Neural Sequence Generation

He He

September 25, 2023

Review: sequence representation

- Encoders represent a sequence of tokens as a sequence of embeddings
- Each embedding is a **contextualized representation** of the token
- We can then use the embeddings for classification or sequence labeling
- What if we want to predict a sequence of tokens from the input sequence (e.g., machine translation)?

- Sequence classification: $h: \mathcal{V}^n \to \{0, \dots, K\}$
 - Sentiment classification
 - Next word prediction

- Sequence classification: $h: \mathcal{V}^n \to \{0, \dots, K\}$
 - Sentiment classification
 - Next word prediction
- Sequence labeling: $h: \mathcal{V}^n \to \{0, \dots, K\}^n$
 - Part-of-speech tagging
 - Name entity recognition

- Sequence classification: $h: \mathcal{V}^n \to \{0, \dots, K\}$
 - Sentiment classification
 - Next word prediction
- Sequence labeling: $h: \mathcal{V}^n \to \{0, \dots, K\}^n$
 - Part-of-speech tagging
 - Name entity recognition
- Sequence generation: $h: \mathcal{V}_{in}^n \rightarrow \mathcal{V}_{out}^m$
 - Summarization: document to summary
 - Open-domain dialogue: context to response
 - Parsing: sentence to linearized trees
 - In general: sequence to sequence

- Sequence classification: $h: \mathcal{V}^n \to \{0, \dots, K\}$
 - Sentiment classification
 - Next word prediction
- Sequence labeling: $h: \mathcal{V}^n \to \{0, \dots, K\}^n$
 - Part-of-speech tagging
 - Name entity recognition
- Sequence generation: $h: \mathcal{V}_{in}^n \rightarrow \mathcal{V}_{out}^m$
 - Summarization: document to summary
 - Open-domain dialogue: context to response
 - Parsing: sentence to linearized trees
 - In general: sequence to sequence

- Sequence classification: $h: \mathcal{V}^n \to \{0, \dots, K\}$
 - Sentiment classification
 - Next word prediction
- Sequence labeling: $h: \mathcal{V}^n \to \{0, \dots, K\}^n$
 - Part-of-speech tagging
 - Name entity recognition
- Sequence generation: $h: \mathcal{V}_{in}^n \rightarrow \mathcal{V}_{out}^m$
 - Summarization: document to summary
 - Open-domain dialogue: context to response
 - Parsing: sentence to linearized trees
 - In general: sequence to sequence

Main difference (and challenge) is that the output space is much larger.

Setup:

- Input: $x \in \mathcal{V}_{in}^n$, e.g. *Le Programme a ate mis en application*
- Output: $y \in \mathcal{V}_{out}^m$, e.g., *The program has been implemented*

Setup:

- Input: $x \in \mathcal{V}_{in}^{n}$, e.g. *Le Programme a ate mis en application*
- Output: $y \in \mathcal{V}_{\mathsf{out}}^m$, e.g., *The program has been implemented*

Consider a probabilistic model $p(y \mid x)$

• Can we reduce it to classification?

Setup:

- Input: $x \in \mathcal{V}_{in}^n$, e.g. *Le Programme a ate mis en application*
- Output: $y \in \mathcal{V}_{out}^m$, e.g., *The program has been implemented*

Consider a probabilistic model $p(y \mid x)$

- Can we reduce it to classification?
- Decompose the problem using chain rule of probability

$$p(y \mid x) = p(y_1 \mid x)p(y_2 \mid y_1, x) \dots p(y_m \mid y_{m-1}, \dots, y_1, x)$$
$$= \prod_{i=1}^m p(y_i \mid y_{< i}, x)$$

Setup:

- Input: $x \in \mathcal{V}_{in}^n$, e.g. *Le Programme a ate mis en application*
- Output: $y \in \mathcal{V}_{out}^m$, e.g., *The program has been implemented*

Consider a probabilistic model $p(y \mid x)$

- Can we reduce it to classification?
- Decompose the problem using chain rule of probability

$$p(y \mid x) = p(y_1 \mid x)p(y_2 \mid y_1, x) \dots p(y_m \mid y_{m-1}, \dots, y_1, x)$$

= $\prod_{i=1}^m p(y_i \mid y_{< i}, x)$

• We only need to model the next word distribution $p(y_i | y_{\leq i}, x)$ now.

