
Neural Sequence Modeling

He He

September 18, 2024

1 / 47



Logistics

• HW1 due this Friday at 12pm.
• HW2 will be released this Friday.

2 / 47



Table of Contents

Neural network basics (continued)

Recurrent neural networks

Self-attention

Tranformer

3 / 47



Computation graphs
(adpated from David Rosenberg’s slides)

Function as a node that takes in inputs and produces outputs.

• Typical computation graph: • Broken out into components:

4 / 47



Compose multiple functions
(adpated from David Rosenberg’s slides)

Compose two functions g : Rp → Rn and f : Rn → Rm: c = f (g(a))

• Derivative: How does change in aj affect ci?

∂ci
∂aj

=
n∑

k=1

∂ci
∂bk

∂bk
∂aj

.

• Visualize the multivariable chain rule:
• Sum changes induced on all paths from aj to ci .
• Changes on one path is the product of changes across each node.

5 / 47



Compose multiple functions
(adpated from David Rosenberg’s slides)

Compose two functions g : Rp → Rn and f : Rn → Rm: c = f (g(a))

• Derivative: How does change in aj affect ci?

∂ci
∂aj

=
n∑

k=1

∂ci
∂bk

∂bk
∂aj

.

• Visualize the multivariable chain rule:
• Sum changes induced on all paths from aj to ci .
• Changes on one path is the product of changes across each node.

5 / 47



Compose multiple functions
(adpated from David Rosenberg’s slides)

Compose two functions g : Rp → Rn and f : Rn → Rm: c = f (g(a))

• Derivative: How does change in aj affect ci?

∂ci
∂aj

=
n∑

k=1

∂ci
∂bk

∂bk
∂aj

.

• Visualize the multivariable chain rule:
• Sum changes induced on all paths from aj to ci .
• Changes on one path is the product of changes across each node.

5 / 47



Compose multiple functions
(adpated from David Rosenberg’s slides)

Compose two functions g : Rp → Rn and f : Rn → Rm: c = f (g(a))

• Derivative: How does change in aj affect ci?

∂ci
∂aj

=
n∑

k=1

∂ci
∂bk

∂bk
∂aj

.

• Visualize the multivariable chain rule:
• Sum changes induced on all paths from aj to ci .
• Changes on one path is the product of changes across each node.

5 / 47



Computation graph example
(adpated from David Rosenberg’s slides)

(What is this graph computing?)

∂ℓ

∂r
= 2r

∂ℓ

∂ŷ
=

∂ℓ

∂r

∂r

∂ŷ
= (2r) (−1) = −2r

∂ℓ

∂b
=

∂ℓ

∂ŷ

∂ŷ

∂b
= (−2r) (1) = −2r

∂ℓ

∂wj
=

∂ℓ

∂ŷ

∂ŷ

∂wj
= (−2r) xj = −2rxj

Computing the derivatives in certain order allows us to save compute!

6 / 47



Computation graph example
(adpated from David Rosenberg’s slides)

(What is this graph computing?)

∂ℓ

∂r
= 2r

∂ℓ

∂ŷ
=

∂ℓ

∂r

∂r

∂ŷ
= (2r) (−1) = −2r

∂ℓ

∂b
=

∂ℓ

∂ŷ

∂ŷ

∂b
= (−2r) (1) = −2r

∂ℓ

∂wj
=

∂ℓ

∂ŷ

∂ŷ

∂wj
= (−2r) xj = −2rxj

Computing the derivatives in certain order allows us to save compute!

6 / 47



Computation graph example
(adpated from David Rosenberg’s slides)

(What is this graph computing?)

∂ℓ

∂r
= 2r

∂ℓ

∂ŷ
=

∂ℓ

∂r

∂r

∂ŷ
= (2r) (−1) = −2r

∂ℓ

∂b
=

∂ℓ

∂ŷ

∂ŷ

∂b
= (−2r) (1) = −2r

∂ℓ

∂wj
=

∂ℓ

∂ŷ

∂ŷ

∂wj
= (−2r) xj = −2rxj

Computing the derivatives in certain order allows us to save compute!

6 / 47



Computation graph example
(adpated from David Rosenberg’s slides)

(What is this graph computing?)

