
Reinforcement
learning

11/20/2023

Weizhe Yuan

2

Outline
● Part 1: Basic Concepts
● Part 2: Value-based Methods

○ Q-Learning
○ Deep Q-Learning

● Part 3: Policy-based Methods
○ Policy Gradient Methods
○ Actor Critic Methods
○ Proximal Policy Optimization

3

Part 1:
Basic Concepts

4

What is Reinforcement Learning
● The idea behind Reinforcement Learning (RL) is that an agent (an AI) will

learn from the environment by interacting with it (through trial and error)
and receiving rewards (negative or positive) as feedback for performing
actions.

5

What is Reinforcement Learning
● Learning from interactions with the environment comes from our natural

experiences.

Image from:
https://a.co/d/iQS6r0v

6

The RL Process (Loop)

Image from: https://huggingface.co/learn/deep-rl-course

Agent

Environment

ActionState

Reward

● Agent: The decision-maker in a system

● Reward: Feedback from the
environment indicating the success of
an action in achieving a goal.

● Environment: The setting or context
where the agent operates.

● State: The current situation or
condition of the environment.

● Action: The choices or moves an
agent can make in response to a state.

7

The RL Process (Loop)

Image from: https://huggingface.co/learn/deep-rl-course

Agent

Environment

ActionState

Reward

A Walkthrough

8

The RL Process (Loop)
● Our Agent receives state from

the Environment
○ we receive the first frame of our

game (Environment).
● Based on that state the Agent

takes action
○ our Agent will move to the right.

● The environment goes to a new
state

○ new frame
● The environment gives some

reward to the Agent
○ we’re not dead (Reward +1)

Image from: https://huggingface.co/learn/deep-rl-course

Agent

Environment

ActionState

Reward

9

The RL Process (Loop)
● Outputs

○ A sequence of state, action, reward
and next state.

Image from: https://huggingface.co/learn/deep-rl-course

Agent

Environment

ActionState

Reward

10

Goal of the Agent
● The agent’s goal is to maximize its cumulative reward, called the

expected return.

11

Rewards and the discounting
● The cumulative reward at each time step after t can be written as:

● However, in reality, the rewards that come sooner are more likely to
happen since they are more predictable than the long-term future reward.

12

Rewards and the discounting
● Our discounted expected cumulative reward is:

Between 0 and 1

13

Type of tasks
● We can have two types of tasks: episodic and continuing.
● Episodic task

○ In this case, we have a starting point and an ending point (a terminal state). This
creates an episode: a list of States, Actions, Rewards, and new States.

● Continuing tasks
○ These are tasks that continue forever (no terminal state). In this case, the agent

must learn how to choose the best actions and simultaneously interact with the
environment.

14

The Exploration/Exploitation trade-off
● Exploration is exploring the environment by trying random actions in

order to find more information about the environment.
○ E.g., Go to a new restaurant

● Exploitation is exploiting known information to maximize the reward.
○ E.g., Pick a known good restaurant

● epsilon-greedy strategy

With prob.

With prob.

Exploration

Exploitation

15

Two main approaches for solving RL
problems

● The Policy π: the agent’s brain
○ The Policy π is the brain of our Agent, it’s the function that tells us what action to

take given the state we are in. So it defines the agent’s behavior at a given time.
● Our goal is to find the optimal policy π*
● Two ways

○ Directly (Policy-based methods): teaching the agent to learn which action to
take

○ Indirectly (Value-based methods): teach the agent to learn which state is more
valuable

Can also combine them!

16

Part 2:
Value-based Methods

17

Value-based Methods
● Train a value function that outputs the value of a state or a state-action

pair. Given this value function, our policy will take an action.