We want to model the next word distribution $p(y_i | y_{< i}, x)$.

- Input: a sequence of tokens (prefix and input)
- Output: the next word from the output vocabulary

We want to model the next word distribution $p(y_i | y_{< i}, x)$.

- Input: a sequence of tokens (prefix and input)
- Output: the next word from the output vocabulary

Reduce generation to a sequence of classification problems:

1. Le Programme a ate mis en application \rightarrow The

We want to model the next word distribution $p(y_i | y_{< i}, x)$.

- Input: a sequence of tokens (prefix and input)
- Output: the next word from the output vocabulary

- 1. Le Programme a ate mis en application \rightarrow The
- 2. Le Programme a ate mis en application, The \rightarrow program

We want to model the next word distribution $p(y_i | y_{< i}, x)$.

- Input: a sequence of tokens (prefix and input)
- Output: the next word from the output vocabulary

- 1. Le Programme a ate mis en application \rightarrow The
- 2. Le Programme a ate mis en application, The \rightarrow program
- 3. Le Programme a ate mis en application, The program \rightarrow has

We want to model the next word distribution $p(y_i | y_{< i}, x)$.

- Input: a sequence of tokens (prefix and input)
- Output: the next word from the output vocabulary

- 1. Le Programme a ate mis en application \rightarrow The
- 2. Le Programme a ate mis en application, The \rightarrow program
- 3. Le Programme a ate mis en application, The program \rightarrow has
- 4. Le Programme a ate mis en application, The program has \rightarrow been

We want to model the next word distribution $p(y_i | y_{< i}, x)$.

- Input: a sequence of tokens (prefix and input)
- Output: the next word from the output vocabulary

- 1. Le Programme a ate mis en application \rightarrow The
- 2. Le Programme a ate mis en application, The \rightarrow program
- 3. Le Programme a ate mis en application, The program \rightarrow has
- Le Programme a ate mis en application, The program has → been
 ...

We want to model the next word distribution $p(y_i | y_{< i}, x)$.

- Input: a sequence of tokens (prefix and input)
- Output: the next word from the output vocabulary

- 1. Le Programme a ate mis en application \rightarrow The
- 2. Le Programme a ate mis en application, The \rightarrow program
- 3. Le Programme a ate mis en application, The program \rightarrow has
- Le Programme a ate mis en application, The program has → been
 ...

We want to model the next word distribution $p(y_i | y_{< i}, x)$.

- Input: a sequence of tokens (prefix and input)
- Output: the next word from the output vocabulary

Reduce generation to a sequence of classification problems:

- 1. Le Programme a ate mis en application \rightarrow The
- 2. Le Programme a ate mis en application, The \rightarrow program
- 3. Le Programme a ate mis en application, The program \rightarrow has
- Le Programme a ate mis en application, The program has → been

We know how to solve each sequence classification problem!

The encoder-decoder architecture

Model the input (e.g., French) and the output (e.g., English) separately.



Figure: 10.6.1 from d2l.ai

The encoder-decoder architecture

Model the input (e.g., French) and the output (e.g., English) separately.



Figure: 10.6.1 from d2l.ai

• The **encoder** reads the input:

$$\mathrm{Encoder}(x_1,\ldots,x_n)=[h_1,\ldots,h_n]$$

where $h_i \in \mathbb{R}^d$ are hidden states / embeddings.

The encoder-decoder architecture

Model the input (e.g., French) and the output (e.g., English) separately.

Figure: 10.6.1 from d2l.ai

• The **encoder** reads the input:

$$\operatorname{Encoder}(x_1,\ldots,x_n) = [h_1,\ldots,h_n]$$

where $h_i \in \mathbb{R}^d$ are hidden states / embeddings.