∂ℓ

∂r
= 2r

∂ℓ

∂ŷ
=

∂ℓ

∂r

∂r

∂ŷ
= (2r) (−1) = −2r

∂ℓ

∂b
=

∂ℓ

∂ŷ

∂ŷ

∂b
= (−2r) (1) = −2r

∂ℓ

∂wj
=

∂ℓ

∂ŷ

∂ŷ

∂wj
= (−2r) xj = −2rxj

Computing the derivatives in certain order allows us to save compute!

6 / 47



Backpropogation

Backpropogation = chain rule + dynamic programming on a computation graph

Forward pass

• Topological order: every node appears before its children
• For each node, compute the output given the input (from its parents).

. . . fi fj . . .

a b = fi (a) c = fj(b)

7 / 47



Backpropogation

Backpropogation = chain rule + dynamic programming on a computation graph

Forward pass

• Topological order: every node appears before its children
• For each node, compute the output given the input (from its parents).

. . . fi fj . . .

a b = fi (a) c = fj(b)

7 / 47



Backpropogation

Backward pass

• Reverse topological order: every node appear after its children
• For each node, compute the partial derivative of its output w.r.t. its input,

multiplied by the partial derivative from its children (chain rule).

. . . fi fj . . .

a b = fi (a) c = fj(b)

gi = gj · ∂b
∂a = ∂J

∂a gj =
∂J
∂b

8 / 47



Summary

Key idea in neural nets: feature/representation learning

Building blocks:
• Input layer: raw features (no learnable parameters)
• Hidden layer: perceptron + nonlinear activation function
• Output layer: linear (+ transformation, e.g. softmax)

Optimization:
• Optimize by SGD (implemented by back-propogation)
• Objective is non-convex, may not reach a global minimum

9 / 47



Table of Contents

Neural network basics (continued)

Recurrent neural networks

Self-attention

Tranformer

10 / 47



Overview

Problem setup: given an input sequence, come up with a (neural network) model
that outputs a representation of the sequence for downstream tasks (e.g.,
classification)

Key challenge: how to model interaction among words?

Approach:
• Aggregation (pooling word embeddings)
• Recurrence
• Self-attention

11 / 47



Overview

Problem setup: given an input sequence, come up with a (neural network) model
that outputs a representation of the sequence for downstream tasks (e.g.,
classification)

Key challenge: how to model interaction among words?

Approach:
• Aggregation (pooling word embeddings)
• Recurrence
• Self-attention

11 / 47



Overview

Problem setup: given an input sequence, come up with a (neural network) model
that outputs a representation of the sequence for downstream tasks (e.g.,
classification)

Key challenge: how to model interaction among words?

Approach:
• Aggregation (pooling word embeddings)
• Recurrence
• Self-attention

11 / 47



Feed-forward neural network for text classification

a

φone-hot(x)

W11x

good

φone-hot(x)

W12x

book

φone-hot(x)

W13x

[x1;x2;x3]

σ(W2x + b)

softmax(Wox + b)

input words

one-hot embedding

dense embedding

concatenation

“merge”

classification

Where is the interaction between words modeled?
How to adapt the network to handle sequences with arbitrary length?

12 / 47



Feed-forward neural network for text classification

a

φone-hot(x)

W11x

good

φone-hot(x)

W12x

book

φone-hot(x)

W13x

[x1;x2;x3]

σ(W2x + b)

softmax(Wox + b)

input words

one-hot embedding

dense embedding

concatenation

“merge”

classification

Where is the interaction between words modeled?
How to adapt the network to handle sequences with arbitrary length?

12 / 47



Recurrent neural networks
• Goal: compute representation of sequence x1:T of varying lengths
• Idea: combine new symbols with previous symbols recurrently

• Update the representation, i.e. hidden states ht , recurrently

ht = f (ht−1, xt)

• Output from previous time step is the input to the current time step
• Apply the same transformation f at each time step

Figure: 9.1 from d2l.ai

13 / 47

https://d2l.ai/chapter_recurrent-neural-networks


Recurrent neural networks
• Goal: compute representation of sequence x1:T of varying lengths
• Idea: combine new symbols with previous symbols recurrently

• Update the representation, i.e. hidden states ht , recurrently

ht = f (ht−1, xt)

• Output from previous time step is the input to the current time step
• Apply the same transformation f at each time step