The link between value and policy

18

State Value Function
● Train a value function that outputs the value of a state or a state-action

pair. Given this value function, our policy will take an action.
● State Value Function

Value of
state s

Expected
return

If the agent
starts at state s

Use the policy to
choose its actions for
all time steps

19

State Value Function
● Train a value function that outputs the value of a state or a state-action

pair. Given this value function, our policy will take an action.
● State Value Function (an example)

-7 -6 -5 -4

-7 -3

-8 -2 -1

20

State Value Function
● Train a value function that outputs the value of a state or a state-action

pair. Given this value function, our policy will take an action.
● State Value Function (an example)

-7 -6 -5 -4

-7 -3

-8 -2 -1

21

State Value Function
● Train a value function that outputs the value of a state or a state-action

pair. Given this value function, our policy will take an action.
● State Value Function (an example)

-7 -6 -5 -4

-7 -3

-8 -2 -1

22

State Value Function
● Train a value function that outputs the value of a state or a state-action

pair. Given this value function, our policy will take an action.
● State Value Function (an example)

-7 -6 -5 -4

-7 -3

-8 -2 -1

23

State Value Function
● Train a value function that outputs the value of a state or a state-action

pair. Given this value function, our policy will take an action.
● State Value Function (an example)

-7 -6 -5 -4

-7 -3

-8 -2 -1

24

State Value Function
● Train a value function that outputs the value of a state or a state-action

pair. Given this value function, our policy will take an action.
● State Value Function (an example)

-7 -6 -5 -4

-7 -3

-8 -2 -1

25

State Value Function
● Train a value function that outputs the value of a state or a state-action

pair. Given this value function, our policy will take an action.
● State Value Function (an example)

-7 -6 -5 -4

-7 -3

-8 -2 -1

26

State Value Function
● Train a value function that outputs the value of a state or a state-action

pair. Given this value function, our policy will take an action.
● State Value Function (an example)

-7 -6 -5 -4

-7 -3

-8 -2 -1

27

Action Value Methods
● Train a value function that outputs the value of a state or a state-action

pair. Given this value function, our policy will take an action.
● State Value Function
● Action Value Function

Value of state
action pair (s, a)

Expected
return

If the agent
starts at state s

Use the policy to
choose its actions for
all time steps

and chooses
action a

28

Action Value Methods
● Train a value function that outputs the value of a state or a state-action

pair. Given this value function, our policy will take an action.
● State Value Function
● Action Value Function (an example)

-7 -6
-7

-8

-5
-4

-3
-2 -1

-7 -6 -5
-4

-2
-3

-7

29

Action Value Methods
● Train a value function that outputs the value of a state or a state-action

pair. Given this value function, our policy will take an action.
● State Value Function
● Action Value Function (an example)

-7 -6
-7

-8

-5
-4

-3
-2 -1

-7 -6 -5
-4

-2
-3

-7

30

Value-based Methods
● Train a value function that outputs the value of a state or a state-action

pair. Given this value function, our policy will take an action.
● State Value Function
● Action Value Function

How to calculate the value function? 🤔

31

Value Calculation
● If we calculate (the value of a state), we need to calculate the return

starting at that state and then follow the policy forever after.

Between 0 and 1

32

The Bellman Equation
● The Bellman equation simplifies our state value or state-action value

calculation

Value of
state s

Expected
value of
immediate
reward

discounted
value of
next_state

Use the policy to
choose its actions for
all time steps

If the agent
starts at state s

33

Two Learning Strategies
● Monte Carlo
● Temporal Difference Learning

34

● Idea: learning at the end of the episode
● Wait until the end of the episode, calculate (return) and uses it as a

target for updating

Monte Carlo

New (estimated)
value of state t

Former
(estimated)
value of state t

Learning
rate

Return Former
(estimated)
value of state t

35

Temporal Difference Learning

New (estimated)
value of state t

Former
(estimated)
value of state t

Learning
rate

Reward Discounted value
of next state

Former
(estimated)
value of state t

● Idea: learning at each step
● Wait for only one interaction (one step) to form a TD target and

update using and

36

Introduction to Q-Learning
● Q-Learning is an off-policy value-based method that uses a TD approach

to train its action-value function
○ The Q comes from “the Quality” (the value) of that action at that state.