• The **decoder** writes the output:

٠

$$Decoder(h_1,\ldots,h_n) = [y_1,\ldots,y_m]$$

RNN encoder-decoder model

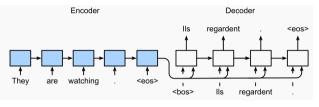


Figure: 10.7.1 from d2l.ai

• The encoder embeds the input recurrently and produce a context vector

$$h_t = \text{RNNEncoder}(x_t, h_{t-1}), \quad c = f(h_1, \ldots, h_n)$$

RNN encoder-decoder model

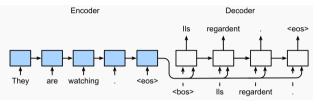


Figure: 10.7.1 from d2l.ai

• The encoder embeds the input recurrently and produce a context vector

$$h_t = \text{RNNEncoder}(x_t, h_{t-1}), \quad c = f(h_1, \ldots, h_n)$$

• The **decoder** produce the output states recurrently and map them to distributions over the output vocabulary

$$s_t = \text{RNNDecoder}([y_{t-1}; c], s_{t-1}), \quad p(y_t \mid y_{< t}, x) = \text{softmax}(\text{Linear}(s_t))$$

Bi-directional RNN encoder

The [Forbes]_{??} building is at 60 Fifth Ave.

Bi-directional RNN encoder

The [Forbes]_{??} building is at 60 Fifth Ave.

We may want the hidden state to summarize both left and right context

Bi-directional RNN encoder

The [Forbes]?? building is at 60 Fifth Ave.

We may want the hidden state to summarize both left and right context

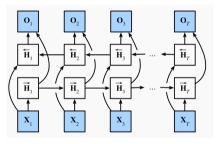


Figure: 10.4.1 from d2l.ai

- Use two RNNs, one encode from left to right, the other from right to left
- Concatenate hidden states from the two RNNs

$$egin{aligned} h_t &= [\overleftarrow{h_t}; \overrightarrow{h_t}] \ o_t &= Wh_t + b \end{aligned}$$

Multilayer RNN

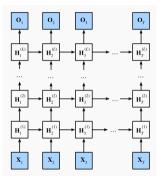


Figure: 10.3.1 from d2l.ai

- Increase model capacity (scaling up)
- Inputs to layer 1 are words
- Inputs to layer *j* are outputs from layer *j* 1
- Typically 2–4 layers

Recall that the context vector summarizes the input:

$$s_t = \text{RNNDecoder}([y_{t-1}; c], s_{t-1})$$

Should we use the same context vector for every decoding step?

Recall that the context vector summarizes the input:

$$s_t = \text{RNNDecoder}([y_{t-1}; c], s_{t-1})$$

Should we use the same context vector for every decoding step?

We may want to "look at" different parts of the input during decoding.

Gradient vanishing for long distance dependence

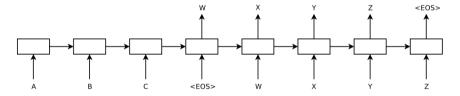


Figure: From Sequence to Sequence Learning with Neural Networks [Sutskever et al., 2014]

Gradient vanishing for long distance dependence

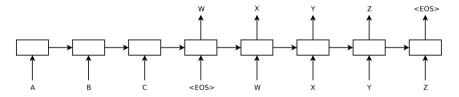


Figure: From Sequence to Sequence Learning with Neural Networks [Sutskever et al., 2014]

We may want gradient to flow more directly from input to output

Recall that attention models interactions between two sets of objects:

Which input tokens are most relevant for generating the next output token?

Recall that attention models interactions between two sets of objects:

Which input tokens are most relevant for generating the next output token?

• Query: decoder states s_{t-1}

Recall that attention models interactions between two sets of objects:

Which input tokens are most relevant for generating the next output token?

- Query: decoder states s_{t-1}
- Key: encoder states h_1, \ldots, h_n

Recall that attention models interactions between two sets of objects:

Which input tokens are most relevant for generating the next output token?

- Query: decoder states s_{t-1}
- Key: encoder states h_1, \ldots, h_n
- Value: encoder states h_1, \ldots, h_n

Recall that attention models interactions between two sets of objects:

- Query: decoder states s_{t-1}
- Key: encoder states h_1, \ldots, h_n
- Value: encoder states h_1, \ldots, h_n
- Attention context: $c_t = \sum_{i=1}^n \alpha(s_{t-1}, h_i) h_i$

Recall that attention models interactions between two sets of objects:

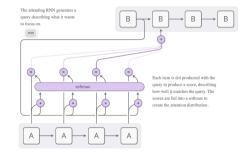
- Query: decoder states s_{t-1}
- Key: encoder states h_1, \ldots, h_n
- Value: encoder states h_1, \ldots, h_n
- Attention context: $c_t = \sum_{i=1}^n \alpha(s_{t-1}, h_i) h_i$
- Next state: $s_t = \text{RNNDecoder}([y_{t-1}; c_t], s_{t-1})$