Figure: 9.1 from d2l.ai

13 / 47

https://d2l.ai/chapter_recurrent-neural-networks


Forward pass

h0 fstate

fembed

a

foutput

x1

h1

o1

fstate

fembed

good

foutput

x2

h2

o2

fstate

fembed

book

foutput

x3

h3

o3

. . .h1 h2 h3

A deep neural network with shared weights in each
layer

xt = fembed(st)

= Weϕone-hot(st)

ht = fstate(xt , ht−1)

= σ(Whhht−1 +Wihxt + bh)

ot = foutput(ht)

= softmax(Whoht + bo)

(a distribution over classes)

Which computation can be
parallelized?

14 / 47



Forward pass

h0 fstate

fembed

a

foutput

x1

h1

o1

fstate

fembed

good

foutput

x2

h2

o2

fstate

fembed

book

foutput

x3

h3

o3

. . .h1 h2 h3

A deep neural network with shared weights in each
layer

xt = fembed(st)

= Weϕone-hot(st)

ht = fstate(xt , ht−1)

= σ(Whhht−1 +Wihxt + bh)

ot = foutput(ht)

= softmax(Whoht + bo)

(a distribution over classes)

Which computation can be
parallelized?

14 / 47



Forward pass

h0 fstate

fembed

a

foutput

x1

h1

o1

fstate

fembed

good

foutput

x2

h2

o2

fstate

fembed

book

foutput

x3

h3

o3

. . .h1 h2 h3

A deep neural network with shared weights in each
layer

xt = fembed(st)

= Weϕone-hot(st)

ht = fstate(xt , ht−1)

= σ(Whhht−1 +Wihxt + bh)

ot = foutput(ht)

= softmax(Whoht + bo)

(a distribution over classes)

Which computation can be
parallelized?

14 / 47



Forward pass

h0 fstate

fembed

a

foutput

x1

h1

o1

fstate

fembed

good

foutput

x2

h2

o2

fstate

fembed

book

foutput

x3

h3

o3

. . .h1 h2 h3

A deep neural network with shared weights in each
layer

xt = fembed(st)

= Weϕone-hot(st)

ht = fstate(xt , ht−1)

= σ(Whhht−1 +Wihxt + bh)

ot = foutput(ht)

= softmax(Whoht + bo)

(a distribution over classes)

Which computation can be
parallelized?

14 / 47



Forward pass

h0 fstate

fembed

a

foutput

x1

h1

o1

fstate

fembed

good

foutput

x2

h2

o2

fstate

fembed

book

foutput

x3

h3

o3

. . .h1 h2 h3

A deep neural network with shared weights in each
layer

xt = fembed(st)

= Weϕone-hot(st)

ht = fstate(xt , ht−1)

= σ(Whhht−1 +Wihxt + bh)

ot = foutput(ht)

= softmax(Whoht + bo)

(a distribution over classes)

Which computation can be
parallelized?

14 / 47



Loss functions on RNNs

Sequence labeling and language modeling:
• Input: x1, . . . , xT (a sequence of tokens)
• Output: y1, . . . , yT (e.g., POS tags, next words)
• Loss function:

∑T
i=1 ℓ(yt , ot)

• NLL loss:
∑T

i=1− log ot [yt ]

Text classification:
• Input: x1, . . . , xT
• Output: y ∈ {1, . . . ,K} (K classes)
• Loss function: ℓ(y , foutput(pool(h1, . . . , hT )))

• Can use last hidden state or mean of all hidden states

15 / 47



Loss functions on RNNs

Sequence labeling and language modeling:
• Input: x1, . . . , xT (a sequence of tokens)
• Output: y1, . . . , yT (e.g., POS tags, next words)
• Loss function:

∑T
i=1 ℓ(yt , ot)

• NLL loss:
∑T

i=1− log ot [yt ]

Text classification:
• Input: x1, . . . , xT
• Output: y ∈ {1, . . . ,K} (K classes)
• Loss function: ℓ(y , foutput(pool(h1, . . . , hT )))

• Can use last hidden state or mean of all hidden states

15 / 47



Backward pass

Given the loss ℓ(yt , ot), compute the gradient with respect to Whh.

