
Neural Sequence Generation

He He

September 25, 2023

1 / 36

Review: sequence representation

• Encoders represent a sequence of tokens as a sequence of embeddings

• Each embedding is a contextualized representation of the token

• We can then use the embeddings for classification or sequence labeling

• What if we want to predict a sequence of tokens from the input sequence (e.g.,
machine translation)?

2 / 36

Sequence generation

• Sequence classification: h : Vn → {0, . . . ,K}
• Sentiment classification
• Next word prediction

• Sequence labeling: h : Vn → {0, . . . ,K}n

• Part-of-speech tagging
• Name entity recognition

• Sequence generation: h : Vnin → Vmout

• Summarization: document to summary
• Open-domain dialogue: context to response
• Parsing: sentence to linearized trees
• In general: sequence to sequence

Main difference (and challenge) is that the output space is much larger.

3 / 36

Sequence generation

• Sequence classification: h : Vn → {0, . . . ,K}
• Sentiment classification
• Next word prediction

• Sequence labeling: h : Vn → {0, . . . ,K}n

• Part-of-speech tagging
• Name entity recognition

• Sequence generation: h : Vnin → Vmout

• Summarization: document to summary
• Open-domain dialogue: context to response
• Parsing: sentence to linearized trees
• In general: sequence to sequence

Main difference (and challenge) is that the output space is much larger.

3 / 36

Sequence generation

• Sequence classification: h : Vn → {0, . . . ,K}
• Sentiment classification
• Next word prediction

• Sequence labeling: h : Vn → {0, . . . ,K}n

• Part-of-speech tagging
• Name entity recognition

• Sequence generation: h : Vnin → Vmout
• Summarization: document to summary
• Open-domain dialogue: context to response
• Parsing: sentence to linearized trees
• In general: sequence to sequence

Main difference (and challenge) is that the output space is much larger.

3 / 36

Sequence generation

• Sequence classification: h : Vn → {0, . . . ,K}
• Sentiment classification
• Next word prediction

• Sequence labeling: h : Vn → {0, . . . ,K}n

• Part-of-speech tagging
• Name entity recognition

• Sequence generation: h : Vnin → Vmout
• Summarization: document to summary
• Open-domain dialogue: context to response
• Parsing: sentence to linearized trees
• In general: sequence to sequence

Main difference (and challenge) is that the output space is much larger.

3 / 36

Sequence generation

• Sequence classification: h : Vn → {0, . . . ,K}
• Sentiment classification
• Next word prediction

• Sequence labeling: h : Vn → {0, . . . ,K}n

• Part-of-speech tagging
• Name entity recognition

• Sequence generation: h : Vnin → Vmout
• Summarization: document to summary
• Open-domain dialogue: context to response
• Parsing: sentence to linearized trees
• In general: sequence to sequence

Main difference (and challenge) is that the output space is much larger.

3 / 36

Reduce generation to classification

Setup:
• Input: x ∈ Vnin, e.g. Le Programme a ate mis en application
• Output: y ∈ Vmout, e.g., The program has been implemented

Consider a probabilistic model p(y | x)

• Can we reduce it to classification?
• Decompose the problem using chain rule of probability

p(y | x) = p(y1 | x)p(y2 | y1, x) . . . p(ym | ym−1, . . . , y1, x)

=
m∏
i=1

p(yi | y<i , x)

• We only need to model the next word distribution p(yi | y<i , x) now.

4 / 36

Reduce generation to classification

Setup:
• Input: x ∈ Vnin, e.g. Le Programme a ate mis en application
• Output: y ∈ Vmout, e.g., The program has been implemented

Consider a probabilistic model p(y | x)
• Can we reduce it to classification?

• Decompose the problem using chain rule of probability

p(y | x) = p(y1 | x)p(y2 | y1, x) . . . p(ym | ym−1, . . . , y1, x)

=
m∏
i=1

p(yi | y<i , x)

• We only need to model the next word distribution p(yi | y<i , x) now.