Recall that attention models interactions between two sets of objects:

- Query: decoder states s_{t-1}
- Key: encoder states h_1, \ldots, h_n
- Value: encoder states h_1, \ldots, h_n
- Attention context: $c_t = \sum_{i=1}^n \alpha(s_{t-1}, h_i) h_i$
- Next state: $s_t = \text{RNNDecoder}([y_{t-1}; c_t], s_{t-1})$
 - Dynamic context vector instead of a fixed one

Recall that attention models interactions between two sets of objects:

- Query: decoder states *s*_{*t*-1}
- Key: encoder states h_1, \ldots, h_n
- Value: encoder states h_1, \ldots, h_n
- Attention context: $c_t = \sum_{i=1}^n \alpha(\mathbf{s}_{t-1}, \mathbf{h}_i) \mathbf{h}_i$
- Next state: $s_t = \text{RNNDecoder}([y_{t-1}; c_t], s_{t-1})$
 - Dynamic context vector instead of a fixed one



Summary so far

The outputs of an encoder can be used by (linear) classifiers for classification, sequence labeling, etc.

A decoder is used to generate a sequence of symbols.

RNN encoder decoder model:

- Basic unit is an RNN (or its variants like LSTM)
- Make it more expressive: bi-directional, multilayer RNN
- Encoder-decoder attention helps the model learn input-output dependencies more easily
- Bi-directional LSTM is the go-to architecture for NLP tasks until around 2017

Transformer encoder decoder model

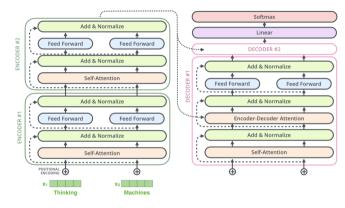


Figure: From illustrated transformer

- Stack the tranformer block (typically 12–24 layers)
- Decoder has an additional encoder-decoder multi-head attention layer

Encoder-decoder attention in Transformer

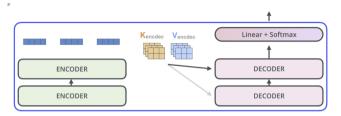


Figure: From illustrated transformer

$$TransformerEncoder(x_1, \dots, x_n) = [h_1, \dots, h_n] = H_{enc}$$
(1)

$$K_{\rm encdec} = H_{\rm enc} W^{K} \tag{2}$$

$$V_{\rm encdec} = H_{\rm enc} W^V \tag{3}$$

DecoderSelfAttention
$$(y_1, \ldots, y_t) = [s_1, \ldots, s_t]$$
 (4)

$$q_t = s_t W^Q \tag{5}$$

Encoder-decoder attention in Transformer

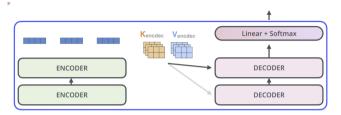


Figure: From illustrated transformer

$$TransformerEncoder(x_1, \dots, x_n) = [h_1, \dots, h_n] = H_{enc}$$
(1)

$$K_{\rm encdec} = H_{\rm enc} W^{K} \tag{2}$$

$$V_{\rm encdec} = H_{\rm enc} W^V \tag{3}$$

DecoderSelfAttention
$$(y_1, \ldots, y_t) = [s_1, \ldots, s_t]$$
 (4)

$$q_t = s_t W^Q \tag{5}$$

Impact on NLP

- Initially designed for sequential data and obtained SOTA results on MT
- Replaced recurrent models (e.g. LSTM) on many tasks
- Enabled large-scale training which led to pre-trained models such as BERT and GPT-2

Why are they so powerful?

Generating sequences one token at a time from left to right

- 1. Le Programme a ate mis en application \rightarrow The
- 2. Le Programme a ate mis en application, The \rightarrow program
- 3. Le Programme a ate mis en application, The program \rightarrow has
- Le Programme a ate mis en application, The program has → been
 ...