∂ℓt
∂Whh

=

∂ℓt
∂ot

∂ot
∂ht

∂ht
∂Whh

Computation graph of ht : ht = σ(Whhht−1 +Whixt + b)

16 / 47



Backward pass

Given the loss ℓ(yt , ot), compute the gradient with respect to Whh.

∂ℓt
∂Whh

=
∂ℓt
∂ot

∂ot
∂ht

∂ht
∂Whh

Computation graph of ht : ht = σ(Whhht−1 +Whixt + b)

16 / 47



Backward pass

Given the loss ℓ(yt , ot), compute the gradient with respect to Whh.

∂ℓt
∂Whh

=
∂ℓt
∂ot

∂ot
∂ht

∂ht
∂Whh

Computation graph of ht : ht = σ(Whhht−1 +Whixt + b)

16 / 47



Backpropagation through time

Problem with standard backpropagation:
• Gradient involves repeated multiplication of Whh

• Gradient will vanish / explode (depending on the eigenvalues of Whh)

Quick fixes:
• Reduce the number of repeated multiplication: truncate after k steps (ht−k has

no influence on ht )
• Limit the norm (or value) of the gradient in each step: gradient clipping (can only

mitigate explosion)

17 / 47



Backpropagation through time

Problem with standard backpropagation:
• Gradient involves repeated multiplication of Whh

• Gradient will vanish / explode (depending on the eigenvalues of Whh)

Quick fixes:
• Reduce the number of repeated multiplication: truncate after k steps (ht−k has

no influence on ht )
• Limit the norm (or value) of the gradient in each step: gradient clipping (can only

mitigate explosion)

17 / 47



Long-short term memory (LSTM)

Vanilla RNN: always update the hidden state
• Cannot handle long range dependency due to gradient vanishing

LSTM: learn when to update the hidden state
• First successful solution to the gradient vanishing and explosion problem

Key idea is to use a gating mechanism: multiplicative weights that modulate
another variable

• How much should the new input affect the state?
• When to ignore new inputs?
• How much should the state affect the output?

18 / 47



Long-short term memory (LSTM)

Vanilla RNN: always update the hidden state
• Cannot handle long range dependency due to gradient vanishing

LSTM: learn when to update the hidden state
• First successful solution to the gradient vanishing and explosion problem

Key idea is to use a gating mechanism: multiplicative weights that modulate
another variable

• How much should the new input affect the state?
• When to ignore new inputs?
• How much should the state affect the output?

18 / 47



Long-short term memory (LSTM)

Vanilla RNN: always update the hidden state
• Cannot handle long range dependency due to gradient vanishing

LSTM: learn when to update the hidden state
• First successful solution to the gradient vanishing and explosion problem

Key idea is to use a gating mechanism: multiplicative weights that modulate
another variable

• How much should the new input affect the state?
• When to ignore new inputs?
• How much should the state affect the output?

18 / 47



Long-short term memory (LSTM) parametrization

Figure: 10.1.2 from d2l.ai

Update with the new input xt (same as in vanilla RNN)

c̃t = tanh(Wxcxt +Whcht−1 + bc) new cell content

Should we update with the new input xt?

19 / 47

https://d2l.ai/chapter_recurrent-modern/lstm.html


Long-short term memory (LSTM) parametrization

Figure: 10.1.2 from d2l.ai

Update with the new input xt (same as in vanilla RNN)

c̃t = tanh(Wxcxt +Whcht−1 + bc) new cell content

Should we update with the new input xt?
19 / 47

https://d2l.ai/chapter_recurrent-modern/lstm.html


Long-short term memory (LSTM) parametrization

Figure: 10.1.3 from d2l.ai

Choose between c̃t (update) and ct−1 (no update): (⊙: elementwise product)

memory cell ct = it ⊙ c̃t + ft ⊙ ct−1

• ft : proportion of the old state (preserve ↑ or erase ↓ the old memory)
• it : proportion of the new state (write ↑ or ignore ↓ the new input)
• What is ct if ft = 1 and it = 0?

20 / 47

https://d2l.ai/chapter_recurrent-modern/lstm.html


Long-short term memory (LSTM) parametrization

Input gate and forget gate depends on data:

it = sigmoid(Wxixt +Whiht−1 + bi ) ,

ft = sigmoid(Wxf xt +Whf ht−1 + bf ) .