● Off-policy & On-policy
○ Off-policy: Using a different policy for acting (inference) and updating

(training)
○ On-policy: Using the same policy for acting and updating

37

Introduction to Q-Learning
● The Q-Learning algorithms

<START>

+1
Reward

-100
Reward

38

Introduction to Q-Learning
● The Q-Learning algorithms

○ Step 1: Initialize the Q table

<START>

<START> 0 0 0 0

0 0 0 0

0 0 0 0

States

Actions

39

Introduction to Q-Learning
● The Q-Learning algorithms

○ Step 2: Choose an action using the epsilon-greedy strategy

<START>

Go right

Training

40

Introduction to Q-Learning
● The Q-Learning algorithms

○ Step 3: Perform action At, get reward Rt+1 and next state St+1

<START>
Get +1
Reward

41

Introduction to Q-Learning
● The Q-Learning algorithms

○ Step 4: Update Q(St, At)
Temporal Difference Update

Q-Learning update formula

42

Introduction to Q-Learning
● The Q-Learning algorithms

○ Step 4: Update Q(St, At)

<START>

<START> 0 0 0 0

0 0 0 0

0 0 0 0

States

Actions

New value: 0 + 0.1 (+1 + 0.99 * 0 - 0) = 0.1
Learning rate discount factor

43

Introduction to Q-Learning
● The Q-Learning algorithms

○ Go back to Step 2 (choose an action) and repeat

44

From Q-Learning to Deep Q-Learning
● However, producing and updating a Q-table can become ineffective in

large state space environments

45

From Q-Learning to Deep Q-Learning
● Idea: Use a Deep Neural Network to represent the Q function

Image from: https://huggingface.co/learn/deep-rl-course

A linear
layer

46

Part 3:
Policy-based Methods

47

Policy-based Methods
● Directly learn to approximate the gold policy (typically a NN) without

having to learn a value function.
● Compare to value-based methods

○ Policy-gradient methods can learn a stochastic policy

48

Introduction to Policy Gradient Method

49

Introduction to Policy Gradient Method
● The game of Pong

○ Either a +1 reward if the ball went past the opponent, a -1 reward if we
missed the ball, or 0 otherwise.

Goal: earn more rewards

Gif from: https://karpathy.github.io/2016/05/31/rl/

50

Introduction to Policy Gradient Method
● Policy gradient: Run a policy for a while. See what actions led to high

rewards. Increase their probability.

Image from: https://karpathy.github.io/2016/05/31/rl/

51

Introduction to Policy Gradient Method
● Policy gradient: Run a policy for a while. See what actions led to high

rewards. Increase their probability.

Image from: https://karpathy.github.io/2016/05/31/rl/

Increase the probability of those actions

52

Introduction to Policy Gradient Method
● Policy gradient: Run a policy for a while. See what actions led to high

rewards. Increase their probability.

Image from: https://karpathy.github.io/2016/05/31/rl/

Decrease the probability of those actions

53

Introduction to Policy Gradient Method
● Policy Gradient Training loop

○ Collect an episode with the (policy)
○ Calculate the return (sum of rewards)
○ Update the weights of the

■ If positive return → increase the probability of each (state, action)
pairs taken during the episode

■ If negative return → decrease the probability of each (state,
action) taken during the episode

54

Introduction to Policy Gradient Method
● We have a policy parameterized by

The policy given a state outputs a distribution over
actions at that state

55

Introduction to Policy Gradient Method
● The objective function: expected cumulative reward

56

Introduction to Policy Gradient Method
● The objective function: expected cumulative reward

Environment
Dynamics

Action
Probability

57

Introduction to Policy Gradient Method
● The Policy Gradient Theorem

○ Derivation: see here

For any differentiable policy and for any policy objective
function, the policy gradient is

https://huggingface.co/learn/deep-rl-course/unit4/pg-theorem

58

Introduction to Policy Gradient Method
● The Reinforce algorithm (Monte Carlo Reinforce)

○ In a loop:
■ Use the policy to collect an episode
■ Use the episode to estimate the gradient

Estimation of the gradient, given we
are only using one trajectory

59

Introduction to Policy Gradient Method
● The Reinforce algorithm (Monte Carlo Reinforce)

○ In a loop:
■ Use the policy to collect an episode
■ Use the episode to estimate the gradient
■ Update the weights of the policy using gradient ascent (since we

are maximizing the objective)

60

Introduction to Policy Gradient Method
● The Reinforce algorithm (Monte Carlo Reinforce)

○ In a loop:
■ Use the policy to collect an episode
■ Use the episode to estimate the gradient
■ Update the weights of the policy using gradient ascent (since we

are maximizing the objective)

Can also collect multiple trajectories to estimate the gradient

Multiple trajectories

61

Introduction to Policy Gradient Method
● The Reinforce algorithm (Monte Carlo Reinforce)

○ However….

