

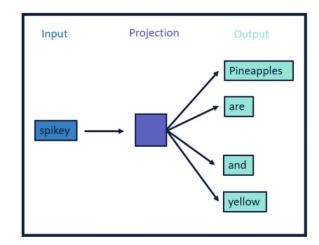
Operations on Word Vectors

Yilun Kuang

Goal: Map each word to a vector in \mathbb{R}^d such that similar words have similar vectors.

Goal: Map each word to a vector in R^d such that similar words have similar vectors.

Skip-gram model: Given a word, predict its neighbouring words within a window.

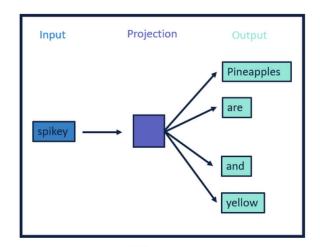


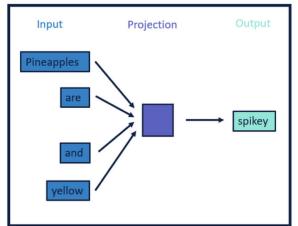
3

Goal: Map each word to a vector in R^d such that similar words have similar vectors.

Skip-gram model: Given a word, predict its neighbouring words within a window.

Continuous bag-of-words model: Given the context, predict the missing word.

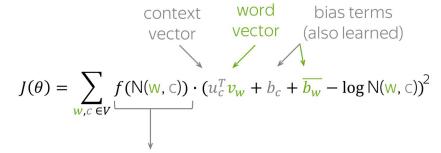




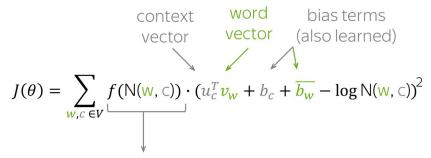
I .

GloVe: Global Vectors (Pennington et al., 2014) — Use co-occurrence matrix of each word pair. N(w, c) is the co-occurrence count between word w and context c.

GloVe: Global Vectors (Pennington et al., 2014) — Use co-occurrence matrix of each word pair. N(w, c) is the co-occurrence count between word w and context c.

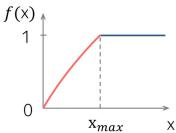


GloVe: Global Vectors (Pennington et al., 2014) — Use co-occurrence matrix of each word pair. N(w, c) is the co-occurrence count between word w and context c.



Weighting function to:

- penalize rare events
- not to over-weight frequent events



$$\begin{cases} (x/x_{max})^{\alpha} & \text{if } x < x_{max} \\ 1 & \text{otherwise.} \end{cases}$$

$$\alpha = 0.75$$
, $x_{max} = 100$

Similarity between Word Vectors

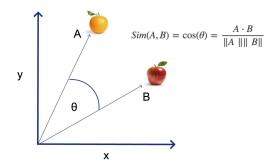
Question: Do the learnt word embeddings satisfy the desired property of similarity?

Similarity between Word Vectors

Question: Do the learnt word embeddings satisfy the desired property of similarity?

Use cosine similarity between any two word vectors.

Cosine Similarity



In word analogy tasks, we ask questions like "a is to b as c is to ____"

Example: "London is to UK as Amsterdam is to Netherlands"

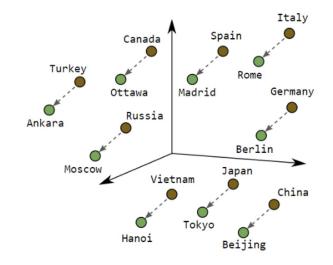
For a —> b :: c —> ?, given word vectors v_a , v_b and v_c , we will find a word d such that v_a - $v_b \sim v_c$ - v_d .

For a —> b :: c —> ?, given word vectors v_a , v_b and v_c , we will find a word d such that v_a - v_b ~ v_c - v_d .

The difference $v_a - v_b$ represents the 'concept' (e.g. capital of country).

For a —> b :: c —> ?, given word vectors v_a , v_b and v_c , we will find a word d such that v_a - $v_b \sim v_c$ - v_d .

