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LLM Training


https://openai.com/research/techniques-for-training-large-neural-networks

PART 01

LLM Training

Data Parallelism

Pipeline Parallelism  Tensor Parallelism
as as

Expert Parallelism

An illustration of various parallelism strategies on a three-layer model. Each color refers to
one layer and dashed lines separate different GPUs.
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PART 01

Data Parallelism

e Model Fits into a single GPU memory
o Keep multiple copies of parameters

e Steps:
o independently compute the gradient on each worker;
o average the gradients across workers;

m synchronous overhead!
m asynchronous synchronization schemes?
o independently compute the same new parameters on each

worker.
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https://arxiv.org/abs/1106.5730
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Pipeline Parallelism

A waiting for outputs from the previous machine
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Pipeline Parallelism

A GPipe
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Pipeline Parallelism

A PipeDream
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Tensor Parallelism

A Transformer/CNN -> Matrix Multiplication
[ Sequence parallelism:
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Figure 5: Transformer layer with tensor and sequence parallelism. g and g are conjugate. g is all-gather
in the forward pass and reduce-scatter in the backward pass. g is reduce-scatter in forward pass and

all-gather in backward pass.
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https://arxiv.org/abs/2205.05198
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Tensor Parallelism
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[Y?*,Y5] = LayerNorm([ X7, X3]),
Y =g(Y?,Y5),
[Z}, Z}] = [GeLU(Y AS), GeLU(Y A3)),
Wy, =Z!BT and W, = Z}B7,
(W?, W3] = g(W1, Wa),

@A NYU [Vi*, V5] = [Dropout(W), Dropout(W3)]
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Scaling Law for LLM
Training



PART 02

Scaling Law

Why do we care about scaling law?

. Performance vs Compute Budget Performance vs Steps
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Optimal Configuration for LLM

Given a fixed FLOPs budget, how should one trade-off
model size and the number of training tokens?
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FLOPs (Token, Parameter)
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Figure 1 | Overlaid predictions. We overlay the predictions from our three different approaches,
along with projections from Kaplan et al. (2020). We find that all three methods predict that current
large models should be substantially smaller and therefore trained much longer than is currently
done. In Figure A3, we show the results with the predicted optimal tokens plotted against the optimal
number of parameters for fixed FLOP budgets. Chinchilla outperforms Gopher and the other large
models (see Section 4.2).
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e Approach 1. Fix model
sizes and vary number of
training tokens

e Approach 2:I1soFLOP
profiles

e Approach 3: Fitting a
parametric loss function

14



PART 02

Approach 1: Fix model sizes and vary number of training tokens
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Figure 2 | Training curve envelope. On the left we show all of our different runs. We launched a
range of model sizes going from 70M to 10B, each for four different cosine cycle lengths. From these
curves, we extracted the envelope of minimal loss per FLOP, and we used these points to estimate the
optimal model size (center) for a given compute budget and the optimal number of training tokens
(right). In green, we show projections of optimal model size and training token count based on the
number of FLOPs used to train Gopher (5.76 x 10%3).
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Approach 2: IsoFLOP profiles

For a given FLOP budget, what is the optimal parameter count?
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Figure 3 | IsoFLOP curves. For various model sizes, we choose the number of training tokens such
that the final FLOPs is a constant. The cosine cycle length is set to match the target FLOP count. We
find a clear valley in loss, meaning that for a given FLOP budget there is an optimal model to train
(left). Using the location of these valleys, we project optimal model size and number of tokens for
larger models (center and right). In green, we show the estimated number of parameters and tokens
for an optimal model trained with the compute budget of Gopher.
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Approach 3: Fitting a parametric loss function
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FLOPs (Token, Parameter)
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Figure 1 | Overlaid predictions. We overlay the predictions from our three different approaches,
along with projections from Kaplan et al. (2020). We find that all three methods predict that current
large models should be substantially smaller and therefore trained much longer than is currently
done. In Figure A3, we show the results with the predicted optimal tokens plotted against the optimal
number of parameters for fixed FLOP budgets. Chinchilla outperforms Gopher and the other large
models (see Section 4.2).
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e Approach 1. Fix model
sizes and vary number of
training tokens

e Approach 2:I1soFLOP
profiles

e Approach 3: Fitting a
parametric loss function
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FLOPs (Token, Parameter)

Model Size (# Parameters) Training Tokens
LaMDA (Thoppilan et al., 2022) 137 Billion 168 Billion
GPT-3 (Brown et al., 2020) 175 Billion 300 Billion
Jurassic (Lieber et al., 2021) 178 Billion 300 Billion
Gopher (Rae et al., 2021) 280 Billion 300 Billion
MT-NLG 530B (Smith et al., 2022) 530 Billion 270 Billion
Chinchilla 70 Billion 1.4 Trillion
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