4 / 36

Reduce generation to classification

Setup:
• Input: x ∈ Vnin, e.g. Le Programme a ate mis en application
• Output: y ∈ Vmout, e.g., The program has been implemented

Consider a probabilistic model p(y | x)
• Can we reduce it to classification?
• Decompose the problem using chain rule of probability

p(y | x) = p(y1 | x)p(y2 | y1, x) . . . p(ym | ym−1, . . . , y1, x)

=
m∏
i=1

p(yi | y<i , x)

• We only need to model the next word distribution p(yi | y<i , x) now.

4 / 36

Reduce generation to classification

Setup:
• Input: x ∈ Vnin, e.g. Le Programme a ate mis en application
• Output: y ∈ Vmout, e.g., The program has been implemented

Consider a probabilistic model p(y | x)
• Can we reduce it to classification?
• Decompose the problem using chain rule of probability

p(y | x) = p(y1 | x)p(y2 | y1, x) . . . p(ym | ym−1, . . . , y1, x)

=
m∏
i=1

p(yi | y<i , x)

• We only need to model the next word distribution p(yi | y<i , x) now.

4 / 36

Reduce generation to classification

We want to model the next word distribution p(yi | y<i , x).
• Input: a sequence of tokens (prefix and input)
• Output: the next word from the output vocabulary

Reduce generation to a sequence of classification problems:

1. Le Programme a ate mis en application→ The
2. Le Programme a ate mis en application, The→ program
3. Le Programme a ate mis en application, The program→ has
4. Le Programme a ate mis en application, The program has→ been
5. ...

We know how to solve each sequence classification problem!

5 / 36

Reduce generation to classification

We want to model the next word distribution p(yi | y<i , x).
• Input: a sequence of tokens (prefix and input)
• Output: the next word from the output vocabulary

Reduce generation to a sequence of classification problems:
1. Le Programme a ate mis en application→ The

2. Le Programme a ate mis en application, The→ program
3. Le Programme a ate mis en application, The program→ has
4. Le Programme a ate mis en application, The program has→ been
5. ...

We know how to solve each sequence classification problem!

5 / 36

Reduce generation to classification

We want to model the next word distribution p(yi | y<i , x).
• Input: a sequence of tokens (prefix and input)
• Output: the next word from the output vocabulary

Reduce generation to a sequence of classification problems:
1. Le Programme a ate mis en application→ The
2. Le Programme a ate mis en application, The→ program

3. Le Programme a ate mis en application, The program→ has
4. Le Programme a ate mis en application, The program has→ been
5. ...

We know how to solve each sequence classification problem!

5 / 36

Reduce generation to classification

We want to model the next word distribution p(yi | y<i , x).
• Input: a sequence of tokens (prefix and input)
• Output: the next word from the output vocabulary

Reduce generation to a sequence of classification problems:
1. Le Programme a ate mis en application→ The
2. Le Programme a ate mis en application, The→ program
3. Le Programme a ate mis en application, The program→ has

4. Le Programme a ate mis en application, The program has→ been
5. ...

We know how to solve each sequence classification problem!

5 / 36

Reduce generation to classification

We want to model the next word distribution p(yi | y<i , x).
• Input: a sequence of tokens (prefix and input)
• Output: the next word from the output vocabulary

Reduce generation to a sequence of classification problems:
1. Le Programme a ate mis en application→ The
2. Le Programme a ate mis en application, The→ program
3. Le Programme a ate mis en application, The program→ has
4. Le Programme a ate mis en application, The program has→ been

5. ...

We know how to solve each sequence classification problem!

5 / 36

Reduce generation to classification

We want to model the next word distribution p(yi | y<i , x).
• Input: a sequence of tokens (prefix and input)
• Output: the next word from the output vocabulary

Reduce generation to a sequence of classification problems:
1. Le Programme a ate mis en application→ The
2. Le Programme a ate mis en application, The→ program
3. Le Programme a ate mis en application, The program→ has
4. Le Programme a ate mis en application, The program has→ been
5. ...

We know how to solve each sequence classification problem!