Autoregressive generative models

Generating sequences one token at a time from left to right

$$\operatorname{Encoder}(x_1,\ldots,x_n) = [h_1,\ldots,h_n]$$

- 1. Decoder $([h_1,\ldots,h_n]) \rightarrow y_1$
- 2. Decoder($[h_1, \ldots, h_n], y_1$) $\rightarrow y_2$
- 3. Decoder($[h_1, \ldots, h_n], y_1, y_2$) $\rightarrow y_3$
- 4. Decoder($[h_1, \ldots, h_n], y_1, y_2, y_3$) $\rightarrow y_4$ 5. ...

Autoregressive generative models

Is this the only way of modeling and generating text?

Autoregressive generative models

Is this the only way of modeling and generating text?

We want to learn $p(y \mid x)$

• Decompose the probability using chain rule of probability

$$p(y \mid x) = p(y_1 \mid x)p(y_2 \mid y_1, x) \dots p(y_m \mid y_{m-1}, \dots, y_1, x)$$
$$= \prod_{i=1}^m p(y_i \mid y_{< i}, x)$$

• But we don't have to decompose it from left to right

Training

We are given a dataset $\mathcal{D} = \{(x^{(i)}, y^{(i)})\}_{i=1}^N$ of input and output sequences

Maximum likelihood estimation:

$$\max \sum_{(x,y)\in\mathcal{D}}\sum_{j=1}^{m}\log p(y_{j}\mid y_{< j}, x; \theta)$$

Training

We are given a dataset $\mathcal{D} = \{(x^{(i)}, y^{(i)})\}_{i=1}^N$ of input and output sequences

Maximum likelihood estimation:

$$\max \sum_{(x,y)\in\mathcal{D}}\sum_{j=1}^m \log p(y_j \mid y_{< j}, x; \theta)$$

What is the prefix $y_{<i}$?

Training

We are given a dataset $\mathcal{D} = \left\{ (x^{(i)}, y^{(i)}) \right\}_{i=1}^N$ of input and output sequences

Maximum likelihood estimation:

$$\max \sum_{(x,y)\in\mathcal{D}}\sum_{j=1}^{m}\log p(y_{j}\mid y_{< j}, x; \theta)$$

What is the prefix $y_{<i}$?

Use the groundtruth prefix (teacher forcing)

Start and end symbols

Which one is more likely?

 $p(\text{The} \mid \text{Le Programme a ate mis en application})$ $p(\text{The program has been implemented} \mid \text{Le Programme a ate mis en application})$

Start and end symbols

Which one is more likely?

 $p(\text{The} \mid \text{Le Programme a ate mis en application})$ $p(\text{The program has been implemented} \mid \text{Le Programme a ate mis en application})$

Use sequence start and end symbols to model sequence length

• Le Programme a ate mis en application \rightarrow <s> The ... </s>

Decoder attention masking

Recall that the output of self-attention depends on all tokens $y_1, \ldots y_m$.

But the decoder is supposed to model $p(y_t | y_{\le t}, x)$.

It should not look at the "future" $(y_{t+1}, \ldots, y_m)!$

Decoder attention masking

Recall that the output of self-attention depends on all tokens $y_1, \ldots y_m$.

But the decoder is supposed to model $p(y_t | y_{< t}, x)$.

It should not look at the "future" $(y_{t+1}, \ldots, y_m)!$

How do we fix the decoder self-attention?

- Mathematically, changing the input values and keys suffices.
- Practically, set $a(s_i, s_j)$ to $-\inf$ for all j > i and for i = 1, ..., m.
 - The attention matrix is a lower-triangular matrix.

Suppose we have a trained model $p(y \mid x; \theta)$.

The model defines a probability distribution over all possible sequences.

But we want to output a single sequence.

The **decoding** problem: How do we predict a sequence from the model?

Inference

Argmax decoding:

$$\hat{y} = \arg\max_{y \in \mathcal{V}_{out}^n} p(y \mid x; \theta)$$

- Return the most likely sequence
- But exact search is intractable

Inference

Argmax decoding:

$$\hat{y} = rg\max_{y \in \mathcal{V}_{out}^n} p(y \mid x; \theta)$$

- Return the most likely sequence
- But exact search is intractable

Approximate search:

• Greedy decoding: return the most likely symbol at each step

$$y_t = \arg\max_{y \in \mathcal{V}_{out}} p(y \mid x, \hat{y}_{< t}; \theta)$$

When to stop?

