
Aligning Language Models II

He He

November 29, 2023

1 / 32

Logistics

Next week: online guest lecture by Victoria Lin http://victorialin.net

Details to be announced soon!

If there’s time left, I’ll go over some quick tips on presentation and report writing.

2 / 32

http://victorialin.net

Project presentation

I will be at a conference so will join remotely, but TAs will be here.

3 / 32

Plan for today

• Last week: aligning LMs with human preferences by prompting and supervised
learning

• This week: can we directly optimize human preferences?

• Main tool: reinforcement learning

4 / 32

Table of Contents

RL for text generation

RL for aligning LMs

Collect human feedback

Train reward model

Train policy with PPO

5 / 32

RL in NLP

• Formulation: generating text (a sequence of tokens) can be considered a
sequential decision making problem

• Motivation: why use RL when we have supervised data?

• Alleviate exposure bias
• Optimize sequence level metrics
• Bootstrap to unlabeled data

• Challenges:
• Large exploration space
• Where does the reward come from?

6 / 32

RL in NLP

• Formulation: generating text (a sequence of tokens) can be considered a
sequential decision making problem

• Motivation: why use RL when we have supervised data?
• Alleviate exposure bias
• Optimize sequence level metrics
• Bootstrap to unlabeled data

• Challenges:

• Large exploration space
• Where does the reward come from?

6 / 32

RL in NLP

• Formulation: generating text (a sequence of tokens) can be considered a
sequential decision making problem

• Motivation: why use RL when we have supervised data?
• Alleviate exposure bias
• Optimize sequence level metrics
• Bootstrap to unlabeled data

• Challenges:
• Large exploration space
• Where does the reward come from?

6 / 32

Example: RL for machine translation

• Motivation: optimize BLEU score directly

• Objective: find a policy that maximizes the expected BLEU score

max
∑

(x ,y)∼D

Eŷ∼pθ(·|x) [BLEU(ŷ , y)]

• Learning: REINFORCE
• In a nutshell, sample translation from the current model, score by BLEU, do

weighted gradient ascent.

• In practice, need many tricks and tuning to make it work.

7 / 32

Technique 1: Interpolating with the MLE objective

• Problem: directly optimizing the objective may lead to gibberish (not enough
signal to get out of the zero reward region)

• Solution:
• Initialize pθ with the MLE trained policy
• Interpolate with the MLE objective

max
∑

(x ,y)∼D

Eŷ∼pθ(·|x) [BLEU(ŷ , y)] + αlog pθ(x | y)

8 / 32

Technique 1: Interpolating with the MLE objective

• Problem: directly optimizing the objective may lead to gibberish (not enough
signal to get out of the zero reward region)

• Solution:
• Initialize pθ with the MLE trained policy
• Interpolate with the MLE objective

max
∑

(x ,y)∼D

Eŷ∼pθ(·|x) [BLEU(ŷ , y)] + αlog pθ(x | y)

8 / 32

Technique 2: Reward baseline
• The estimated policy gradient is a random variable.

∇θJ(θ) = Eτ∼pθ(τ) [∇θ log pθ(τ)r(τ)]

≈ 1

N

N∑
i=1

∇θ log pθ(τi)r(τi)

• Problem: high variance estimates. Depending on which sample of trajectories
you get, the gradient can vary significantly.

• Solution: subtract a baseline

∇θJ(θ) ≈
1

N

N∑
i=1

∇θ log pθ(τi) [r(τi)− b]

• Constant
• Average award: 1

N

∑N
i=1 r(τi)

• Advantage (later)

9 / 32

Technique 2: Reward baseline
• The estimated policy gradient is a random variable.

∇θJ(θ) = Eτ∼pθ(τ) [∇θ log pθ(τ)r(τ)]

≈ 1

N

N∑
i=1

∇θ log pθ(τi)r(τi)

• Problem: high variance estimates. Depending on which sample of trajectories
you get, the gradient can vary significantly.

