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LLM Training

P A R T   0 1

https://openai.com/research/techniques-for-training-large-neural-networks
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Data Parallelism
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● Model Fits into a single GPU memory
○ Keep multiple copies of parameters

● Steps:
○ independently compute the gradient on each worker;
○ average the gradients across workers;

■ synchronous overhead!
■  asynchronous synchronization schemes?

○ independently compute the same new parameters on each 
worker.

https://arxiv.org/abs/1106.5730
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Pipeline Parallelism
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❏ waiting for outputs from the previous machine 
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Pipeline Parallelism
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❏ GPipe
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Pipeline Parallelism
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❏ PipeDream
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Tensor Parallelism
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❏ Transformer/CNN -> Matrix Multiplication
❏ Sequence parallelism:

https://arxiv.org/abs/2205.05198
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Tensor Parallelism
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MOE
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Scaling Law for LLM 
Training
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Scaling Law
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Why do we care about scaling law?
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Optimal Configuration for LLM
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Given a fixed FLOPs budget, how should one trade-off 
model size and the number of training tokens?
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FLOPs (Token, Parameter)
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● Approach 1: Fix model 
sizes and vary number of 
training tokens

● Approach 2: IsoFLOP 
profiles

● Approach 3: Fitting a 
parametric loss function
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Approach 1: Fix model sizes and vary number of training tokens
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Approach 2: IsoFLOP profiles
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For a given FLOP budget, what is the optimal parameter count?
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Approach 3: Fitting a parametric loss function
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N: Model Size
D: Token
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FLOPs (Token, Parameter)
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● Approach 1: Fix model 
sizes and vary number of 
training tokens

● Approach 2: IsoFLOP 
profiles

● Approach 3: Fitting a 
parametric loss function
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