5 / 36

Reduce generation to classification

We want to model the next word distribution p(yi | y<i , x).
• Input: a sequence of tokens (prefix and input)
• Output: the next word from the output vocabulary

Reduce generation to a sequence of classification problems:
1. Le Programme a ate mis en application→ The
2. Le Programme a ate mis en application, The→ program
3. Le Programme a ate mis en application, The program→ has
4. Le Programme a ate mis en application, The program has→ been
5. ...

We know how to solve each sequence classification problem!

5 / 36

Reduce generation to classification

We want to model the next word distribution p(yi | y<i , x).
• Input: a sequence of tokens (prefix and input)
• Output: the next word from the output vocabulary

Reduce generation to a sequence of classification problems:
1. Le Programme a ate mis en application→ The
2. Le Programme a ate mis en application, The→ program
3. Le Programme a ate mis en application, The program→ has
4. Le Programme a ate mis en application, The program has→ been
5. ...

We know how to solve each sequence classification problem!

5 / 36

The encoder-decoder architecture
Model the input (e.g., French) and the output (e.g., English) separately.

Figure: 10.6.1 from d2l.ai

• The encoder reads the input:

Encoder(x1, . . . , xn) = [h1, . . . , hn]

where hi ∈ Rd are hidden states / embeddings.
• The decoder writes the output:

Decoder(h1, . . . , hn) = [y1, . . . , ym]

.

6 / 36

https://d2l.ai/chapter_recurrent-modern/encoder-decoder.html

The encoder-decoder architecture
Model the input (e.g., French) and the output (e.g., English) separately.

Figure: 10.6.1 from d2l.ai

• The encoder reads the input:

Encoder(x1, . . . , xn) = [h1, . . . , hn]

where hi ∈ Rd are hidden states / embeddings.

• The decoder writes the output:

Decoder(h1, . . . , hn) = [y1, . . . , ym]

.

6 / 36

https://d2l.ai/chapter_recurrent-modern/encoder-decoder.html

The encoder-decoder architecture
Model the input (e.g., French) and the output (e.g., English) separately.

Figure: 10.6.1 from d2l.ai

• The encoder reads the input:

Encoder(x1, . . . , xn) = [h1, . . . , hn]

where hi ∈ Rd are hidden states / embeddings.
• The decoder writes the output:

Decoder(h1, . . . , hn) = [y1, . . . , ym]

.
6 / 36

https://d2l.ai/chapter_recurrent-modern/encoder-decoder.html

RNN encoder-decoder model

Figure: 10.7.1 from d2l.ai

• The encoder embeds the input recurrently and produce a context vector

ht = RNNEncoder(xt , ht−1), c = f (h1, . . . , hn)

• The decoder produce the output states recurrently and map them to
distributions over the output vocabulary

st = RNNDecoder([yt−1; c] , st−1), p(yt | y<t , x) = softmax(Linear(st))

7 / 36

https://d2l.ai/chapter_recurrent-modern/seq2seq.html

RNN encoder-decoder model

Figure: 10.7.1 from d2l.ai

• The encoder embeds the input recurrently and produce a context vector

ht = RNNEncoder(xt , ht−1), c = f (h1, . . . , hn)

• The decoder produce the output states recurrently and map them to
distributions over the output vocabulary

st = RNNDecoder([yt−1; c] , st−1), p(yt | y<t , x) = softmax(Linear(st))
7 / 36

https://d2l.ai/chapter_recurrent-modern/seq2seq.html

Bi-directional RNN encoder

The [Forbes]?? building is at 60 Fifth Ave.

We may want the hidden state to summarize both left and right context

Figure: 10.4.1 from d2l.ai

• Use two RNNs, one encode from left
to right, the other from right to left

• Concatenate hidden states from the
two RNNs

ht = [
←−
ht ;
−→
ht]

ot = Wht + b

8 / 36

https://d2l.ai/chapter_recurrent-modern/bi-rnn.html

Bi-directional RNN encoder

The [Forbes]?? building is at 60 Fifth Ave.