• Solution: subtract a baseline

∇θJ(θ) ≈
1

N

N∑
i=1

∇θ log pθ(τi) [r(τi)− b]

• Constant
• Average award: 1

N

∑N
i=1 r(τi)

• Advantage (later)
9 / 32

Example: RL for open-domain dialogue

What should be the reward?

Comparing with the referece (e.g., BLEU) is not appropriate for open-ended tasks.

Example of reward engineering [Li et al., 2016]:

• Avoid dull responses:

− log pMLE (dull response | context)

• Don’t repeat previous turns:

−cosine similarity(h(curr turn), h(prev turn))

10 / 32

https://arxiv.org/pdf/1606.01541.pdf

Example: RL for open-domain dialogue

What should be the reward?

Comparing with the referece (e.g., BLEU) is not appropriate for open-ended tasks.

Example of reward engineering [Li et al., 2016]:

• Avoid dull responses:

− log pMLE (dull response | context)

• Don’t repeat previous turns:

−cosine similarity(h(curr turn), h(prev turn))

10 / 32

https://arxiv.org/pdf/1606.01541.pdf

Summary so far

• Advantage of RL: flexible formulation, directly optimizing what we want

• Challenges in practice:
• Instability: many details need to be right to get it work
• Reward engineering: quantify what we want may not be easy

• Overall, only marginal improvement over MLE / supervised learning in NLG

• But, we see promising results when scaling up the policy and the reward model.

11 / 32

Table of Contents

RL for text generation

RL for aligning LMs

Collect human feedback

Train reward model

Train policy with PPO

12 / 32

RLHF in a nutshell
Challenge in NLG: no good reward function

Key idea: learn reward functions from human feedback

13 / 32

Collect human feedback

In general, we want to know if an output is of high quality or not.

But there are many details to take care of.

• What kind of feedback/annotation to obtain?
• Absolute score (e.g., Likert scale ratings) of each output
• Comparison of two outputs

• Where do we get data for annotation?

• How to standardize annotation / improve inter-annotator agreement?

Why would there be disagreement?

14 / 32

Collect human feedback

In general, we want to know if an output is of high quality or not.

But there are many details to take care of.

• What kind of feedback/annotation to obtain?
• Absolute score (e.g., Likert scale ratings) of each output
• Comparison of two outputs

• Where do we get data for annotation?

• How to standardize annotation / improve inter-annotator agreement?

Why would there be disagreement?

14 / 32

Collect human feedback

In general, we want to know if an output is of high quality or not.

But there are many details to take care of.

• What kind of feedback/annotation to obtain?
• Absolute score (e.g., Likert scale ratings) of each output
• Comparison of two outputs

• Where do we get data for annotation?

• How to standardize annotation / improve inter-annotator agreement?

Why would there be disagreement?

14 / 32

Collection comparison data
Optional: read individual outputs first

15 / 32

Collection comparison data
Rank two or multiple responses

16 / 32

Where to get the input/output for annotation?

• Input:
• Existing dataset
• Data from API
• Written by annotators (i.e. chat with the model)

• Outputs:
• Sampled from the same model
• Sampled from different models (e.g., current model, initial model, other

baselines, references)

• Key things:
• Input should cover the tasks of interest
• Outputs should be sufficiently diverse and contain ‘hard negatives’

17 / 32

Where to get the input/output for annotation?

• Input:
• Existing dataset
• Data from API
• Written by annotators (i.e. chat with the model)

• Outputs:
• Sampled from the same model
• Sampled from different models (e.g., current model, initial model, other

baselines, references)

• Key things:
• Input should cover the tasks of interest
• Outputs should be sufficiently diverse and contain ‘hard negatives’

17 / 32

Where to get the input/output for annotation?