Each coordinate is between 0 and 1.
21 / 47



Long-short term memory (LSTM) parametrization

Figure: 10.1.4 from d2l.ai

How much should the memory cell state influence the rest of the network:

ht = ot ⊙ ct

ot = sigmoid(Wxoxt +Whoht−1 + bo)

ct may accumulate information without impact the network if ot is close to 0
22 / 47

https://d2l.ai/chapter_recurrent-modern/lstm.html


How does LSTM solve gradient vanishing / explosion?

Intuition: gating allows the network to learn to control how much gradient should
vanish.

• Vanilla RNN: gradient depends on repeated multiplication of the same weight
matrix

• LSTM: gradient depends on repeated multiplication of some quantity that
depends on the data (values of input and forget gates)

• So the network can learn to reset or update the gradient depending on whether
there is long-range dependencies in the data.

23 / 47



Table of Contents

Neural network basics (continued)

Recurrent neural networks

Self-attention

Tranformer

24 / 47



Improve the efficiency of RNN

Figure: 11.6.1 from d2l.ai

Recall that our goal is to come up with a good
respresentation of a sequence of words.

RNN:
• Past words influence the sentence

representation through recurrent update
• Sequential computation O(sequence length),

hard to scale

Can we handle dependency more efficiently?
• Direct interaction between any pair of words

in the sequence
• Parallelizable computation

25 / 47

https://d2l.ai/chapter_attention-mechanisms-and-transformers/self-attention-and-positional-encoding.html


Improve the efficiency of RNN

Figure: 11.6.1 from d2l.ai

Recall that our goal is to come up with a good
respresentation of a sequence of words.

RNN:
• Past words influence the sentence

representation through recurrent update
• Sequential computation O(sequence length),

hard to scale

Can we handle dependency more efficiently?
• Direct interaction between any pair of words

in the sequence
• Parallelizable computation

25 / 47

https://d2l.ai/chapter_attention-mechanisms-and-transformers/self-attention-and-positional-encoding.html


Model interaction between two variables

Given a query and some context, how do we find relevant information from the
context?

Context representation:
• values: content in the context
• keys: matching agaisnt the query to compute relevance

Example:
• Reading comprehension: query=question, context=document
• Machine translation: query=text in French, context=text in English

26 / 47



Model interaction between two variables

Given a query and some context, how do we find relevant information from the
context?

Context representation:
• values: content in the context
• keys: matching agaisnt the query to compute relevance

Example:
• Reading comprehension: query=question, context=document
• Machine translation: query=text in French, context=text in English

26 / 47



Model interaction between words

Figure: 11.1.1 from d2l.ai

• Attention weights α(q, ki ): how strong is q matched to ki
• Attention pooling: combine vi ’s according to their “relatedness” to the query

27 / 47

https://d2l.ai/chapter_attention-mechanisms-and-transformers/queries-keys-values.html


Model interaction between words using a ”soft” database

Figure: 11.3.1 from d2l.ai

• Model attention weights as a distribution: α = softmax(a(q, k1), . . . , a(q, km))

• Output a weighted combination of values: oi =
∑m

i=1 α(q, ki )vi

28 / 47

https://d2l.ai/chapter_attention-mechanisms-and-transformers/attention-scoring-functions.html


Self-attention
Given two sets of objects (queries and context), attention allows us to model
interactions between them.

We can use it to model the interaction between each pair of words in a sentence.

• Input: map each symbol to a query, a key, and a value (embeddings)
• Attend: each word (as a query) interacts with all words (keys)
• Output: contextualized representation of each word (weighted sum of values)

29 / 47



Self-attention
Given two sets of objects (queries and context), attention allows us to model
interactions between them.

We can use it to model the interaction between each pair of words in a sentence.

• Input: map each symbol to a query, a key, and a value (embeddings)

• Attend: each word (as a query) interacts with all words (keys)
• Output: contextualized representation of each word (weighted sum of values)

29 / 47



Self-attention
Given two sets of objects (queries and context), attention allows us to model
interactions between them.

We can use it to model the interaction between each pair of words in a sentence.

• Input: map each symbol to a query, a key, and a value (embeddings)
• Attend: each word (as a query) interacts with all words (keys)

• Output: contextualized representation of each word (weighted sum of values)

29 / 47



Self-attention
Given two sets of objects (queries and context), attention allows us to model
interactions between them.