We may want the hidden state to summarize both left and right context

Figure: 10.4.1 from d2l.ai

• Use two RNNs, one encode from left
to right, the other from right to left

• Concatenate hidden states from the
two RNNs

ht = [
←−
ht ;
−→
ht]

ot = Wht + b

8 / 36

https://d2l.ai/chapter_recurrent-modern/bi-rnn.html

Bi-directional RNN encoder

The [Forbes]?? building is at 60 Fifth Ave.

We may want the hidden state to summarize both left and right context

Figure: 10.4.1 from d2l.ai

• Use two RNNs, one encode from left
to right, the other from right to left

• Concatenate hidden states from the
two RNNs

ht = [
←−
ht ;
−→
ht]

ot = Wht + b

8 / 36

https://d2l.ai/chapter_recurrent-modern/bi-rnn.html

Multilayer RNN

Figure: 10.3.1 from d2l.ai

• Increase model capacity (scaling up)

• Inputs to layer 1 are words

• Inputs to layer j are outputs from
layer j − 1

• Typically 2–4 layers

9 / 36

https://d2l.ai/chapter_recurrent-modern/deep-rnn.html

Encoder-decoder attention: motivation

Recall that the context vector summarizes the input:

st = RNNDecoder([yt−1; c] , st−1)

Should we use the same context vector for every decoding step?

Le Programme a ate mis en application

The Program has beenimplemented

We may want to “look at” different parts of the input during decoding.

10 / 36

Encoder-decoder attention: motivation

Recall that the context vector summarizes the input:

st = RNNDecoder([yt−1; c] , st−1)

Should we use the same context vector for every decoding step?

Le Programme a ate mis en application

The Program has beenimplemented

We may want to “look at” different parts of the input during decoding.

10 / 36

Encoder-decoder attention: motivation

Gradient vanishing for long distance dependence

Figure: From Sequence to Sequence Learning with Neural Networks [Sutskever et al., 2014]

We may want gradient to flow more directly from input to output

11 / 36

https://arxiv.org/abs/1409.3215

Encoder-decoder attention: motivation

Gradient vanishing for long distance dependence

Figure: From Sequence to Sequence Learning with Neural Networks [Sutskever et al., 2014]

We may want gradient to flow more directly from input to output

11 / 36

https://arxiv.org/abs/1409.3215

Encoder-decoder attention: formalization

Recall that attention models interactions between two sets of objects:

Which input tokens are most relevant for generating the next output token?

• Query: decoder states st−1

• Key: encoder states h1, . . . , hn

• Value: encoder states h1, . . . , hn

• Attention context: ct =
∑n

i=1 α(st−1, hi)hi

• Next state: st = RNNDecoder([yt−1; ct] , st−1)

• Dynamic context vector instead of a fixed
one

12 / 36

Encoder-decoder attention: formalization

Recall that attention models interactions between two sets of objects:

Which input tokens are most relevant for generating the next output token?

• Query: decoder states st−1

• Key: encoder states h1, . . . , hn

• Value: encoder states h1, . . . , hn

• Attention context: ct =
∑n

i=1 α(st−1, hi)hi

• Next state: st = RNNDecoder([yt−1; ct] , st−1)

• Dynamic context vector instead of a fixed
one

12 / 36

Encoder-decoder attention: formalization

Recall that attention models interactions between two sets of objects:

Which input tokens are most relevant for generating the next output token?

• Query: decoder states st−1

• Key: encoder states h1, . . . , hn

• Value: encoder states h1, . . . , hn

• Attention context: ct =
∑n

i=1 α(st−1, hi)hi

• Next state: st = RNNDecoder([yt−1; ct] , st−1)

• Dynamic context vector instead of a fixed
one

12 / 36

Encoder-decoder attention: formalization

Recall that attention models interactions between two sets of objects:

Which input tokens are most relevant for generating the next output token?