• Input:
• Existing dataset
• Data from API
• Written by annotators (i.e. chat with the model)

• Outputs:
• Sampled from the same model
• Sampled from different models (e.g., current model, initial model, other

baselines, references)

• Key things:
• Input should cover the tasks of interest
• Outputs should be sufficiently diverse and contain ‘hard negatives’

17 / 32

Practices that improve annotator agreement

In general, a very involved process:

• Know your tasks well

• Onboarding and training annotators

• Measuring annotator-research and inter-annotator agreement

• Providing periodical feedback to annotators

18 / 32

Learning preferences
Formulation:
• Input: prompt x ∈ X , responses y1, . . . , yK (yi ∈ Y)
• Output: ranking of responses given the prompt
• Goal: learn a reward model r : X × Y → R

Modeling:
• How to parameterize r? A neural network (e.g., Transformer)

Learning:
• Model p(output | input) using r and do MLE
• We assume the pairwise ranking follows the Bradley-Terry-Luce model:

pθ(y1 ≻ y2) =
exp(rθ(x , y1))

exp(rθ(x , y1)) + exp(rθ(x , y2))
=

1

1 + exp(−(rθ(x , y1)− rθ(x , y2)))

19 / 32

Learning preferences
Formulation:
• Input: prompt x ∈ X , responses y1, . . . , yK (yi ∈ Y)
• Output: ranking of responses given the prompt
• Goal: learn a reward model r : X × Y → R

Modeling:
• How to parameterize r? A neural network (e.g., Transformer)

Learning:
• Model p(output | input) using r and do MLE
• We assume the pairwise ranking follows the Bradley-Terry-Luce model:

pθ(y1 ≻ y2) =
exp(rθ(x , y1))

exp(rθ(x , y1)) + exp(rθ(x , y2))
=

1

1 + exp(−(rθ(x , y1)− rθ(x , y2)))

19 / 32

Learning preferences
Formulation:
• Input: prompt x ∈ X , responses y1, . . . , yK (yi ∈ Y)
• Output: ranking of responses given the prompt
• Goal: learn a reward model r : X × Y → R

Modeling:
• How to parameterize r? A neural network (e.g., Transformer)

Learning:
• Model p(output | input) using r and do MLE
• We assume the pairwise ranking follows the Bradley-Terry-Luce model:

pθ(y1 ≻ y2) =
exp(rθ(x , y1))

exp(rθ(x , y1)) + exp(rθ(x , y2))
=

1

1 + exp(−(rθ(x , y1)− rθ(x , y2)))

19 / 32

Learning a policy given the reward model

• Goal: maximize the expected reward given by the reward model

• Algorithm: in principle, any RL algorithm would work. We will focus on PPO
which is most widely adopted in RLHF.

• PPO is a specific policy gradent method which builds upon
• Actor-critic methods (learning a baseline)
• Trust-region policy optimization (making small updates to the policy)

20 / 32

Variants of policy gradient

• Vanilla policy gradient:

∇θJ(θ) = Eτ∼pθ(τ) [∇θ log pθ(τ)r(τ)] = Eτ∼pθ(τ)

[
T∑
t=1

∇θ log pθ(at | st)r(τ)

]

• Many variants of policy gradient that replaces r(τ) to reduce variance.

• Qπ(st , at) = Est+1:T ,at+1:T

[∑T
t′=t r(st′ , at′)

]
expected return starting from st

and taking at
• V π(st) = Eat [Q

π(st , at)] expected return starting from st
• Aπ(st , at) = Qπ(st , at)− V π(st) how much better is it to take at compared

to other actions given we are in st (used by PPO)

21 / 32

Variants of policy gradient

• Vanilla policy gradient:

∇θJ(θ) = Eτ∼pθ(τ) [∇θ log pθ(τ)r(τ)] = Eτ∼pθ(τ)

[
T∑
t=1

∇θ log pθ(at | st)r(τ)

]

• Many variants of policy gradient that replaces r(τ) to reduce variance.