We can use it to model the interaction between each pair of words in a sentence.

• Input: map each symbol to a query, a key, and a value (embeddings)
• Attend: each word (as a query) interacts with all words (keys)
• Output: contextualized representation of each word (weighted sum of values)

29 / 47



Attention scoring functions
Design the function that measures relatedness between queries and keys:
α = softmax(a(q, k1), . . . , a(q, km)) a : Rd × Rd → R

Dot-product attention
a(q, k) = q · k

Scaled dot-product attention

a(q, k) = q · k/
√
d

•
√
d : dimension of the key vector

• Avoids large attention weights that push the softmax function into regions of
small gradients

MLP attention
a(q, k) = uT tanh(W [q; k])

30 / 47



Attention scoring functions
Design the function that measures relatedness between queries and keys:
α = softmax(a(q, k1), . . . , a(q, km)) a : Rd × Rd → R

Dot-product attention
a(q, k) = q · k

Scaled dot-product attention

a(q, k) = q · k/
√
d

•
√
d : dimension of the key vector

• Avoids large attention weights that push the softmax function into regions of
small gradients

MLP attention
a(q, k) = uT tanh(W [q; k])

30 / 47



Attention scoring functions
Design the function that measures relatedness between queries and keys:
α = softmax(a(q, k1), . . . , a(q, km)) a : Rd × Rd → R

Dot-product attention
a(q, k) = q · k

Scaled dot-product attention

a(q, k) = q · k/
√
d

•
√
d : dimension of the key vector

• Avoids large attention weights that push the softmax function into regions of
small gradients

MLP attention
a(q, k) = uT tanh(W [q; k])

30 / 47



Attention scoring functions
Design the function that measures relatedness between queries and keys:
α = softmax(a(q, k1), . . . , a(q, km)) a : Rd × Rd → R

Dot-product attention
a(q, k) = q · k

Scaled dot-product attention

a(q, k) = q · k/
√
d

•
√
d : dimension of the key vector

• Avoids large attention weights that push the softmax function into regions of
small gradients

MLP attention
a(q, k) = uT tanh(W [q; k])

30 / 47



Multi-head attention: motivation

Time flies like an arrow

• Each word attends to all other words in the sentence

• Which words should “like” attend to?

• Syntax: “flies”, “arrow” (a preposition)
• Semantics: “time”, “arrow” (a metaphor)

• We want to represent different roles of a word in the sentence: need more than
a single embedding

• Instantiation: multiple self-attention modules

31 / 47



Multi-head attention: motivation

Time flies like an arrow

• Each word attends to all other words in the sentence

• Which words should “like” attend to?
• Syntax: “flies”, “arrow” (a preposition)
• Semantics: “time”, “arrow” (a metaphor)

• We want to represent different roles of a word in the sentence: need more than
a single embedding

• Instantiation: multiple self-attention modules

31 / 47



Multi-head attention: motivation

Time flies like an arrow

• Each word attends to all other words in the sentence

• Which words should “like” attend to?
• Syntax: “flies”, “arrow” (a preposition)
• Semantics: “time”, “arrow” (a metaphor)

• We want to represent different roles of a word in the sentence: need more than
a single embedding

• Instantiation: multiple self-attention modules

31 / 47



Multi-head attention

• Multiple attention modules: same architecture, different parameters

• A head: one set of attention outputs
• Concatenate all heads (increased output dimension)
• Linear projection to produce the final output

32 / 47



Multi-head attention

• Multiple attention modules: same architecture, different parameters
• A head: one set of attention outputs

• Concatenate all heads (increased output dimension)
• Linear projection to produce the final output

32 / 47



Multi-head attention

• Multiple attention modules: same architecture, different parameters
• A head: one set of attention outputs
• Concatenate all heads (increased output dimension)
• Linear projection to produce the final output

32 / 47



Matrix representation: input mapping

Figure: From The Illustrated Transformer
33 / 47

https://jalammar.github.io/illustrated-transformer


Matrix representation: attention weights

Scaled dot product attention

Figure: From The Illustrated Transformer

34 / 47

https://jalammar.github.io/illustrated-transformer


Multi-head attention

Figure: From The Illustrated Transformer

35 / 47

https://jalammar.github.io/illustrated-transformer


Summary so far

• Sequence modeling
• Input: a sequence of words
• Output: a sequence of contextualized embeddings for each word
• Models interaction among words

• Building blocks
• Feed-forward / fully-connected neural network
• Recurrent neural network
• Self-attention

Which of these can handle sequences of arbitrary length?

