NYU

Efficient Inference

Weizhe Yuan



Overview

e General Techniques
o Quantization
o Pruning
o Knowledge Distillation

e Speculative Decoding (specific to Transformer text generation)
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Quantization

e Idea: Representing the weights and activations (output of the layer) with

low-precision data types
Sign 1 bit

Exponent 8 bits Precision 23 bits

Fr2 HHHEEEEEN

Exponent 8 bits Precision 7 bits

BFloatls [N NENENE

Exponent 5 bits Precision 10 bits
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Exponent 7 bits
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Image from: https://frankdenneman.nl/2022/07/26/training-vs-inference-numerical-precision/



Quantization

® The two most common quantization cases are
o float32 -> floatlo
o float32 -> int8
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Quantization

e FP32- FP16

o Performing quantization to go from float32 to floatle is quite straightforward
since both data types follow the same representation scheme.

o Need Clamping

o Lose some precision

Sign 1 bit

Exponent 8 bits Precision 23 bits

FP32 HHHEEEEEEE

Exponent 5 bits Precision 10 bits
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Quantization

e FP32- INTS

o More tricky
o INT8 Range: [-127, +127]
o Only 256 values can be represented in int8, while float32 can represent a very

wide range of values.

Sign 1 bit

Exponent 8 bits Precision 23 bits

FP32 HHHEEEEEEE

Exponent 7 bits
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Quantization

o FP32- INT8

o ldea: Find the best way to project our range [a, b] of float32 values to the int8
space.
o Let'sconsider a float x in [a, b]

Zero Point
Quantized
value of x /
x
Ly = round(g + Z)

Scale

ANYU



Quantization

o FP32- INT8

o ldea: Find the best way to project our range [a, b] of float32 values to the int8
space.
Let's consider a float x in [a, b]

o Linear mapping: a is mapped to the smallest int (-127), b is mapped to the
largest int (+127), so we can calculate Sand Z

o And float32 values outside of the [a, b] range are clipped to the closest
representable value

o De-quantization

" z=8x(z,— 2)
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Quantization

e Per-tensor Quantization
o Each tensor will have its own (S, Z) pair
e Per-channel Quantization
o A pairof (S, Z) per element along one of the dimensions of a tensor.

A NYU



Quantization

e Quantized Matrix Multiplication

o Suppose we want to perform Y = XW +b,where X ¢ R™? W € RP*" b c R"
Resulting in Y € R™*"

p
Yij=bi+ ) XixW,
k=1
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Quantization

e Quantized Matrix Multiplication

O Here we apply the de-quantization equation.

k=1
)
k=1
P P
= sy(bg; — 2) + sxSW <Z Xq,i,qu,k,j> — (ZW Z Xk
k=1 k=1

)~

p
Zx E Wokj

k=1

) + pZXZW]
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Quantization

e Quantized Matrix Multiplication

O Therefore, we can get

Sp
Yy =2y + —(bg; — 2)
Sy

9y Bl

SXSwW L
+ > XgikWon;

)-(

Integer Matrix
Multiplication
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Quantization

e Quantized Matrix Multiplication
O If we have to do a sequence of floating point matrix multiplications

X1 = X()W() + b()
X2 = X1W1 o bl

Xn — Xan —+ bn
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Quantization

e Quantized Matrix Multiplication

O If we have to do a sequence of floating point matrix multiplications

o  We could convert the math to the followings using quantized matrices.

Xo., = f.(Xo, 8%y, 2x,) Quantization

Xi1g = X6.55 Woas D605 8% Z% 5 STes B s Sk s Zho s SXis 2 .
1,9 fm( 0,q> ¥V 0,95 Y0,q9) 2 X1 # Xy 2Wys #Wys 2bgsr #byr © X1 Xl) Quantlzed

matrix
multiplication

Xoq = fm(Xl,q> W14, 01,4, X, 2X,, SWys 2Wy5 Sbys 2by5 8X,) ZXz)

Xnaq = f77L(XTL_17q7 W7L_17q’ bﬂ_l,fl’ an,17 zanl’ SW”71, ng,17 Sbn.717 an.fl’ an’ zXn)
Xn = fi(Xng 8x,,2x,) De-quantization
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Quantization

e Final Question: How is the range of [a, b] decided?
e Recall: Idea for quantization is representing the weights and activations
(output of the layer) with low-precision data types
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Quantization

e Final Question: How is the range of [a, b] decided?

o Weights — Easy
o Activations
m Dynamic quantization
e The range for each activation is computed on the fly gt runtime.
m Static quantization
e Therangeis computed in advance by passing through
representative data to estimate

