

Efficient Inference

Weizhe Yuan

10/23/2023

Overview

• General Techniques

- Quantization
- Pruning
- Knowledge Distillation
- **Speculative Decoding** (specific to Transformer text generation)

• Idea: Representing the weights and activations (output of the layer) with low-precision data types

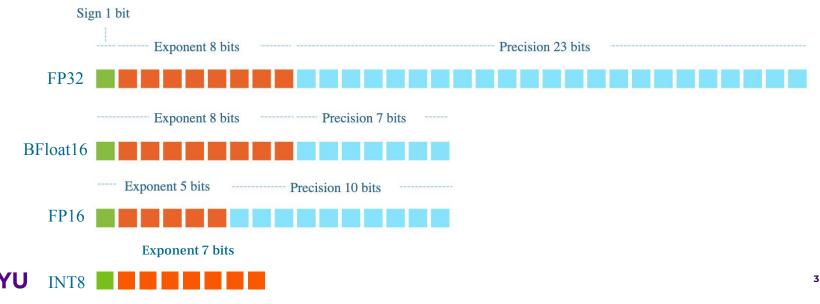
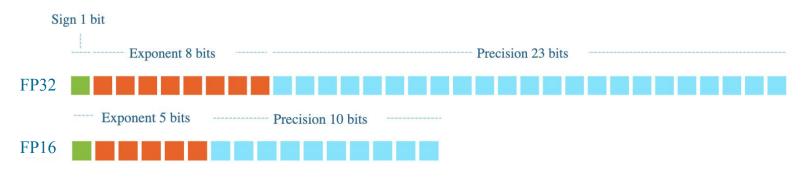


Image from: https://frankdenneman.nl/2022/07/26/training-vs-inference-numerical-precision/

- The two **most common** quantization cases are
 - float32 -> float16
 - float32 -> int8

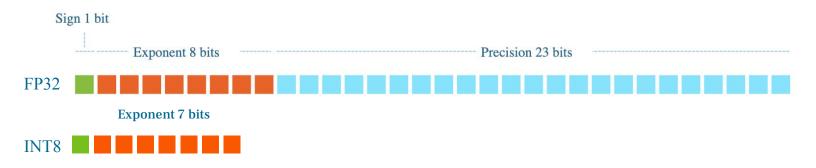
• FP32 → FP16

- Performing quantization to go from float32 to float16 is quite straightforward since both data types follow the same representation scheme.
- Need Clamping
- Lose some precision



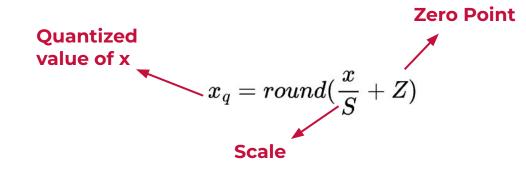
• FP32 → INT8

- More tricky
- INT8 Range: [-127, +127]
- Only 256 values can be represented in int8, while float32 can represent a very wide range of values.



• FP32 → INT8

- Idea: Find the best way to project our range [a, b] of float32 values to the int8 space.
- Let's consider a float x in [a, b]



• FP32 → INT8

- Idea: Find the best way to project our range [a, b] of float32 values to the int8 space.
- Let's consider a float x in [a, b]
- Linear mapping: a is mapped to the smallest int (-127), b is mapped to the largest int (+127), so we can calculate S and Z
- And float32 values outside of the [a, b] range are clipped to the closest representable value
- De-quantization

•
$$x = S * (x_q - Z)$$

• Per-tensor Quantization

• Each tensor will have its own (S, Z) pair

• Per-channel Quantization

• A pair of (S, Z) per element along one of the dimensions of a tensor.

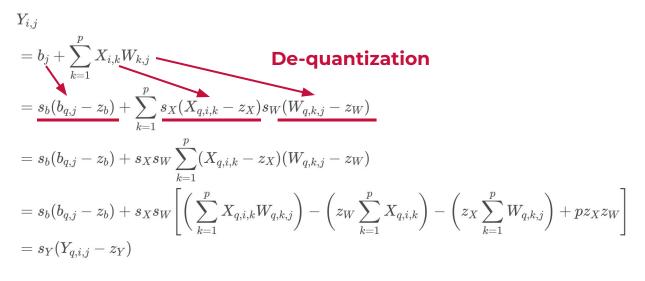
• Quantized Matrix Multiplication

• Suppose we want to perform Y = XW + b, where $X \in \mathbb{R}^{m imes p}, W \in \mathbb{R}^{p imes n}, b \in \mathbb{R}^n$ Resulting in $Y \in \mathbb{R}^{m imes n}$

$$Y_{i,j} = b_j + \sum_{k=1}^p X_{i,k} W_{k,j}$$

• Quantized Matrix Multiplication

• Here we apply the de-quantization equation.