The difference $v_a - v_b$ represents the 'concept' (e.g. capital of country).



Country-Capital

Word Similarity Tasks

- WordSim353
- SimLex-999 (similarity rather than relatedness)

Pair	Simlex-999 rating	WordSim-353 rating
coast - shore	9.00	9.10
clothes - closet	1.96	8.00

Bias in Word Vectors

The difference $v_a - v_b$ represents the 'concept' — if a is woman and b is man, then it represents 'gender'.

Bias in Word Vectors

The difference $v_3 - v_b$ represents the 'concept' — if a is woman and b is man, then it represents 'gender'.

Compute projections of occupations on this difference $v_3 - v_6$

Extreme she occupations

- 1. homemaker
- 4. librarian
- 10. housekeeper
- 2. nurse
- 5. socialite
- 7. nanny 8. bookkeeper
- 3. receptionist
- 6. hairdresser
- 9. stylist
- 11. interior designer 12. guidance counselor

Extreme he occupations

- 1. maestro
- 4. philosopher
- 7. financier
- 10. magician
- 2. skipper
- 5. captain
- 8. warrior
- 11. figher pilot
- 3. protege
- 6. architect
- 9. broadcaster

 - 12. boss

Bias in Word Vectors

Similarly, we can obtain vectors for other concepts like race and religion.

Compute projections of occupations on this difference $v_a - v_b$.

•			
Racially Biased Analogies			
$black \rightarrow criminal$	caucasian \rightarrow police		
asian \rightarrow doctor	$caucasian \rightarrow dad$		
$caucasian \rightarrow leader$	$black \rightarrow led$		
Religiously Biased Analogies			
$muslim \rightarrow terrorist$	christian → civilians		
$jewish \rightarrow philanthropist$	$christian \rightarrow stooge$		
$christian \rightarrow unemployed$	jewish \rightarrow pensioners		

Note: The vectors were obtained from training on reddit data from USA users

Debiasing Word Vectors

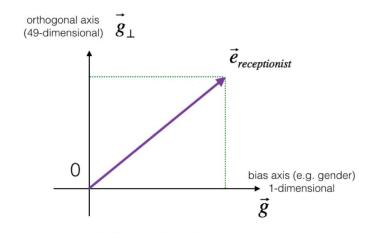
For a concept vector g and word vector e, obtain the biased component:

$$e_{\text{biased}} = \frac{e \cdot g}{\left|\left|g\right|\right|^2} g$$

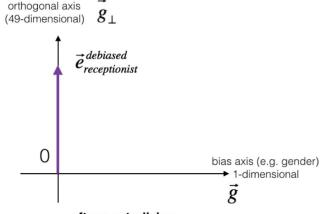
Subtract from the original vector to obtain the debiased vector

$$e_{\text{debiased}} = e - e_{\text{biased}}$$

Debiasing Word Vectors



before neutralizing, "receptionist" is positively correlated with the bias axis



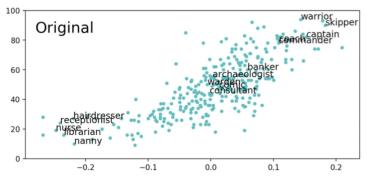
after neutralizing,

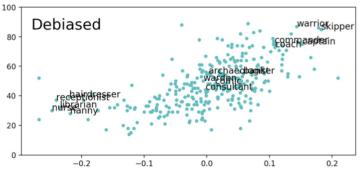
debased version, with the component in the direction of the bias axis (g) zeroed out

Debiasing Word Vectors

Previous method ensures that vector is orthogonal to the concept vector.

Not always effective in debiasing —- the word vectors corresponding to occupations are still clustered according to gender.





Ravfogel et al 2020:

- There is no single direction corresponding to concepts it can span in multiple directions.
- Propose Iterative Null-space Projection (INLP) iteratively neutralise/debias the vectors.

