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Representation learning
What are good representations?

• Enable a notion of distance over text (word embeddings)
• Contains good features for downstream tasks

Examples: negative the food is good but doesn’t worth an hour wait

• Simple features (e.g. BoW) require complex models.
• Good features only need simple models (e.g. linear classifier) .

Figure: Sentiment neuron [Radford et al., 2017]
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Representation learning

What can we do with good representations:
• Learning with small data: fine-tuning learned representations
• Transfer learning: one model/representation for many tasks
• Metric learning: get a similarity metric for free

How to obtain such a representation:

• Training a neural network on any task gives us a representation good for that
task.

• But on which task can we learn good general representations?
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What can we learn from word guessing?

• The cats that are raised by my sister sleeping.

syntax

• Jane is happy that John invited friends to his birthday party. coreference

• is the capital of Tanzania. knowledge

• The boy is because he lost his keys. commonsense

• John took 100 bucks to Vegas. He won 50 and then lost 100. Now he only has
to go home. numerical reasoning

Word guessing entails many tasks related to language understanding!
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Self-supervised learning

Key idea: predict parts of the input from the rest
• No supervision is needed—both input and output are from the raw data.
• Easy to scale—only need unlabeled data.
• Learned representation is general—useful for many tasks.

Approach:
• Pretrain: train a model using self-supervised learning objectives on large data.
• Finetune: update part or all of the parameters of the pretrained model (which

provides an initialization) on labeled data of a downstream task.
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A bit of history

• Pretrain an RNN model on unlabeled data and finetune on supervised tasks [Dai
et al., 2015] [ULMFiT; Howard et al., 2018]
• Promising results on a small scale

• ELMo: replace static word embedding by contextual word embeddings from
pretrained bi-LSTM [Peters et al., 2018]

• First impactful result in NLP

• Pretrain a Transformer model and finetune on supervised tasks

• GPT [Radford et al., 2018], BERT [Devlin et al., 2018]

• Scale the pretrained model to larger sizes

• GPT-2 (1.5B), T5 (11B), GPT-3 (175B), PaLM (540B)
• We will talk about 100B+ models in the third module
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Types of pretrained models

• Encoder models, e.g., BERT
• Encode text into vector representations that can be used for downstream

classification tasks

• Encoder-decoder models, e.g., T5

• Encode input text into vector representations and generate text
conditioned on the input

• Decoder models, e.g., GPT-2

• Read in text (prefix) and continue to generate text

Current pretrained models are all transformer based.
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Encoder models

An encoder takes a sequence of tokens and output their contextualized
representations:

h1, . . . , hn = Encoder(x1, . . . , xn)

We can then use h1, . . . , hn for other tasks.

How do we train an Encoder?
• Use any supervised task: y = f (h1, . . . , hn)

• Use self-supervised learning: predict a word from its context
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Masked language modeling

? language processing is ?

Learning objective (MLE):

max
∑

x∈D,i∼pmask

log p(xi | x−i ; θ)

• x : a sequence of tokens sampled from a corpus D
natural language processing is fun

• pmask: mask generator
Sample two positions uniformly at random, e.g., 1 and 5

• x−i : noisy version fo x where xi is corrupted
[MASK] language processing is [MASK]
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BERT: objective

• Masked language modeling:
• Randomly sample 15% tokens as prediction targets
• Replace the target tokens by [MASK] or a random token, or leave it

unchanged
cats are cute → cats [MASK]/is/are cute

• Later work has shown that just use [MASK] is sufficient

• Next sentence prediction: predict whether a pair of sentences are consecutive

max
∑

x∼D,xn∼pnext

log p(y | x , xn; θ)

• xn: either the sentence following x or a randomly sampled sentence
• y : binary label of whether xn follows x
• Later work has shown that this objective is not necessary
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BERT: architecture

• Tokenization: wordpiece (similar to byte pair encoding) (see details)

• [CLS]: first token of all sequences; used for next sentence prediction
• Distinguish two sentences in a pair: [SEP] and segment embedding
• Learned position embedding
• 12 (base; 110M params) or 24 (large; 340M params) layer Transformer

13 / 46
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Finetuning BERT
Classification tasks: Add a linear layer (randomly initialized) on top of the [CLS]

embedding
p(y | x) = softmax(Wh[CLS] + b)
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Finetuning BERT
Sequence labeling tasks: Add linear layers (randomly initialized) on top of every token

p(yi | x) = softmax(Whi + b)

15 / 46



Finetuning BERT

• Finetune all parameters (both the newly added layer and the pretrained weights)
• Use a small learning rate (e.g., 1e-5)
• Train for a small number of epochs (e.g, 3 epochs)
• Led to SOTA results on many NLU tasks

How to generate text from BERT?