- Quantized Matrix Multiplication
 - Therefore, we can get

$$egin{aligned} Y_{q,i,j} &= z_Y + rac{s_b}{s_Y}(b_{q,j}-z_b) \ &+ rac{s_X s_W}{s_Y} \Bigg[\Bigg(\sum_{k=1}^p X_{q,i,k} W_{q,k,j} \Bigg) - \Bigg(z_W \sum_{k=1}^p X_{q,i,k} \Bigg) - \Bigg(z_X \sum_{k=1}^p W_{q,k,j} \Bigg) + p z_X z_W \Bigg] \end{aligned}$$

Integer Matrix Multiplication

• Quantized Matrix Multiplication

• If we have to do a sequence of floating point matrix multiplications

$$egin{aligned} X_1 &= X_0 W_0 + b_0 \ X_2 &= X_1 W_1 + b_1 \ &dots \ X_n &= X_n W_n + b_n \end{aligned}$$

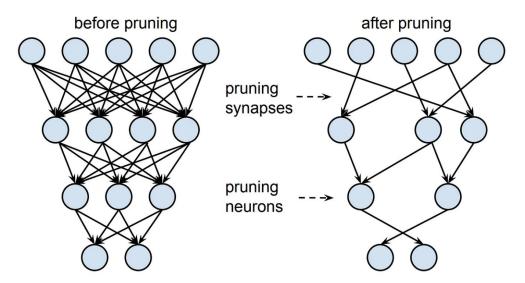
• Quantized Matrix Multiplication

- If we have to do a sequence of floating point matrix multiplications
- We could convert the math to the followings using quantized matrices.

- **Final Question:** How is the range of [a, b] decided?
- **Recall**: Idea for quantization is representing the weights and activations (output of the layer) with low-precision data types

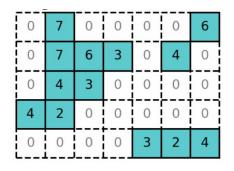
- **Final Question:** How is the range of [a, b] decided?
 - Weights → Easy
 - Activations
 - Dynamic quantization
 - The range for each activation is computed <u>on the fly at runtime</u>.
 - Static quantization
 - The range is computed *in advance* by passing through representative data to estimate

• Idea: Remove some neurons or connections in the network

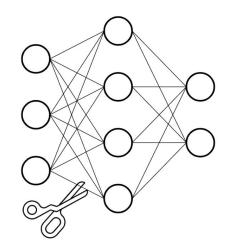


- Weight Pruning
- Neuron Pruning
- (Optional): Retrain the model to recover accuracy

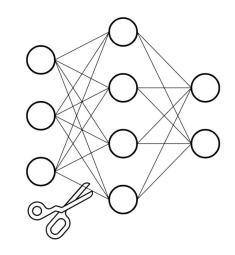
- In terms of the Matrix Computation
 - A lot of the values in the matrix get set to 0
 - Less Storage
 - Faster Compute



- Simplest method: Magnitude Pruning
 - Pick pruning factor X
 - In each layer, set the lowest X% of weights (by absolute value) to zero



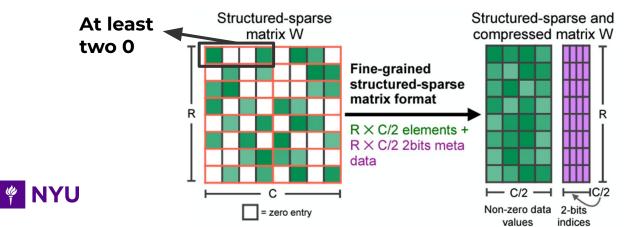
- Simplest method: Magnitude Pruning
- Other methods
 - Gradient-based Pruning: Prune weights that have consistently low gradients throughout training
 - Hessian-based Pruning
 - Etc...



- Unstructured Pruning
 - Simply remove connections from a network without any further pattern
- Structured Pruning
 - Enforce more structure on which weights are allowed to set to 0

• Weight Pruning

- Unstructured Pruning
- Structured Pruning
 - Enforce more structure on which weights are allowed to set to 0
 - E.g., 2:4 Structured Sparsity Pattern



23

Image from: https://developer.nvidia.com/blog/structured-sparsity-in-the-nvidia-ampere-architecture-and-applications-in-search-engines/

- Unstructured Pruning
- Structured Pruning
 - Enforce more structure on which weights are allowed to set to 0
 - E.g., 2:4 Structured Sparsity Pattern
 - INVIDIA's tensor core GPUs are able to execute this type of structured sparsity with greater efficiency.