Approximate decoding: beam search

Beam search: maintain *k* (beam size) highest-scored partial solutions at every step

$$\operatorname{score}(y_1,\ldots,y_t) = \sum_{i=1}^t \log p_{\theta}(y_i \mid y_{< i})$$

- At each step, we have a set of k partial hypotheses (prefixes)
- Use the autoregressive model, we can expand all hypotheses by one more token (how many hypotheses do we have now?)
- Evaluate the score of all hypotheses and keep the top *k*

Beam search example

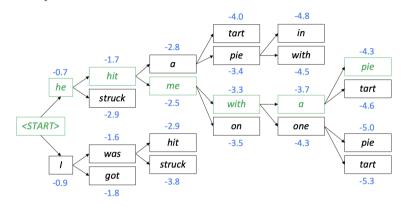


Figure: Figure from Chris Manning

Beam search example

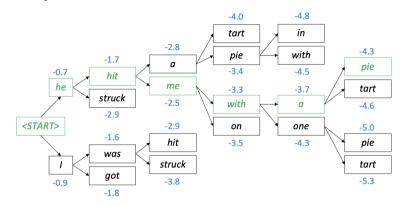
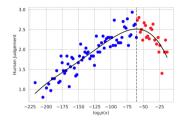


Figure: Figure from Chris Manning

Stop when all hypotheses in the beam has terminated or when hitting a limit of number of steps.

Is argmax the right decoding objective?

High likelihood can be correlated with low quality outputs! [Zhang et al., 2020]



Context	Continuation	$\log p(x)$	Classification
The Atlanta Falcons have started the 2015 season 4-0 under new head coach Dan Quinn. Quarterback Matt Ryan has the	mental Tough O'Rourke Tough apology assessment category of virtue from Boser' Blog here. It's got letters and images on it and is utterly	-177	Nonsense
	team afloat and looks closer to the 2010 Atlanta Falcons. Starting cornerback Desmond Trufant was one of the top players on the 2014	-74	Reasonable
	team in the thick of the NFC South race. The Atlanta Falcons have started the 2015 season 4-0 under new head coach Dan Quinn. Quarter	-14	Repetition
They have changed the phone menu to try to deflect us to email, but you can still get a live	answer from a female administratoria llallushoss@rahpx Sandra PJ Jenniea nightiopq HamidF daroyqg S')	-229	Nonsense
	message or call on line, so I suppose they are just using that as an excuse. Yet they are still telling people to change their telephone number	-86	Reasonable
	link to a phone number here. They have changed the phone menu to try to deflect us to email, but you can still get a live link to	-23	Repetition

Is argmax the right decoding objective?

In practice, argmax decoding has been observed to lead to

- Repetitive generations, e.g., "..., was conducted by researchers from the Universidad Nacional Autonoma de Mexico (UNAM) and the Universidad Nacional Autonoma de Mexico (UNAM/Universidad Nacional Autonoma de Mexico/Universidad Nacional Autonoma de Mexico/Universidad Nacional Autonoma..."
- Empty or extremely short translations with large beam size in MT

Is argmax the right decoding objective?

In practice, argmax decoding has been observed to lead to

- Repetitive generations, e.g., "..., was conducted by researchers from the Universidad Nacional Autonoma de Mexico (UNAM) and the Universidad Nacional Autonoma de Mexico (UNAM/Universidad Nacional Autonoma de Mexico/Universidad Nacional Autonoma de Mexico/Universidad Nacional Autonoma..."
- Empty or extremely short translations with large beam size in MT

Hypotheses:

- Models don't fit the data well But problem doesn't go away with larger model and data
- Distribution shift during inference (more on this later) *Need more evidence*
- Training data contains repetition

Sampling-based decoding

If we have learned a perfect $p(y \mid x)$, shouldn't we just sample from it?

Sampling-based decoding

If we have learned a perfect $p(y \mid x)$, shouldn't we just sample from it?

Sampling is easy for autoregressive models:

- While output is not EOS
 - Sample next word from $p(\cdot | \text{ prefix, input; } \theta)$
 - Append the word to prefix

Sampling-based decoding

If we have learned a perfect $p(y \mid x)$, shouldn't we just sample from it?

Sampling is easy for autoregressive models:

- While output is not EOS
 - Sample next word from $p(\cdot | \text{ prefix, input; } \theta)$
 - Append the word to prefix

Standard sampling often produces non-sensical sentences:

They were cattle called Bolivian Cavalleros; they live in a remote desert uninterrupted by town, and they speak huge, beautiful, paradisiacal Bolivian linguistic thing.