A NYU
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Pruning

e Idea: Remove some neurons or connections in the network

before pruning after pruning

pruning
synapses

pruning
neurons
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Image from https://blog.tensorflow.org/2019/05/tf-model-optimization-toolkit-pruning-APl.html



Pruning

e Weight Pruning
e Neuron Pruning
e (Optional): Retrain the model to recover accuracy

A NYU
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Pruning

e Weight Pruning
In terms of the Matrix Computation

©)
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A lot of the values in the matrix get set to O
e |ess Storage

e Faster Compute
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Image from https://blog.tensorflow.org/2019/05/tf-model-optimization-toolkit-pruning-APl.html
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Pruning

e Weight Pruning
o Simplest method: Magnitude Pruning
m Pick pruning factor X
m In each layer, set the lowest X% of weights (by absolute value) to zero

A NYU
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Pruning

e Weight Pruning
o Simplest method: Magnitude Pruning
o Other methods
m GCradient-based Pruning: Prune weights that have consistently low
gradients throughout training
m Hessian-based Pruning
m Etc.
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Pruning

e Weight Pruning
o Unstructured Pruning
m  Simply remove connections from a network without any further pattern
o Structured Pruning
m Enforce more structure on which weights are allowed to set to O

A NYU
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Pruning

e Weight Pruning
o Unstructured Pruning
o Structured Pruning
m Enforce more structure on which weights are allowed to set to O
m E.g, 2:4 Structured Sparsity Pattern

At least Structured-sparse Structured-sparse and
matrix W

two O T
Fine-grained
structured-sparse
matrix format

>
R X C/2 elements +
R X C/2 2bits meta
data

(/ . L ]
NYU - c ! .
D=Z°'° entry Non-zero data 2-bits
values indices
Image from: https://developer.nvidia.com/blog/structured-sparsity-in-the-nvidia-ampere-architecture-and-applications-in-search-engines/
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Pruning

e Weight Pruning
o Unstructured Pruning
o Structured Pruning
m Enforce more structure on which weights are allowed to setto O
m E.g, 2:4 Structured Sparsity Pattern
m  INVIDIA's tensor core GPUs are able to execute this type of structured
sparsity with greater efficiency.

A NYU 2

Image from: https://developer.nvidia.com/blog/structured-sparsity-in-the-nvidia-ampere-architecture-and-applications-in-search-engines/



Pruning

e Weight Pruning
o Hardware dependent
m Design pruning algorithms with the hardware in mind
m Depend on what kind of sparsity runs fast on the hardware that you
intend to deploy your neural network on

A NYU
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Pruning

e Weight Pruning
e Neuron Pruning
o Run data through the network and observe the activations
m  Prune neurons that output near-zero values
m Prune redundant neurons that have very similar weights or activations
m Etc

A NYU

Image from https://blog.tensorflow.org/2019/05/tf-model-optimization-toolkit-pruning-APl.html
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Pruning

e Weight Pruning
e Neuron Pruning
o Change the model architecture

ANYU

Image from https://blog.tensorflow.org/2019/05/tf-model-optimization-toolkit-pruning-APl.htm|
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Knowledge Distillation

e Idea: Transferring knowledge from a large model to a smaller one

generating soft targets

> TEACHER >
% backpropagation #
<

training the student

NYU

Image from: https://rmoklesur.medium.com/knowledge-distillation-in-deep-learning-keras-implementation-b61261c552db
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Knowledge Distillation

e General Recipe
o First, we use the training data to train a teacher network
o Then, we start to train the student network to align its outputs to the outputs
of the teacher network

Why don’t we directly train the student network on the training data?

ANYU
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Knowledge Distillation

e General Recipe
o First, we use the training data to train a teacher network
o Then, we start to train the student network to align its outputs to the outputs
of the teacher network

o Reasons:
m  Proven Fact: small models are hard to train using the training data
e Over-parameterization has become the de-facto, easier to train and

generalize better

A NYU
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Knowledge Distillation

e General Recipe
o First, we use the training data to train a teacher network
o Then, we start to train the student network to align its outputs to the outputs
of the teacher network

o Reasons:
m  Proven Fact: small models are hard to train using the training data

m Outputs from the teacher network contains much more information
(distribution) than just a label

A NYU
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Knowledge Distillation

e What to match?
o Simplest: Output logits

Teacher Model

—BEE-

Y

EDD Distillation E(—p;logpy);
LO?S L2 loss:

E(llp, — p,lI13)
[ Layer J_[ Layer ‘[Layer]—b Logits
Student Model

Classification
Loss

Cross entropy loss:

