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Part 1:
Basic Concepts
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What is Reinforcement Learning
● The idea behind Reinforcement Learning (RL) is that an agent (an AI) will 

learn from the environment by interacting with it (through trial and error) 
and receiving rewards (negative or positive) as feedback for performing 
actions.
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What is Reinforcement Learning
● Learning from interactions with the environment comes from our natural 

experiences.

Image from: 
https://a.co/d/iQS6r0v



6

The RL Process (Loop)

Image from: https://huggingface.co/learn/deep-rl-course

Agent

Environment

ActionState

Reward

● Agent: The decision-maker in a system

● Reward: Feedback from the 
environment indicating the success of 
an action in achieving a goal.

● Environment: The setting or context 
where the agent operates.

● State: The current situation or 
condition of the environment.

● Action: The choices or moves an 
agent can make in response to a state.
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The RL Process (Loop)

Image from: https://huggingface.co/learn/deep-rl-course
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A Walkthrough
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The RL Process (Loop)
● Our Agent receives state       from 

the Environment 
○ we receive the first frame of our 

game (Environment).
● Based on that state        the Agent 

takes action 
○ our Agent will move to the right.

● The environment goes to a new 
state

○ new frame
● The environment gives some 

reward        to the Agent
○ we’re not dead (Reward +1)

Image from: https://huggingface.co/learn/deep-rl-course
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The RL Process (Loop)
● Outputs

○ A sequence of state, action, reward 
and next state.

Image from: https://huggingface.co/learn/deep-rl-course
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Goal of the Agent
● The agent’s goal is to maximize its cumulative reward, called the 

expected return.
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Rewards and the discounting
● The cumulative reward at each time step after t can be written as:

● However, in reality, the rewards that come sooner are more likely to 
happen since they are more predictable than the long-term future reward.
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Rewards and the discounting
● Our discounted expected cumulative reward is:

Between 0 and 1
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Type of tasks
● We can have two types of tasks: episodic and continuing.
● Episodic task

○ In this case, we have a starting point and an ending point (a terminal state). This 
creates an episode: a list of States, Actions, Rewards, and new States.

● Continuing tasks
○ These are tasks that continue forever (no terminal state). In this case, the agent 

must learn how to choose the best actions and simultaneously interact with the 
environment.
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The Exploration/Exploitation trade-off
● Exploration is exploring the environment by trying random actions in 

order to find more information about the environment.
○ E.g., Go to a new restaurant

● Exploitation is exploiting known information to maximize the reward.
○ E.g., Pick a known good restaurant

● epsilon-greedy strategy

With prob. 

With prob. 

Exploration

Exploitation



15

Two main approaches for solving RL 
problems

● The Policy π: the agent’s brain
○ The Policy π is the brain of our Agent, it’s the function that tells us what action to 

take given the state we are in. So it defines the agent’s behavior at a given time.
● Our goal is to find the optimal policy π*
● Two ways

○ Directly (Policy-based methods): teaching the agent to learn which action to 
take

○ Indirectly (Value-based methods): teach the agent to learn which state is more 
valuable

Can also combine them!
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Part 2:
Value-based Methods
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Value-based Methods
● Train a value function that outputs the value of a state or a state-action 

pair. Given this value function, our policy will take an action.

The link between value and policy
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State Value Function
● Train a value function that outputs the value of a state or a state-action 

pair. Given this value function, our policy will take an action.
● State Value Function

Value of 
state s

Expected 
return

If the agent 
starts at state s

Use the policy to 
choose its actions for 
all time steps
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State Value Function
● Train a value function that outputs the value of a state or a state-action 

pair. Given this value function, our policy will take an action.
● State Value Function (an example)

-7 -6 -5 -4

-7 -3

-8 -2 -1
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State Value Function
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State Value Function
● Train a value function that outputs the value of a state or a state-action 
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State Value Function
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State Value Function
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State Value Function
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State Value Function
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State Value Function
● Train a value function that outputs the value of a state or a state-action 

pair. Given this value function, our policy will take an action.
● State Value Function (an example)
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Action Value Methods
● Train a value function that outputs the value of a state or a state-action 

pair. Given this value function, our policy will take an action.
● State Value Function
● Action Value Function

Value of state 
action pair (s, a)

Expected 
return

If the agent 
starts at state s

Use the policy to 
choose its actions for 
all time steps

and chooses 
action a
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Action Value Methods
● Train a value function that outputs the value of a state or a state-action 

pair. Given this value function, our policy will take an action.
● State Value Function
● Action Value Function (an example)

-7 -6
-7

-8

-5
-4

-3
-2 -1

-7 -6 -5
-4

-2
-3

-7
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Action Value Methods
● Train a value function that outputs the value of a state or a state-action 

pair. Given this value function, our policy will take an action.
● State Value Function
● Action Value Function (an example)

-7 -6
-7

-8

-5
-4

-3
-2 -1

-7 -6 -5
-4

-2
-3

-7
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Value-based Methods
● Train a value function that outputs the value of a state or a state-action 

pair. Given this value function, our policy will take an action.
● State Value Function
● Action Value Function

How to calculate the value function? 🤔
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Value Calculation
● If we calculate              (the value of a state), we need to calculate the return 

starting at that state and then follow the policy forever after.