- Hardware dependent
 - Design pruning algorithms with the hardware in mind
 - Depend on what kind of sparsity runs fast on the hardware that you intend to deploy your neural network on

- Weight Pruning
- Neuron Pruning
 - Run data through the network and observe the activations
 - Prune neurons that output near-zero values
 - Prune redundant neurons that have very similar weights or activations
 - ∎ Etc.

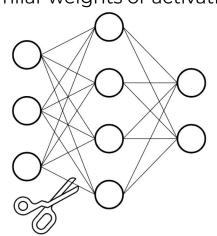


Image from https://blog.tensorflow.org/2019/05/tf-model-optimization-toolkit-pruning-API.html

- Weight Pruning
- Neuron Pruning
 - Change the model architecture

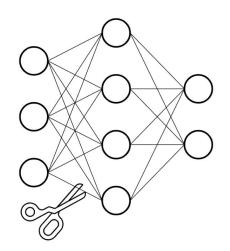


Image from https://blog.tensorflow.org/2019/05/tf-model-optimization-toolkit-pruning-API.html

• Idea: Transferring knowledge from a large model to a smaller one

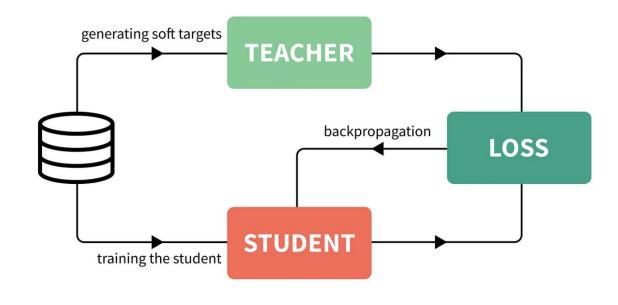


Image from: https://rmoklesur.medium.com/knowledge-distillation-in-deep-learning-keras-implementation-b61261c552db

• General Recipe

- First, we use the training data to train a teacher network
- Then, we start to train the student network to align its outputs to the outputs of the teacher network

Why don't we directly train the student network on the training data?

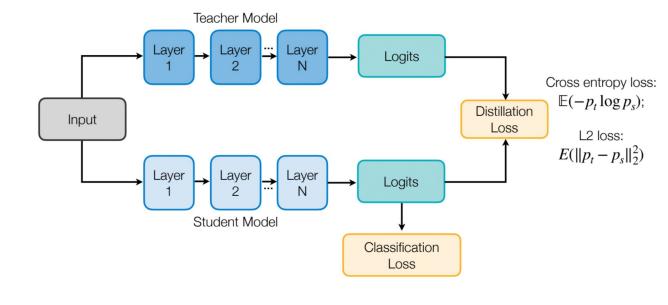
• General Recipe

- First, we use the training data to train a teacher network
- Then, we start to train the student network to align its outputs to the outputs of the teacher network
- Reasons:
 - Proven Fact: small models are hard to train using the training data
 - Over-parameterization has become the de-facto, easier to train and generalize better

• General Recipe

- First, we use the training data to train a teacher network
- Then, we start to train the student network to align its outputs to the outputs of the teacher network
- Reasons:
 - Proven Fact: small models are hard to train using the training data
 - Outputs from the teacher network contains much more information (distribution) than just a label

- What to match?
 - Simplest: Output logits

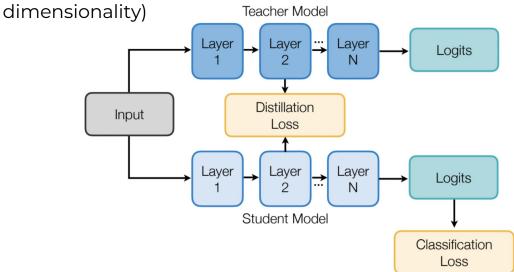


Images from:

WYU

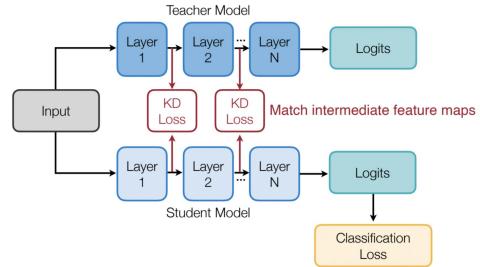
• What to match?

- Simplest: Output logits
- Intermediate Weights (Linear transformation is applied to match the



• What to match?