36 / 47



Summary so far

• Sequence modeling
• Input: a sequence of words
• Output: a sequence of contextualized embeddings for each word
• Models interaction among words

• Building blocks
• Feed-forward / fully-connected neural network
• Recurrent neural network
• Self-attention

Which of these can handle sequences of arbitrary length?

36 / 47



Summary so far

• Sequence modeling
• Input: a sequence of words
• Output: a sequence of contextualized embeddings for each word
• Models interaction among words

• Building blocks
• Feed-forward / fully-connected neural network
• Recurrent neural network
• Self-attention

Which of these can handle sequences of arbitrary length?

36 / 47



Table of Contents

Neural network basics (continued)

Recurrent neural networks

Self-attention

Tranformer

37 / 47



Overview

• Use self-attention as the core building block

• Vastly increased scalability (model and data size) compared to recurrence-based
models

• Initially designed for machine translation (next week)
• Attention is all you need. Vaswani et al., 2017.

• The backbone of today’s large-scale models

• Extended to non-sequential data (e.g., images and molecules)

38 / 47



Transformer block

Figure: From The Illustrated
Transformer

• Multi-head self-attention

• Capture dependence among input
symbols

• Positional encoding

• Capture the order of symbols

• Residual connection and layer normalization

• More efficient and stable optimization

39 / 47

https://jalammar.github.io/illustrated-transformer
https://jalammar.github.io/illustrated-transformer


Transformer block

Figure: From The Illustrated
Transformer

• Multi-head self-attention
• Capture dependence among input

symbols

• Positional encoding

• Capture the order of symbols

• Residual connection and layer normalization

• More efficient and stable optimization

39 / 47

https://jalammar.github.io/illustrated-transformer
https://jalammar.github.io/illustrated-transformer


Transformer block

Figure: From The Illustrated
Transformer

• Multi-head self-attention
• Capture dependence among input

symbols

• Positional encoding

• Capture the order of symbols

• Residual connection and layer normalization

• More efficient and stable optimization

39 / 47

https://jalammar.github.io/illustrated-transformer
https://jalammar.github.io/illustrated-transformer


Transformer block

Figure: From The Illustrated
Transformer

• Multi-head self-attention
• Capture dependence among input

symbols

• Positional encoding
• Capture the order of symbols

• Residual connection and layer normalization

• More efficient and stable optimization

39 / 47

https://jalammar.github.io/illustrated-transformer
https://jalammar.github.io/illustrated-transformer


Transformer block

Figure: From The Illustrated
Transformer

• Multi-head self-attention
• Capture dependence among input

symbols

• Positional encoding
• Capture the order of symbols

• Residual connection and layer normalization

• More efficient and stable optimization

39 / 47

https://jalammar.github.io/illustrated-transformer
https://jalammar.github.io/illustrated-transformer


Transformer block

Figure: From The Illustrated
Transformer

• Multi-head self-attention
• Capture dependence among input

symbols

• Positional encoding
• Capture the order of symbols

• Residual connection and layer normalization
• More efficient and stable optimization

39 / 47

https://jalammar.github.io/illustrated-transformer
https://jalammar.github.io/illustrated-transformer


Position embedding
Motivation: model word order in the input sequence
Solution: add a position embedding to each word

Position embedding:
• Encode absolute and relative positions of a word
• Same dimension as word embeddings
• Learned or deterministic

40 / 47



Sinusoidal position embedding
Intuition: continuous approximation of binary encoding of positions (integers)

Figure: From Amirhossein Kazemnejad’s Blog

ωk = 1/10000
2k
d

41 / 47

https://kazemnejad.com/blog/transformer_architecture_positional_encoding/


Sinusoidal position embedding
Intuition: continuous approximation of binary encoding of positions (integers)

Figure: From Amirhossein Kazemnejad’s Blog

ωk = 1/10000
2k
d

41 / 47

https://kazemnejad.com/blog/transformer_architecture_positional_encoding/


Sinusoidal position embedding
Intuition: continuous approximation of binary encoding of positions (integers)