Algorithm 1 Iterative Nullspace Projection (INLP)

Input: (X, Z): a training set of vectors and protected attributes

n: Number of rounds

Result: A projection matrix P

Function GetProjectionMatrix (X, Z):

$$X_{projected} \leftarrow X$$

$$P \leftarrow I$$
for $i \leftarrow 1$ **to** n **do**

$$W_i \leftarrow \text{TrainClassifier}(X_{projected}, Z)$$

$$B_i \leftarrow \text{GetNullSpaceBasis}(W_i)$$

$$P_{N(W_i)} \leftarrow B_i B i^T$$

$$P \leftarrow P_{N(W_i)} P$$

$$X_{projected} \leftarrow P_{N(W_i)} X_{projected}$$

e.g. Dataset of (occupation, gender) where we have word vectors for each occupation along with the biased gender.

end

return P

Algorithm 1 Iterative Nullspace Projection (INLP)

```
Input: (X, Z): a training set of vectors and protected attributes n: Number of rounds
```

Result: A projection matrix P

Function GetProjectionMatrix (X, Z):

$$X_{projected} \leftarrow X$$

$$P \leftarrow I$$
for $i \leftarrow 1$ **to** n **do**

$$W_{i} \leftarrow \text{TrainClassifier}(X_{projected}, Z)$$

$$B_{i} \leftarrow \text{GetNullSpaceBasis}(W_{i})$$

$$P_{N(W_{i})} \leftarrow B_{i}B_{i}^{T}$$

$$P \leftarrow P_{N(W_{i})}P$$

$$X_{projected} \leftarrow P_{N(W_{i})}X_{projected}$$

e.g. Train a linear classifier to predict gender from occupation.

end

return P

Algorithm 1 Iterative Nullspace Projection (INLP)

```
Input: (X, Z): a training set of vectors and protected attributes n: Number of rounds
```

Result: A projection matrix P

Function GetProjectionMatrix (X, Z):

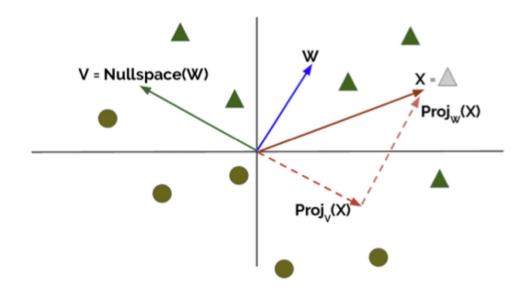
$$\begin{split} X_{projected} \leftarrow X \\ P \leftarrow I \\ \textbf{for } i \leftarrow 1 \textbf{ to } n \textbf{ do} \\ W_i \leftarrow \text{TrainClassifier}(X_{projected}, Z) \\ B_i \leftarrow \text{GetNullSpaceBasis}(W_i) \\ P_{N(W_i)} \leftarrow B_i B i^T \\ P \leftarrow P_{N(W_i)} P \\ X_{projected} \leftarrow P_{N(W_i)} X_{projected} \end{split}$$

Project X onto nullspace of W —> predicting Z (e.g. gender) from new X will not work.

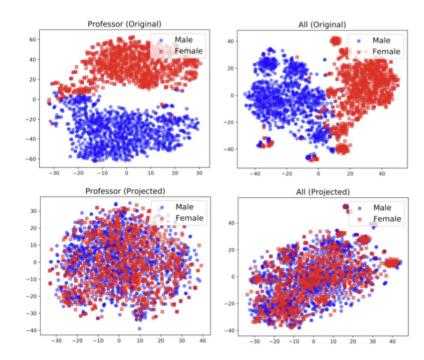
end

return P

- W: weight of a linear classifier trained to predict Z from X
- Project on null-space
- Iterate



- Does not suffer from the issue we saw with earlier debiasing method.
- Representations are now not clustered according to protected attribute (e.g. gender).



Summary

- Word vectors encode a notion of similarity, which can be helpful for retrieval, word analogy tasks etc.
- Word vectors can encode biases from the data —> Need to evaluate and use appropriate debiasing methods.

Acknowledgement

This presentation is adapted from Nitish Joshi, 31st January 2022