• Query: decoder states st−1

• Key: encoder states h1, . . . , hn

• Value: encoder states h1, . . . , hn

• Attention context: ct =
∑n

i=1 α(st−1, hi)hi

• Next state: st = RNNDecoder([yt−1; ct] , st−1)

• Dynamic context vector instead of a fixed
one

12 / 36

Encoder-decoder attention: formalization

Recall that attention models interactions between two sets of objects:

Which input tokens are most relevant for generating the next output token?

• Query: decoder states st−1

• Key: encoder states h1, . . . , hn

• Value: encoder states h1, . . . , hn

• Attention context: ct =
∑n

i=1 α(st−1, hi)hi

• Next state: st = RNNDecoder([yt−1; ct] , st−1)

• Dynamic context vector instead of a fixed
one

12 / 36

Encoder-decoder attention: formalization

Recall that attention models interactions between two sets of objects:

Which input tokens are most relevant for generating the next output token?

• Query: decoder states st−1

• Key: encoder states h1, . . . , hn

• Value: encoder states h1, . . . , hn

• Attention context: ct =
∑n

i=1 α(st−1, hi)hi

• Next state: st = RNNDecoder([yt−1; ct] , st−1)

• Dynamic context vector instead of a fixed
one

12 / 36

Encoder-decoder attention: formalization

Recall that attention models interactions between two sets of objects:

Which input tokens are most relevant for generating the next output token?

• Query: decoder states st−1

• Key: encoder states h1, . . . , hn

• Value: encoder states h1, . . . , hn

• Attention context: ct =
∑n

i=1 α(st−1, hi)hi

• Next state: st = RNNDecoder([yt−1; ct] , st−1)

• Dynamic context vector instead of a fixed
one

12 / 36

Encoder-decoder attention: formalization

Recall that attention models interactions between two sets of objects:

Which input tokens are most relevant for generating the next output token?

• Query: decoder states st−1

• Key: encoder states h1, . . . , hn

• Value: encoder states h1, . . . , hn

• Attention context: ct =
∑n

i=1 α(st−1, hi)hi

• Next state: st = RNNDecoder([yt−1; ct] , st−1)

• Dynamic context vector instead of a fixed
one

12 / 36

Summary so far

The outputs of an encoder can be used by (linear) classifiers for classification,
sequence labeling, etc.

A decoder is used to generate a sequence of symbols.

RNN encoder decoder model:
• Basic unit is an RNN (or its variants like LSTM)
• Make it more expressive: bi-directional, multilayer RNN
• Encoder-decoder attention helps the model learn input-output dependencies
more easily
• Bi-directional LSTM is the go-to architecture for NLP tasks until around 2017

13 / 36

Transformer encoder decoder model

Figure: From illustrated transformer

• Stack the tranformer block (typically 12–24 layers)
• Decoder has an additional encoder-decoder multi-head attention layer

14 / 36

https://jalammar.github.io/illustrated-transformer/

Encoder-decoder attention in Transformer

Figure: From illustrated transformer

TransformerEncoder(x1, . . . , xn) = [h1, . . . , hn] = Henc (1)
Kencdec = HencW

K (2)
Vencdec = HencW

V (3)
DecoderSelfAttention(y1, . . . , yt) = [s1, . . . , st] (4)

qt = stW
Q (5)

15 / 36

https://jalammar.github.io/illustrated-transformer/

Encoder-decoder attention in Transformer

Figure: From illustrated transformer

TransformerEncoder(x1, . . . , xn) = [h1, . . . , hn] = Henc (1)
Kencdec = HencW

K (2)
Vencdec = HencW

V (3)
DecoderSelfAttention(y1, . . . , yt) = [s1, . . . , st] (4)

qt = stW
Q (5)

15 / 36

https://jalammar.github.io/illustrated-transformer/

Impact on NLP

• Initially designed for sequential data and obtained SOTA results on MT

• Replaced recurrent models (e.g. LSTM) on many tasks

• Enabled large-scale training which led to pre-trained models such as BERT and
GPT-2

Why are they so powerful?

16 / 36

Autoregressive generative models

Generating sequences one token at a time from left to right

1. Le Programme a ate mis en application→ The
2. Le Programme a ate mis en application, The→ program
3. Le Programme a ate mis en application, The program→ has
4. Le Programme a ate mis en application, The program has→ been
5. ...