Idea: modify the learned distrubtion p_{θ} before sampling to avoid bad generations

Tempered sampling

Intuition: concentrate probability mass on highly likely sequences

Scale scores (from the linear layer) before the softmax layer:

$$\begin{aligned} p(y_t = w \mid y_{< t}, x) &\propto \exp\left(\operatorname{score}(w)\right) \\ q(y_t = w \mid y_{< t}, x) &\propto \exp\left(\operatorname{score}(w)/T\right) & \text{where } T \in (0, +\infty) \end{aligned}$$

Tempered sampling

Intuition: concentrate probability mass on highly likely sequences

Scale scores (from the linear layer) before the softmax layer:

$$\begin{aligned} p(y_t = w \mid y_{< t}, x) &\propto \exp\left(\operatorname{score}(w)\right) \\ q(y_t = w \mid y_{< t}, x) &\propto \exp\left(\operatorname{score}(w)/T\right) & \text{where } T \in (0, +\infty) \end{aligned}$$

- What happends when $T \rightarrow 0$ and $T \rightarrow +\infty$?
- Does it change the rank of *y* according to likelihood?
- Typically we chooose $T \in (0, 1)$, which makes the distribution more peaky.

Truncated sampling

Another way to focus on highly likely sequences: truncate the tail of the distribution

Top-k sampling:

- Rank all tokens $w \in \mathcal{V}$ by $p(y_t = w \mid y_{< t}, x)$
- Only keep the top *k* of those and renormalize the distribution

Effect of k:

- Large *k*: more diverse but possibly degenerate outputs
- Small *k*: more generic but safe outputs

Truncated sampling

Which *k* to choose?

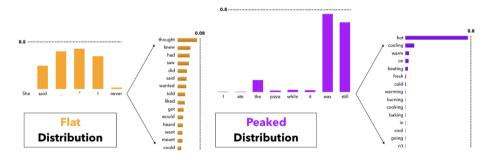


Figure: From the nucleus sampling paper by Holtzman et al., 2020

Using a single k on different next word distributions may be suboptimal

Truncated sampling

Top-p sampling:

- Rank all tokens $w \in \mathcal{V}$ by $p(y_t = w \mid y_{\leq t}, x)$
- Keep only tokens in the top *p* probability mass and renormalize the distribution
- The corresponding *k* is dynamic:
 - Start with k = 1, increment until the cumulative probability mass > p

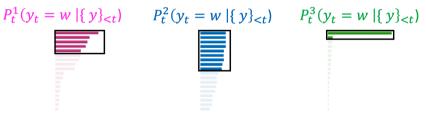


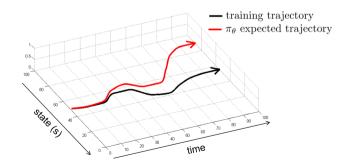
Figure: From Xiang Li's slides

Decoding in practice

- Can combine different tricks (e.g., temperature + beam search, temperature + top-k)
- Use beam search with small beam size for tasks where there exists a correct answer, e.g. machine translation
- Use top-*k* or top-*p* for open-ended generation, e.g. story generation, chit-chat dialogue
- As models getting better/larger, sampling-based methods tend to work better

Problem with teacher forcing:

- During training, the model only sees groundtruth prefix
- During inference, the model sees generated prefix, which may deviate from the training prefix distribution
- When this happends, the model behavior is underspecified.



Solutions:

- Avoid deviating from the training prefix distribution
 - Better modeling: reduce errors at each step
 - Better decoding: stay within the high likelihood region (later)

Solutions:

- Avoid deviating from the training prefix distribution
 - Better modeling: reduce errors at each step
 - Better decoding: stay within the high likelihood region (later)
- Teaching the model how to behave on out-of-distribution prefix
 - Better learning: updating models based on the goodness of the *generated* sequence

Solutions:

- Avoid deviating from the training prefix distribution
 - Better modeling: reduce errors at each step
 - Better decoding: stay within the high likelihood region (later)
- Teaching the model how to behave on out-of-distribution prefix
 - Better learning: updating models based on the goodness of the *generated* sequence *additional supervision required*

computationally more expensive