16 / 46



Encoder-decoder models

An encoder-decoder model encodes input text to a sequence of contextualized
representations, and decodes a sequence of tokens autoregressively.

h1, . . . , hn = Encoder(x1, . . . , xn)

s1, . . . , sm = Decoder(y0, . . . , ym−1, h1, . . . , hn)

p(yi | x , y<i ) = softmax(Wsi + b)

How do we train the encoder-decoder?

• Use any supervised task, e.g., machine translation
• Use self-supervised learning: predict text spans from their context
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Masked language modeling using an encoder-decoder
Input: text with corrupted spans
Output: recovered spans

Compare with encoder-only models:
• Encoder: predict single tokens based on encoder representation
• Encoder-decoder: predict a sequence of tokens (flexibility in objective design)

18 / 46



T5: objective
• First train on unlabele data by masked language modeling

• Predict corrupted spans as a sequence
• Then continue training by supervised multitask learning

• Formulate tasks as text-to-text format using a prefix to denote the task
• Mixing examples from different datasets when constructing batches

• Jointly training with the two objectives works slightly worse
19 / 46



T5: finetune

• Formulate the task in text-to-text format
• Fine-tune all parameters (similar to BERT fine-tuning)
• Advantages over encoder models: unified modeling of many different tasks

including text generation

20 / 46



Decoder-only models
A decoder-only model predicts the next token given the prefix autoregressively.

s1, . . . , sm = Decoder(y0, . . . , ym−1, h1, . . . , hn)

p(yi | y<i ) = softmax(Wsi + b)

(A prefix of y can be the input.)

Decoder

START the brown fox jumped

the brown fox jumped END

(more on language models later) 21 / 46



Generative Pretraining (GPT)

• Model: 12 layer decoder-only transformer
• Objective: next word prediction

max
∑
y∈D

∑
i

log p(yi | y<i )

• Finetuning: auxiliary LM objective Ltask + λLLM (next word prediction on labeled
task data)
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Generative Pretraining (GPT): task-specific finetuning

• Single input: linear on top of extract
• Multiple input: process each input separately then aggregate

23 / 46



Ablation studies of GPT

Architecture, pretraining, finetuning: which is critical?

• Auxiliary objective only helps on larger datasets (MNLI, QQP)
• Pretrained transformer > pretrained LSTM (single layer) > non-pretrained

transformer

24 / 46



Compare with BERT

Medium-sized encoder models tend to work better than decoder-only models when
finetuned

25 / 46



Encoder-only vs decoder-only models: attention

Decoder-only Encoder-only

Encoder-only models provides better embeddings due to bidirectional attention.
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Encoder-only vs decoder-only models: generation

Decoder-only models can make predictions through generation without finetuning

Heuristics for zero-shot prediction:
• Sentiment classification: [example] + very +

{positive, negative} prompting
• Linguistic acceptability: thresholding on log

probabilities
• Multiple choice: predicting the answer with

the highest log probabilities
Scaling trend: zero-shot performance increases
during pretraining
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Encoder-only vs decoder-only models: training efficiency

On each sequence:

• Encoder-only models are trained on 15% (mask rate) of the tokens
• Decoder-only models are trained on all tokens

What about encoder-decoder models?

• Better for sequence-to-sequence tasks
• Need to maintain two separate architectures, additional cross attention
• Overall limited advantage over decoder-only models
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What are these models trained on?

Both quantity and quality are important

• Wikipedia: encyclopedia articles (clean, single domain)
• Toronto Books Corpus: e-books (diverse domain)
• WebText (40GB): content submitted to Reddit with a vote ≥ 3 (diverse, bias)
• CommonCrawl (20TB): scraped HTML with markers removed (diverse, large,

noisy, bias)
• A cleaned version: C4 (750GB)

Active research area: What data is good for pretraining?

29 / 46



Table of Contents

Representation learning

Architectures of pretrained models

Efficient pretraining

30 / 46



Overview

Approaches to speed up pretraining

• Reduce model size

• Design more sample-efficient learning objectives

• Improve efficiency of self-attention

• Improve system-level efficiency
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Approach 1: Reduce model size

Idea 1: reduce the number of parameters

ALBERT (a lite BERT) [Lan et al., 2020]

• Factorization:
• Recall that in Transformer, we first need to map the one-hot encoding (of

size V ) of a token to Q, K, V embeddings (of size H)
• The number of parameters is V × H
• We can instead first map it to a lower-dim space (of size E ) so that the

number of params is V × E + E × H

32 / 46
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Approach 1: Reduce model size

Idea 1: reduce the number of parameters

ALBERT (a lite BERT) [Lan et al., 2020]

• Parameter sharing:
• Share feedforward network weights across layers
• Share self-attention weights across layers
• ALBERT: share all params across layers
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Approach 1: Reduce model size