17 / 36

Autoregressive generative models

Generating sequences one token at a time from left to right

Encoder(x1, . . . , xn) = [h1, . . . , hn]

1. Decoder([h1, . . . , hn])→ y1

2. Decoder([h1, . . . , hn], y1)→ y2

3. Decoder([h1, . . . , hn], y1, y2)→ y3

4. Decoder([h1, . . . , hn], y1, y2, y3)→ y4

5. ...

18 / 36

Autoregressive generative models

Is this the only way of modeling and generating text?

We want to learn p(y | x)
• Decompose the probability using chain rule of probability

p(y | x) = p(y1 | x)p(y2 | y1, x) . . . p(ym | ym−1, . . . , y1, x)

=
m∏
i=1

p(yi | y<i , x)

• But we don’t have to decompose it from left to right

19 / 36

Autoregressive generative models

Is this the only way of modeling and generating text?

We want to learn p(y | x)
• Decompose the probability using chain rule of probability

p(y | x) = p(y1 | x)p(y2 | y1, x) . . . p(ym | ym−1, . . . , y1, x)

=
m∏
i=1

p(yi | y<i , x)

• But we don’t have to decompose it from left to right

19 / 36

Training

We are given a dataset D =
{
(x (i), y (i))

}N

i=1 of input and output sequences

Maximum likelihood estimation:

max
∑

(x ,y)∈D

m∑
j=1

log p(yj | y<j , x ; θ)

What is the prefix y<j?

Use the groundtruth prefix (teacher forcing)

20 / 36

Training

We are given a dataset D =
{
(x (i), y (i))

}N

i=1 of input and output sequences

Maximum likelihood estimation:

max
∑

(x ,y)∈D

m∑
j=1

log p(yj | y<j , x ; θ)

What is the prefix y<j?

Use the groundtruth prefix (teacher forcing)

20 / 36

Training

We are given a dataset D =
{
(x (i), y (i))

}N

i=1 of input and output sequences

Maximum likelihood estimation:

max
∑

(x ,y)∈D

m∑
j=1

log p(yj | y<j , x ; θ)

What is the prefix y<j?

Use the groundtruth prefix (teacher forcing)

20 / 36

Start and end symbols

Which one is more likely?

p(The | Le Programme a ate mis en application)
p(The program has been implemented | Le Programme a ate mis en application)

Use sequence start and end symbols to model sequence length

• Le Programme a ate mis en application→ <s> The ... </s>

21 / 36

Start and end symbols

Which one is more likely?

p(The | Le Programme a ate mis en application)
p(The program has been implemented | Le Programme a ate mis en application)

Use sequence start and end symbols to model sequence length

• Le Programme a ate mis en application→ <s> The ... </s>

21 / 36

Decoder attention masking

Recall that the output of self-attention depends on all tokens y1, . . . ym.

But the decoder is supposed to model p(yt | y<t , x).

It should not look at the “future” (yt+1, . . . , ym)!

How do we fix the decoder self-attention?
• Mathematically, changing the input values and keys suffices.

• Practically, set a(si , sj) to − inf for all j > i and for i = 1, . . . ,m.
• The attention matrix is a lower-triangular matrix.

22 / 36

Decoder attention masking

Recall that the output of self-attention depends on all tokens y1, . . . ym.

But the decoder is supposed to model p(yt | y<t , x).

It should not look at the “future” (yt+1, . . . , ym)!

How do we fix the decoder self-attention?
• Mathematically, changing the input values and keys suffices.

• Practically, set a(si , sj) to − inf for all j > i and for i = 1, . . . ,m.
• The attention matrix is a lower-triangular matrix.

22 / 36

Inference

Suppose we have a trained model p(y | x ; θ).

The model defines a probability distribution over all possible sequences.

But we want to output a single sequence.

The decoding problem: How do we predict a sequence from the model?

