

#### **Text Classification**

Xiang Pan

09/11/2023

# Outline

- MLE and Naive Bayes
- Regularization In ML
- Regularization in NLP



#### **MLE: Basic Concept**

ERM

$$\min \sum_{i=1}^{N} \ell(x^{(i)}, y^{(i)}, \theta)$$

MLE 
$$\max \sum_{i=1}^{N} \log p(y^{(i)} \mid x^{(i)}; \theta)$$



| Text                                                              | Reviews  |
|-------------------------------------------------------------------|----------|
| "I liked the movie"                                               | positive |
| "It's a good movie. Nice story"                                   | positive |
| "Nice songs. But sadly boring ending. "                           | negative |
| "Hero's acting is bad but heroine looks good. Overall nice movie" | positive |
| "Sad, boring movie"                                               | negative |

#### **%** NYU

ref:https://www.geeksforgeeks.org/applying-multinomial-naive-bayes-to-nlp-problems/

- 1. Get the words list
- 2. Calculate the Conditional Probability P(word| class)
- 3. Inference: Calculate the probability P(Class | Sentence)
  - a. P(Class | Sentence) = P(Sentence | Class) \* P(Class) / P(Sentence)
  - b. P(Sentence | Class) = P(w\_0|Class) \* P(w\_1|Class)
  - c. P(Positive|Sentence) > P(Negative|Sentence)?



PART 01

| Text                                                              | Reviews  |
|-------------------------------------------------------------------|----------|
| "I liked the movie"                                               | positive |
| "It's a good movie. Nice story"                                   | positive |
| "Nice songs. But sadly boring ending. "                           | negative |
| "Hero's acting is bad but heroine looks good. Overall nice movie" | positive |
| "Sad, boring movie"                                               | negative |

- Calculate the positive words count and negative words count
- 2. Calculate the conditional probability
  - a. P(word\_i | class\_j)
- 3. Do the inference.



| Text                                                              | Reviews  |
|-------------------------------------------------------------------|----------|
| "I liked the movie"                                               | positive |
| "It's a good movie. Nice story"                                   | positive |
| "Nice songs. But sadly boring ending. "                           | negative |
| "Hero's acting is bad but heroine looks good. Overall nice movie" | positive |
| "Sad, boring movie"                                               | negative |

"overall liked the movie"

P(overall | positive) = 1/17 P(liked/positive) = 1/17 P(the/positive) = 2/17 P(movie/positive) = 3/17



#### **NB: Sentence Example**

| Text                                                              | Reviews  |
|-------------------------------------------------------------------|----------|
| "I liked the movie"                                               | positive |
| "It's a good movie. Nice story"                                   | positive |
| "Nice songs. But sadly boring ending. "                           | negative |
| "Hero's acting is bad but heroine looks good. Overall nice movie" | positive |
| "Sad, boring movie"                                               | negative |

P(liked/negative) = 0/7

How should we handle the zero probability here?

P(liked/negative)= (liked times in negative sentence + 1) / (|negative\_word| + |total\_word|) (0 + 1) / (7+ 21)

#### Should we count the words with same stem as one word?

Liked and Like?

Should we consider words with same sub word?

p(sad|negative) = 1/7p(sad|y|negative) = 1/7

-> p(sad|negative) = 2/7 ?

P(positive|"Nice songs. But sadly boring ending. ")

= P("Nice songs. But sadly boring ending. "|positive) \* P(positive) / P("Nice songs. But sadly boring ending. ")

= P("Nice"|positive) \* P("songs"|positive) \* P("But"|positive) \* P("sadly"|positive) \* P("boring"|positive) \* P("ending"|positive) \* P(positive) / P("Nice songs. But sadly boring ending. ")



#### **MLE and NB: Sentence Example**

Can we improve?

- Stem and Stopwords
- Laplace smoothing
- Change the NB assumption
  - N-gram
  - Contextualized Models



#### **Regularization in ML**



### **Regularization?**

- Explicit regularization
  - Dropout
  - Data Augmentation
    - Back Translation
    - Style Change
    - Word Order shuffling
    - Synonyms change
    - ...
- Implicit regularization
  - Early Stopping
  - Model Structure