Figure: From Amirhossein Kazemnejad’s Blog

ωk = 1/10000
2k
d

41 / 47

https://kazemnejad.com/blog/transformer_architecture_positional_encoding/


Learned position embeddings

Sinusoidal position embedding:
• Not learnable
• Can extrapolate to longer sequences but doesn’t work well

Learned absolute position embeddings (most common now):
• Consider each position as a word. Map positions to dense vectors:
Wd×nϕone-hot(pos)

• Column i of W is the embedding of position i

• Need to fix maximum position/length beforehand
• Cannot extrapolate to longer sequences

42 / 47



Learned position embeddings

Sinusoidal position embedding:
• Not learnable
• Can extrapolate to longer sequences but doesn’t work well

Learned absolute position embeddings (most common now):
• Consider each position as a word. Map positions to dense vectors:
Wd×nϕone-hot(pos)

• Column i of W is the embedding of position i

• Need to fix maximum position/length beforehand
• Cannot extrapolate to longer sequences

42 / 47



Learned position embeddings

Sinusoidal position embedding:
• Not learnable
• Can extrapolate to longer sequences but doesn’t work well

Learned absolute position embeddings (most common now):
• Consider each position as a word. Map positions to dense vectors:
Wd×nϕone-hot(pos)

• Column i of W is the embedding of position i

• Need to fix maximum position/length beforehand
• Cannot extrapolate to longer sequences

42 / 47



Residual connection

Motivation:
• Gradient explosion/vanishing is not RNN-specific!

• It happens to all very deep networks (which are hard to optimize).

• In principle, a deep network can always represent a shallow network (by setting
higher layers to identity functions), thus it should be at least as good as the
shallow network.

• For some reason, deep neural networks are bad at learning identity functions.

• How can we make it easier to recover the shallow solution?

43 / 47



Residual connection

Motivation:
• Gradient explosion/vanishing is not RNN-specific!

• It happens to all very deep networks (which are hard to optimize).

• In principle, a deep network can always represent a shallow network (by setting
higher layers to identity functions), thus it should be at least as good as the
shallow network.

• For some reason, deep neural networks are bad at learning identity functions.

• How can we make it easier to recover the shallow solution?

43 / 47



Residual connection
Solution: Deep Residual Learning for Image Recognition [He et al., 2015]

Without residual connection: learn f (x) = x .

With residual connection: learn g(x) = 0 (easier).
44 / 47

https://arxiv.org/pdf/1512.03385.pdf


Layer normalization
• Problem: inputs of a layer may shift during training
• Solution: normalize (zero mean, unit variance) across features [Ba et al., 2016]
• Let x = (x1, . . . , xd) be the input vector (e.g., word embedding, previous layer

output)
LayerNorm(x) =

x − µ̂

σ̂
,

where µ̂ =
1

d

d∑
i=1

xi , σ̂2 =
1

d

d∑
i=1

(xi − µ̂)2

• A deterministic transformation of the
input

• Independent of train/inference and
batch size

45 / 47

https://arxiv.org/pdf/1607.06450.pdf


Layer normalization
• Problem: inputs of a layer may shift during training
• Solution: normalize (zero mean, unit variance) across features [Ba et al., 2016]
• Let x = (x1, . . . , xd) be the input vector (e.g., word embedding, previous layer

output)
LayerNorm(x) =

x − µ̂

σ̂
,

where µ̂ =
1

d

d∑
i=1

xi , σ̂2 =
1

d

d∑
i=1

(xi − µ̂)2

• A deterministic transformation of the
input

• Independent of train/inference and
batch size

45 / 47

https://arxiv.org/pdf/1607.06450.pdf


Residual connection and layer normalization in Transformer

• Add (residual connection) & Normalize (layer normalization) after each layer
• Position-wise feed-forward networks: same mapping for all positions

46 / 47



Summary

• We have seen two families of models for sequences modeling: RNNs and
Transformers

• Both take a sequence of (discrete) symbols as input and output a sequence of
embeddings

• They are often called encoders and are used to represent text

• Transformers are dominating today because of its scalability

47 / 47


	Neural network basics (continued)
	Recurrent neural networks
	Self-attention
	Tranformer