- Simplest: Output logits
- Intermediate Weights
- Intermediate Features (outputs)

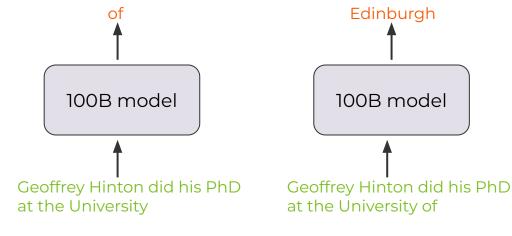


• What to match?

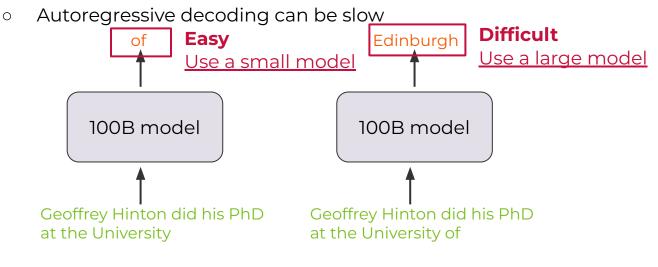
- Simplest: Output logits
- Intermediate Weights
- Intermediate Features (outputs)
- Others
 - Gradient
 - Sparsity Features
 - Etc...

Speculative Decoding

- Specific to Transformer text generation model
- Background:
 - Autoregressive decoding can be slow

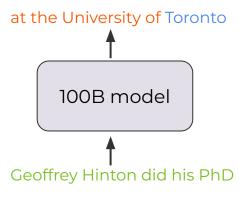


- Specific to Transformer text generation model
- Background:



- Specific to Transformer text generation model
- Background:
 - Autoregressive decoding can be slow
- Idea: Use two models
 - The original large model
 - Another smaller draft model

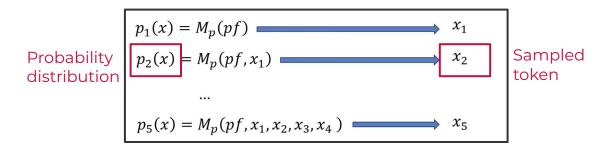
- **Key reason that this works** is related to the transformer model architecture
 - In one forward pass, it can generate probability distribution for multiple tokens in parallel



- Method
 - Notation

 $M_p = draft model$ Small $M_q = target model$ Large pf = prefix, K = 5 tokens

- Method
 - **Step 1**: Run the draft model autoregressively **five times** to generate a sequence of 5 tokens.



- Method
 - **Step 1**: Run the draft model autoregressively **five times** to generate a sequence of 5 tokens.
 - **Step 2**: Run the target model **once** to generate a probability distributions for five (+1) tokens in parallel.

 $q_1(x), q_2(x), q_3(x), q_4(x), q_5(x), q_6(x)$

 $= M_q(pf, x_1, x_2, x_3, x_4, x_5)$

• Method

- **Step 1**: Run the draft model autoregressively **five times** to generate a sequence of 5 tokens.
- **Step 2**: Run the target model **once** to generate a probability distributions for five (+1) tokens in parallel.

Token	x1	x2	х3	x4	х5
	dogs	love	chasing	after	cars
p(x)	0.8	0.7	0.9	0.8	0.7
q(x)	0.9	0.8	0.8	0.3	0.8

- Method
 - **Step 1**: Run the draft model autoregressively **five times** to generate a sequence of 5 tokens.
 - **Step 2**: Run the target model **once** to generate a probability distributions for five (+1) tokens in parallel.
 - Step 3: Decide which tokens to keep and return to Step 1

• Method

• Step 3: Decide which tokens to keep and return to Step 1

Token	x1	x2	хЗ	x4	x5
	dogs	love	chasing	after	cars
p(x)	0.8	0.7	0.9	0.8	0.7
q(x)	0.9	0.8	0.8	0.3	0.8
	\checkmark	\checkmark	X		

Case 1: If $q(x) \ge p(x)$, then accept

Case 2: If
$$q(x) < p(x)$$
, then accept with probability $\frac{q(x)}{p(x)}$

• Method

- Step 3: Decide which tokens to keep and return to Step 1
- Accepted token num: 0~5
 - Since we have run the large model once in each loop, we are at least as good as having only the large model
 - Worst case: we reject the first token and sample it from the large model's first token distribution
 - Best case: accept all the tokens

- Method
 - Theoretical Guarantee
 - This method is equivalent to sampling from the original model q(x), so there is no loss of accuracy.
 - Speedup
 - Recommended value for K is 3-7
 - Typically 2-3x speedup

Questions?