62

Introduction to Policy Gradient Method
● The Reinforce algorithm (Monte Carlo Reinforce)

○ However….
○ One solution: using a large number of trajectories to provide a good estimation

of the return
○ Need other ways… Too computationally expensive!

63

Introduction to Actor Critic Methods
● Recap: The policy gradient theorem

For any differentiable policy and for any policy objective
function, the policy gradient is

Cumulative future rewards starting from t

Derivation
see here

Can use a Q value function to estimate this !

https://web.stanford.edu/class/cs234/CS234Win2019/slides/lnotes8.pdf

64

Introduction to Actor Critic Methods
● Idea: Combine value-based method and policy-based method

○ We learn two function approximations
■ A policy that controls how our agent acts
■ A value function to assist the policy update by

measuring how good the action taken is

65

Introduction to Actor Critic Methods
● Learning Process

○ At each timestep , , we get the current state
○ We pass to our policy network (actor) and get an action
○ We pass , to our value network (critic) and get the

value of taking that action at that state
○ We enter a new state and receive reward
○ Then actor updates its policy parameters using the Q value

66

Introduction to Actor Critic Methods
● Learning Process

○ At each timestep , , we get the current state
○ We pass to our policy network (actor) and get an action
○ We pass , to our value network (critic) and get the

value of taking that action at that state
○ We enter a new state and receive reward
○ Then actor updates its policy parameters using the Q value
○ The actor then produces the next action to take at
○ The critic then updates its value parameters using TD update

Use a different
Learning rate TD Error Gradient of our

value function

67

Introduction to Actor Critic Methods
● To further stabilize policy learning

○ Use advantage function as critic instead of the action value function

Q value for
action a at
state s

Average
value of that
state

TD Error

Can use the TD error as a good estimator of the
advantage function

68

Introduction to Proximal Policy
Optimization (PPO)

● (Side Note) This is one of the most popular method that we use to align
LLMs nowadays

69

Introduction to PPO
● An architecture that improves our agent’s training stability by avoiding

policy updates that are too large
● Reasons

○ Empirically, smaller policy updates during training are more likely to converge to
an optimal solution

○ A too-big step in a policy update can result in falling “off the cliff” (getting a bad
policy) and taking a long time or even having no possibility to recover

70

Introduction to PPO
● Recap: The Policy Objective Function

Empirical average over a
finite batch of samples

Estimator of the advantage
function at timestep t

71

Introduction to PPO
● Recap: The Policy Objective Function
● Problem: step size

○ Too small, the training process will be too slow
○ Too high, there will be too much variability in the training

72

Introduction to PPO
● Recap: The Policy Objective Function
● Problem: step size
● Introduce the clipped surrogate objective function

The ratio
function ● If the action at state

is more likely in the current policy
than the old policy

● If is between 0 and 1, the
action is less likely for the current
policy than for the old one

73

Introduction to PPO
● Recap: The Policy Objective Function
● Problem: step size
● Introduce the clipped surrogate objective function

The ratio
function

● This ratio can replace the log
probability we use in the policy
objective function

74

Introduction to PPO
● Recap: The Policy Objective Function
● Problem: step size
● Introduce the clipped surrogate objective function

Ensure that we do not have a too large policy update because
the current policy can’t be too different from the older one

75

Introduction to PPO
● Recap: The Policy Objective Function
● Problem: step size
● Introduce the clipped surrogate objective function

For more details, see the paper Proximal Policy Optimization Algorithms

https://arxiv.org/pdf/1707.06347.pdf

76

Questions?