Between 0 and 1
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The Bellman Equation
● The Bellman equation simplifies our state value or state-action value 

calculation

Value of 
state s

Expected 
value of 
immediate 
reward

discounted 
value of 
next_state

Use the policy to 
choose its actions for 
all time steps

If the agent 
starts at state s
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Two Learning Strategies
● Monte Carlo
● Temporal Difference Learning
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● Idea: learning at the end of the episode
● Wait until the end of the episode, calculate           (return) and uses it as a 

target for updating  

Monte Carlo 

New (estimated) 
value of state t

Former 
(estimated) 
value of state t

Learning 
rate

Return Former 
(estimated) 
value of state t
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Temporal Difference Learning

New (estimated) 
value of state t

Former 
(estimated) 
value of state t

Learning 
rate

Reward Discounted value 
of next state

Former 
(estimated) 
value of state t

● Idea: learning at each step
● Wait for only one interaction (one step)               to form a TD target and 

update                 using               and  
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Introduction to Q-Learning
● Q-Learning is an off-policy value-based method that uses a TD approach 

to train its action-value function
○ The Q comes from “the Quality” (the value) of that action at that state.

● Off-policy & On-policy
○ Off-policy: Using a different policy for acting (inference) and updating 

(training)
○ On-policy: Using the same policy for acting and updating
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Introduction to Q-Learning
● The Q-Learning algorithms

<START>

+1 
Reward

-100 
Reward
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Introduction to Q-Learning
● The Q-Learning algorithms

○ Step 1: Initialize the Q table

<START>

<START> 0 0 0 0

0 0 0 0

0 0 0 0

States

Actions
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Introduction to Q-Learning
● The Q-Learning algorithms

○ Step 2: Choose an action using the epsilon-greedy strategy

<START>

Go right

Training
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Introduction to Q-Learning
● The Q-Learning algorithms

○ Step 3: Perform action At, get reward Rt+1 and next state St+1

<START>
Get +1 
Reward
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Introduction to Q-Learning
● The Q-Learning algorithms

○ Step 4: Update Q(St, At)
Temporal Difference Update

Q-Learning update formula
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Introduction to Q-Learning
● The Q-Learning algorithms

○ Step 4: Update Q(St, At)

<START>

<START> 0 0 0 0

0 0 0 0

0 0 0 0

States

Actions

New value: 0 + 0.1 (+1 + 0.99 * 0 - 0) = 0.1
Learning rate discount factor
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Introduction to Q-Learning
● The Q-Learning algorithms

○ Go back to Step 2 (choose an action) and repeat
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From Q-Learning to Deep Q-Learning
● However, producing and updating a Q-table can become ineffective in 

large state space environments
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From Q-Learning to Deep Q-Learning
● Idea: Use a Deep Neural Network to represent the Q function

Image from: https://huggingface.co/learn/deep-rl-course

A linear 
layer
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Part 3:
Policy-based Methods
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Policy-based Methods
● Directly learn to approximate the gold policy (typically a NN) without 

having to learn a value function.
● Compare to value-based methods

○ Policy-gradient methods can learn a stochastic policy
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Introduction to Policy Gradient Method
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Introduction to Policy Gradient Method
● The game of Pong

○ Either a +1 reward if the ball went past the opponent, a -1 reward if we 
missed the ball, or 0 otherwise. 

Goal: earn more rewards

Gif from: https://karpathy.github.io/2016/05/31/rl/
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Introduction to Policy Gradient Method
● Policy gradient: Run a policy for a while. See what actions led to high 

rewards. Increase their probability.

Image from: https://karpathy.github.io/2016/05/31/rl/
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Introduction to Policy Gradient Method
● Policy gradient: Run a policy for a while. See what actions led to high 

rewards. Increase their probability.

Image from: https://karpathy.github.io/2016/05/31/rl/

Increase the probability of those actions
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Introduction to Policy Gradient Method
● Policy gradient: Run a policy for a while. See what actions led to high 

rewards. Increase their probability.