Idea 2: reduce interaction among parameters (sparse/modular architectures)

DEMix [Gururangan et al., 2022]

• Replace the FFN layer with an ensemble of n
experts

• Route examples to experts corresponding to
its domain determinstically

FFN(h) =
n∑

i=1

I[x ∈ domain i ]FFNi (x)

• Only a subset of params are active for each
example/batch

33 / 46
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Approach 1: Reduce model size
Idea 2: reduce interaction among parameters (sparse/modular architectures)

Branch-Train-Merge [Li et al., 2022]

• Train domain experts in parallel and ensemble them (or take weighted average
of their parameters)

• Reduce synchronization among GPUs at the cost of increased model size
• Easy to expand/remove domain experts

34 / 46
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Approach 2: design sample-efficient learning objectives

ALBERT: Inter-sentence coherence loss
• Motivation: the next sentence prediction task is too easy
• Design hard negative examples
• Input: take two consecutive sentences, swap their order randomly
• Output: predict if they are in natural order

I went home. SEP I slept. +1
I slept. SEP I went home. -1

• Model needs to learn temporal order of events (commonsense, causality etc.)

35 / 46



Approach 2: design sample-efficient learning objectives

ELECTRA [Clark et al., 2020]: discriminate from true vs guessed tokens

• First train the generator for n steps using the MLM objective.
• Freeze generator weights. Train the discriminator using the sequence

classification objective. Keep discriminator for finetuning.
• Comparison with MLM: predict at every position; hard negative examples.

36 / 46
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Approach 2: design sample-efficient learning objectives
ELECTRA result:

Figure: Finetuning result on the GLUE benchmark

• Larger improvement at smaller model sizes
• Faster training
• An effective approach if you don’t have large compute for pretraining

37 / 46



Approach 3: alternatives to self-attention
Transformer recap

Figure: From The Illustrated
Transformer

Which components require matrix multiplication?

• Self-attention
• Q,K,V projection
• Scaled dot-product attention

• Feed-forward layer

38 / 46
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Compute cost of transformers

Q, K, V projection:

n × de n × d
linear

O(n × de × d)

Scaled dot-product attention:

n × d

d × n

n × n
matmul

O(d × n2)
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Compute cost of transformers

Feed-forward layer (GPT-2):

n × d n × dh
linear+ReLU

n × d
linear+ReLU

O(n × d × dh)

• Two-layer FFN
• dh = 4d (d > 1K ) by default in GPT-2
• Approximately half of the compute time
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Improve efficiency of self-attention (for long sequences)

Key idea: reduce the O(n2) time and memory cost
• Sparsify the attention matrix

• Deterministic mask
• Data-dependent mask (Reformer [Kitaev et al., 2020])

• Compress the key-value memory
• Low-rank projection
• Attention-based projection

41 / 46
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Sparse attention
Longformer [Beltagy et al., 2020]: attention within a local window

• Sliding window: attending to a local window of size w around each token
O(n × w)

• Dilated sliding window: reaching longer range with a larger window size with gaps
• Global window: full attention on specific tokens, e.g., [CLS] in BERT

• Details: balancing efficiency and performance
• Adding dilation on some heads
• Using small window size on lower layers and larger ones on higher layers
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Compresse the KV memory
Self-attention is low rank [Wang et al., 2020]

• Left: cumulative eigenvalues of pretrained transformer with n = 512

• Most information in the attention matrix can be recovered by the top 128
eigenvectors

• Right: cumulative eigenvalues of the top 128 eigenvalues across layers

• Higher layers are more low-rank

• Idea: instead of attending to n tokens, attend to k principal components
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Summarize the KV memory

Linformer [Wang et al., 2020]: compute self-attention in a lower dimension

• Reduce dimensionality of the “memory”: Map K, V from
n × d to k × d

• Attend to the lower-dimensional memory:
softmax

(
Qn×dK

T
k×d/

√
d
)

• What’s the dimension of the attention matrix?
• What’s the dimension of the self-attention output?

• Computation cost: O(nk) (linear in n)
• Downside of uisng Linformer as a decoder?

• Unclear how to mask: past and future are mixed
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Summary on efficient self-attention

Improve the quadratic time and space complexity of self-attention
• Sparsify the attention matrix
• Compress the KV memory

Bad news: Most techniques are not widely used in large pretrained models now.
Why?

• Improvement in time/space complexity doesn’t always translate to real
time/space savings

• These techniques often breaks structure and sacrifice the batching ability on
GPUs

• Only see improvement on very long sequences
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Approach 4: system-level approaches
• Operates at a lower abstraction level
• Often brings more direct impact on efficiency
• Example:

• Gradient accumulation
• Model and data parallelism (e.g., deepspeed)
• Flash attention: exploit GPU memory asymmetry
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