23 / 36

Inference

Argmax decoding:
ŷ = argmax

y∈Vn
out

p(y | x ; θ)

• Return the most likely sequence
• But exact search is intractable

Approximate search:
• Greedy decoding: return the most likely symbol at each step

yt = argmax
y∈Vout

p(y | x , ŷ<t ; θ)

When to stop?

24 / 36

Inference

Argmax decoding:
ŷ = argmax

y∈Vn
out

p(y | x ; θ)

• Return the most likely sequence
• But exact search is intractable

Approximate search:
• Greedy decoding: return the most likely symbol at each step

yt = argmax
y∈Vout

p(y | x , ŷ<t ; θ)

When to stop?

24 / 36

Approximate decoding: beam search

Beam search: maintain k (beam size) highest-scored partial solutions at every step

score(y1, . . . , yt) =
t∑

i=1

log pθ(yi | y<i)

• At each step, we have a set of k partial hypotheses (prefixes)

• Use the autoregressive model, we can expand all hypotheses by one more token
(how many hypotheses do we have now?)

• Evaluate the score of all hypotheses and keep the top k

25 / 36

Beam search example

Figure: Figure from Chris Manning

Stop when all hypotheses in the beam has terminated or when hitting a limit of
number of steps.

26 / 36

Beam search example

Figure: Figure from Chris Manning

Stop when all hypotheses in the beam has terminated or when hitting a limit of
number of steps.

26 / 36

Is argmax the right decoding objective?
High likelihood can be correlated with low quality outputs! [Zhang et al., 2020]

27 / 36

https://arxiv.org/abs/2004.10450

Is argmax the right decoding objective?

In practice, argmax decoding has been observed to lead to
• Repetitive generations, e.g., “..., was conducted by researchers from the Universidad
Nacional Autonoma de Mexico (UNAM) and the Universidad Nacional Autonoma de
Mexico (UNAM/Universidad Nacional Autonoma de Mexico/Universidad Nacional
Autonoma de Mexico/Universidad Nacional Autonoma...”
• Empty or extremely short translations with large beam size in MT

Hypotheses:
• Models don’t fit the data well
But problem doesn’t go away with larger model and data
• Distribution shift during inference (more on this later)
Need more evidence
• Training data contains repetition

28 / 36

Is argmax the right decoding objective?

In practice, argmax decoding has been observed to lead to
• Repetitive generations, e.g., “..., was conducted by researchers from the Universidad
Nacional Autonoma de Mexico (UNAM) and the Universidad Nacional Autonoma de
Mexico (UNAM/Universidad Nacional Autonoma de Mexico/Universidad Nacional
Autonoma de Mexico/Universidad Nacional Autonoma...”
• Empty or extremely short translations with large beam size in MT

Hypotheses:
• Models don’t fit the data well
But problem doesn’t go away with larger model and data
• Distribution shift during inference (more on this later)
Need more evidence
• Training data contains repetition

28 / 36

Sampling-based decoding

If we have learned a perfect p(y | x), shouldn’t we just sample from it?

Sampling is easy for autoregressive models:
• While output is not EOS
• Sample next word from p(· | prefix, input; θ)
• Append the word to prefix

Standard sampling often produces non-sensical sentences:
They were cattle called Bolivian Cavalleros; they live in a remote desert uninterrupted by town,
and they speak huge, beautiful, paradisiacal Bolivian linguistic thing.

Idea: modify the learned distrubtion pθ before sampling to avoid bad generations

29 / 36

Sampling-based decoding

If we have learned a perfect p(y | x), shouldn’t we just sample from it?

Sampling is easy for autoregressive models:
• While output is not EOS
• Sample next word from p(· | prefix, input; θ)
• Append the word to prefix

Standard sampling often produces non-sensical sentences:
They were cattle called Bolivian Cavalleros; they live in a remote desert uninterrupted by town,
and they speak huge, beautiful, paradisiacal Bolivian linguistic thing.

Idea: modify the learned distrubtion pθ before sampling to avoid bad generations

29 / 36

Sampling-based decoding

If we have learned a perfect p(y | x), shouldn’t we just sample from it?