32
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Knowledge Distillation

e What to match?
o Simplest: Output logits
o Intermediate Weights (Linear transformation is applied to match the
dimensionality) Teacher Model

,| Layer Layer | Layer | | | its
1 2 N
v
Distillation
l Input l Loss
—E -

Student Model

Classification

(?’ NYU Loss
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Knowledge Distillation

e What to match?
o Simplest: Output logits
o Intermediate Weights

o Intermediate Features (outputs)
Teacher Model

. [La%/er}[[Lager] ;"'_"La&/er |

| Input l [ LEES ] [ ] Match intermediate feature maps
Layer}L Layer J'[Layer | Logits
Student Model
(?’ NYU Classification

Loss
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Knowledge Distillation

e What to match?
o Simplest: Output logits
Intermediate Weights

O
o Intermediate Features (outputs)
o Others

m GCradient

m Sparsity Features
m FEtc.

A NYU
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Speculative Decoding

e Specific to Transformer text generation model

e Background:

o Autoregressive decoding can be slow
of Edinburgh

T T

{ 100B model } [ 100B model }

T T

A NYU

Example from: https:/Mmww.youtube.com/watch?v=S-8yr_RibJ4
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Speculative Decoding

e Specific to Transformer text generation model
e Background:

@)

NYU

Autoregressive decoding can be slow

of

T

Easy
Use a small model

Edinburgh

T

Difficult
Use a large model

100B model

T

Geoffrey Hinton did his PhD

at the University

100B model

T

at the University of

Geoffrey Hinton did his PhD

Example from: https:/Mmww.youtube.com/watch?v=S-8yr_RibJ4
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Speculative Decoding

e Specific to Transformer text generation model
e Background:

o Autoregressive decoding can be slow
e Idea: Use two models

o The original large model
o Another smaller draft model

A NYU
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Speculative Decoding

e Key reason that this works is related to the transformer model

architecture
o Inone forward pass, it can generate probability distribution for multiple
tokens in parallel

at the University of Toronto

t

{ 100B model }

t

A NYU
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Speculative Decoding

e Method
o Notation

Small
M,, = draft model —

M, = target model — Large

pf = prefix, K = 5 tokens

i NYU
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Speculative Decoding

e Method

o Step 1. Run the draft model autoregressively five times to generate a
seguence of 5 tokens

p1(x) = Mp(pf) ) {1

Probablllty pZ(x) — Mp(pf! xl) e ——— Xy Sampled
distribution token

ps(x) =Mp(pf,x1,x2,x3,x4) ) Xg
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Speculative Decoding

e Method

o Step 1. Run the draft model autoregressively five times to generate a
sequence of 5 tokens.

o Step 2: Run the target model once to generate a probability distributions for
five (+1) tokens in parallel.

q1(x), q2(x), q3(x), q4(x), g5 (x), g6 (x)

= MCI (pfr X1, X2, X3, X4, X5)

A NYU
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Speculative Decoding

e Method

o Step 1. Run the draft model autoregressively five times to generate a
sequence of 5 tokens.

o Step 2: Run the target model once to generate a probability distributions for
five (+1) tokens in parallel.

T O O S

dogs love chasing after cars
p(x) 0.8 0.7 0.9 0.8 0.7
q(x) 0.9 0.8 0.8 0.3 0.8

NYU
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Speculative Decoding

e Method

o Step 1. Run the draft model autoregressively five times to generate a
sequence of 5 tokens.

o Step 2: Run the target model once to generate a probability distributions for
five (+1) tokens in parallel.

o Step 3. Decide which tokens to keep and return to Step 1

A NYU
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Speculative Decoding

e Method
o Step 3. Decide which tokens to keep and return to Step 1

m“ﬁum Case 1: If g(x) = p(x), then accept

dogs love chasing | after cars
p(x) 0.8 0.7 0.9 0.8 0.7 Case 2: If q(x) < p(x), then accept with probability %
q(x) 0.9 0.8 0.8 0.3 0.8

4 4 X
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Speculative Decoding

e Method
o Step 3. Decide which tokens to keep and return to Step 1
o Accepted token num: 0~5
m Since we have run the large model once in each loop, we are at least as good as
having only the large model
m  \Worst case: we reject the first token and sample it from the large model’s first token
distribution
m Best case: accept all the tokens

A NYU
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Speculative Decoding

e Method

o Theoretical Guarantee
m This method is equivalent to sampling from the original model g(x), so
there is no loss of accuracy.
o Speedup
m Recommended value for Kis 3-7
m Typically 2-3x speedup

A NYU
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Questions?
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