention

Improve the quadratic time and space complexity of self-attention
e Sparsify the attention matrix
® Compress the KV memory
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Summary on efficient self-attention

Improve the quadratic time and space complexity of self-attention
e Sparsify the attention matrix
® Compress the KV memory

Bad news: Most techniques are not widely used in large pretrained models now.
Why?
® Improvement in time/space complexity doesn't always translate to real
time/space savings

® These techniques often breaks structure and sacrifice the batching ability on
GPUs

e Only see improvement on very long sequences
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Approach 4: system-level approaches
® QOperates at a lower abstraction level

e Often brings more direct impact on efficiency
® Example:

® Gradient accumulation
® Model and data parallelism (e.g., deepspeed)
® Flash attention: exploit GPU memory asymmetry

Standard Attention Implementation Flash Attention
Load
QK Load
KV
s-qK
Write S =Q Load Kernel operations fused
— together, reducing
Q0 m,
reads & writes
Load S
':;E:;’ Compute P = softmax(s) ":::;;Y compute| 5-QK/
" m = rowmax of S
Write P
P=exp(s-m)
L= rowsum of P
_ m = max(i,, m)
Load P, V. 0=PV Write O; L;v; calculate O from L& m
—_— —
Write O

Initialize O, | and m matrices with zeroes. m and | are used to calculate

cumulative softmax. Divide G, K, V into blocks (due to SRAM's memory limits)

and iterate over them, for i is row & is column.
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