Sampling is easy for autoregressive models:
• While output is not EOS
• Sample next word from p(· | prefix, input; θ)
• Append the word to prefix

Standard sampling often produces non-sensical sentences:
They were cattle called Bolivian Cavalleros; they live in a remote desert uninterrupted by town,
and they speak huge, beautiful, paradisiacal Bolivian linguistic thing.

Idea: modify the learned distrubtion pθ before sampling to avoid bad generations

29 / 36

Tempered sampling

Intuition: concentrate probability mass on highly likely sequences

Scale scores (from the linear layer) before the softmax layer:

p(yt = w | y<t , x) ∝ exp (score(w))

q(yt = w | y<t , x) ∝ exp (score(w)/T) where T ∈ (0,+∞)

• What happends when T → 0 and T → +∞?
• Does it change the rank of y according to likelihood?
• Typically we chooose T ∈ (0, 1), which makes the distribution more peaky.

30 / 36

Tempered sampling

Intuition: concentrate probability mass on highly likely sequences

Scale scores (from the linear layer) before the softmax layer:

p(yt = w | y<t , x) ∝ exp (score(w))

q(yt = w | y<t , x) ∝ exp (score(w)/T) where T ∈ (0,+∞)

• What happends when T → 0 and T → +∞?
• Does it change the rank of y according to likelihood?
• Typically we chooose T ∈ (0, 1), which makes the distribution more peaky.

30 / 36

Truncated sampling

Another way to focus on highly likely sequences: truncate the tail of the distribution

Top-k sampling:
• Rank all tokens w ∈ V by p(yt = w | y<t , x)

• Only keep the top k of those and renormalize the distribution

Effect of k :
• Large k : more diverse but possibly degenerate outputs
• Small k : more generic but safe outputs

31 / 36

Truncated sampling
Which k to choose?

Figure: From the nucleus sampling paper by Holtzman et al., 2020

Using a single k on different next word distributions may be suboptimal

32 / 36

https://arxiv.org/pdf/1904.09751.pdf

Truncated sampling
Top-p sampling:
• Rank all tokens w ∈ V by p(yt = w | y<t , x)

• Keep only tokens in the top p probability mass and renormalize the distribution
• The corresponding k is dynamic:

• Start with k = 1, increment until the cumulative probability mass > p

Figure: From Xiang Li’s slides

33 / 36

Decoding in practice

• Can combine different tricks (e.g., temperature + beam search, temperature +
top-k)

• Use beam search with small beam size for tasks where there exists a correct
answer, e.g. machine translation

• Use top-k or top-p for open-ended generation, e.g. story generation, chit-chat
dialogue

• As models getting better/larger, sampling-based methods tend to work better

34 / 36

Exposure bias
Problem with teacher forcing:
• During training, the model only sees groundtruth prefix
• During inference, the model sees generated prefix, which may deviate from the
training prefix distribution
• When this happends, the model behavior is underspecified.

35 / 36

Exposure bias

Solutions:
• Avoid deviating from the training prefix distribution
• Better modeling: reduce errors at each step
• Better decoding: stay within the high likelihood region (later)

• Teaching the model how to behave on out-of-distribution prefix
• Better learning: updating models based on the goodness of the generated
sequence
additional supervision required
computationally more expensive

36 / 36

Exposure bias

Solutions:
• Avoid deviating from the training prefix distribution
• Better modeling: reduce errors at each step
• Better decoding: stay within the high likelihood region (later)

• Teaching the model how to behave on out-of-distribution prefix
• Better learning: updating models based on the goodness of the generated
sequence

additional supervision required
computationally more expensive

36 / 36

Exposure bias

Solutions:
• Avoid deviating from the training prefix distribution
• Better modeling: reduce errors at each step
• Better decoding: stay within the high likelihood region (later)

• Teaching the model how to behave on out-of-distribution prefix
• Better learning: updating models based on the goodness of the generated
sequence
additional supervision required
computationally more expensive

36 / 36