Image from: https://karpathy.github.io/2016/05/31/rl/

Decrease the probability of those actions
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Introduction to Policy Gradient Method
● Policy Gradient Training loop

○ Collect an episode with the        (policy)
○ Calculate the return (sum of rewards)
○ Update the weights of the        

■ If positive return → increase the probability of each (state, action) 
pairs taken during the episode

■ If negative return → decrease  the probability of each (state, 
action) taken during the episode
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Introduction to Policy Gradient Method
● We have a policy       parameterized by  

The policy given a state outputs a distribution over 
actions at that state
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Introduction to Policy Gradient Method
● The objective function: expected cumulative reward
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Introduction to Policy Gradient Method
● The objective function: expected cumulative reward 

Environment 
Dynamics

Action 
Probability



57

Introduction to Policy Gradient Method
● The Policy Gradient Theorem

○ Derivation: see here

For any differentiable policy and for any policy objective 
function, the policy gradient is

https://huggingface.co/learn/deep-rl-course/unit4/pg-theorem
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Introduction to Policy Gradient Method
● The Reinforce algorithm (Monte Carlo Reinforce)

○ In a loop:
■ Use the policy          to collect an episode 
■ Use the episode to estimate the gradient

Estimation of the gradient, given we 
are only using one trajectory
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Introduction to Policy Gradient Method
● The Reinforce algorithm (Monte Carlo Reinforce)

○ In a loop:
■ Use the policy          to collect an episode 
■ Use the episode to estimate the gradient
■ Update the weights of the policy using gradient ascent (since we 

are maximizing the objective)
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Introduction to Policy Gradient Method
● The Reinforce algorithm (Monte Carlo Reinforce)

○ In a loop:
■ Use the policy          to collect an episode 
■ Use the episode to estimate the gradient
■ Update the weights of the policy using gradient ascent (since we 

are maximizing the objective)

Can also collect multiple trajectories to estimate the gradient

Multiple trajectories
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Introduction to Policy Gradient Method
● The Reinforce algorithm (Monte Carlo Reinforce)

○ However….
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Introduction to Policy Gradient Method
● The Reinforce algorithm (Monte Carlo Reinforce)

○ However….
○ One solution: using a large number of trajectories to provide a good estimation 

of the return
○ Need other ways… Too computationally expensive!
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Introduction to Actor Critic Methods
● Recap: The policy gradient theorem

For any differentiable policy and for any policy objective 
function, the policy gradient is

Cumulative future rewards starting from t

Derivation 
see here

Can use a Q value function to estimate this ! 

https://web.stanford.edu/class/cs234/CS234Win2019/slides/lnotes8.pdf
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Introduction to Actor Critic Methods
● Idea: Combine value-based method and policy-based method

○ We learn two function approximations
■ A policy          that controls how our agent acts
■ A value function                     to assist the policy update by 

measuring how good the action taken is
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Introduction to Actor Critic Methods
● Learning Process

○ At each timestep ,   , we get the current state
○ We pass         to  our policy network (actor)         and get an action           
○ We pass         ,          to our value network (critic)                    and get the 

value of taking that action at that state
○ We enter a new state              and receive reward
○ Then actor updates its policy parameters using the Q value     
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Introduction to Actor Critic Methods
● Learning Process

○ At each timestep ,   , we get the current state
○ We pass         to  our policy network (actor)         and get an action           
○ We pass         ,          to our value network (critic)                    and get the 

value of taking that action at that state
○ We enter a new state              and receive reward
○ Then actor updates its policy parameters using the Q value
○ The actor then produces the next action            to take at
○ The critic then updates its value parameters using TD update 

Use a different 
Learning rate TD Error Gradient of our 

value function



67

Introduction to Actor Critic Methods
● To further stabilize policy learning

○ Use advantage function as critic instead of the action value function

Q value for 
action a at 
state s

Average 
value of that 
state

TD Error

Can use the TD error as a good estimator of the 
advantage function
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Introduction to Proximal Policy 
Optimization (PPO)

● (Side Note) This is one of the most popular method that we use to align 
LLMs nowadays
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Introduction to PPO
● An architecture that improves our agent’s training stability by avoiding 

policy updates that are too large
● Reasons

○ Empirically, smaller policy updates during training are more likely to converge to 
an optimal solution

○ A too-big step in a policy update can result in falling “off the cliff” (getting a bad 
policy) and taking a long time or even having no possibility to recover
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Introduction to PPO
● Recap: The Policy Objective Function

Empirical average over a 
finite batch of samples

Estimator of the advantage 
function at timestep t



71

Introduction to PPO
● Recap: The Policy Objective Function
● Problem: step size

○ Too small, the training process will be too slow
○ Too high, there will be too much variability in the training
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Introduction to PPO
● Recap: The Policy Objective Function
● Problem: step size
● Introduce the clipped surrogate objective function

The ratio 
function ● If                    the action       at state         

is more likely in the current policy 
than the old policy

● If            is between 0 and 1, the 
action is less likely for the current 
policy than for the old one 
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Introduction to PPO
● Recap: The Policy Objective Function
● Problem: step size
● Introduce the clipped surrogate objective function

The ratio 
function

● This ratio can replace the log 
probability we use in the policy 
objective function 
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Introduction to PPO
● Recap: The Policy Objective Function
● Problem: step size
● Introduce the clipped surrogate objective function

Ensure that we do not have a too large policy update because 
the current policy can’t be too different from the older one
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Introduction to PPO
● Recap: The Policy Objective Function
● Problem: step size
● Introduce the clipped surrogate objective function

For more details, see the paper Proximal Policy Optimization Algorithms

https://arxiv.org/pdf/1707.06347.pdf
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Questions?