• Qπ(st , at) = Est+1:T ,at+1:T

[∑T
t′=t r(st′ , at′)

]
expected return starting from st

and taking at
• V π(st) = Eat [Q

π(st , at)] expected return starting from st
• Aπ(st , at) = Qπ(st , at)− V π(st) how much better is it to take at compared

to other actions given we are in st (used by PPO)

21 / 32

Variants of policy gradient

• Vanilla policy gradient:

∇θJ(θ) = Eτ∼pθ(τ) [∇θ log pθ(τ)r(τ)] = Eτ∼pθ(τ)

[
T∑
t=1

∇θ log pθ(at | st)r(τ)

]

• Many variants of policy gradient that replaces r(τ) to reduce variance.
• Qπ(st , at) = Est+1:T ,at+1:T

[∑T
t′=t r(st′ , at′)

]
expected return starting from st

and taking at

• V π(st) = Eat [Q
π(st , at)] expected return starting from st

• Aπ(st , at) = Qπ(st , at)− V π(st) how much better is it to take at compared
to other actions given we are in st (used by PPO)

21 / 32

Variants of policy gradient

• Vanilla policy gradient:

∇θJ(θ) = Eτ∼pθ(τ) [∇θ log pθ(τ)r(τ)] = Eτ∼pθ(τ)

[
T∑
t=1

∇θ log pθ(at | st)r(τ)

]

• Many variants of policy gradient that replaces r(τ) to reduce variance.
• Qπ(st , at) = Est+1:T ,at+1:T

[∑T
t′=t r(st′ , at′)

]
expected return starting from st

and taking at
• V π(st) = Eat [Q

π(st , at)] expected return starting from st

• Aπ(st , at) = Qπ(st , at)− V π(st) how much better is it to take at compared
to other actions given we are in st (used by PPO)

21 / 32

Variants of policy gradient

• Vanilla policy gradient:

∇θJ(θ) = Eτ∼pθ(τ) [∇θ log pθ(τ)r(τ)] = Eτ∼pθ(τ)

[
T∑
t=1

∇θ log pθ(at | st)r(τ)

]

• Many variants of policy gradient that replaces r(τ) to reduce variance.
• Qπ(st , at) = Est+1:T ,at+1:T

[∑T
t′=t r(st′ , at′)

]
expected return starting from st

and taking at
• V π(st) = Eat [Q

π(st , at)] expected return starting from st
• Aπ(st , at) = Qπ(st , at)− V π(st) how much better is it to take at compared

to other actions given we are in st (used by PPO)

21 / 32

Actor-critic methods
Main idea: in addition to learning the policy πθ, let’s also learn the action-value
function Qw (s, a) or the state-value function Vw (s).

• Critic: evaluate the policy
update w to improve estimates of Qw or Vw

PPO estimates the advantage function using GAE [Schulman et al. 2016]
• Actor: improve the policy

update θ to improve the policy give feedback from the critic

Algorithm sketch:
1. Sample trajectories from current policy
2. Update θ using policy gradients estimated by current Qw

3. Update w (e.g., estimate Q∗ and minimize L2 loss)
4. Go back to 1

22 / 32

https://arxiv.org/abs/1506.02438

Actor-critic methods
Main idea: in addition to learning the policy πθ, let’s also learn the action-value
function Qw (s, a) or the state-value function Vw (s).

• Critic: evaluate the policy
update w to improve estimates of Qw or Vw

PPO estimates the advantage function using GAE [Schulman et al. 2016]
• Actor: improve the policy

update θ to improve the policy give feedback from the critic

Algorithm sketch:
1. Sample trajectories from current policy
2. Update θ using policy gradients estimated by current Qw

3. Update w (e.g., estimate Q∗ and minimize L2 loss)
4. Go back to 1

22 / 32

https://arxiv.org/abs/1506.02438

Actor-critic methods
Main idea: in addition to learning the policy πθ, let’s also learn the action-value
function Qw (s, a) or the state-value function Vw (s).

• Critic: evaluate the policy
update w to improve estimates of Qw or Vw

PPO estimates the advantage function using GAE [Schulman et al. 2016]
• Actor: improve the policy

update θ to improve the policy give feedback from the critic

Algorithm sketch:
1. Sample trajectories from current policy
2. Update θ using policy gradients estimated by current Qw

3. Update w (e.g., estimate Q∗ and minimize L2 loss)
4. Go back to 1

22 / 32

https://arxiv.org/abs/1506.02438

Trust-region methods

• Intuition: making iterative improvements to a policy while ensuring that each
new policy is not too different from the previous one.
• Maintaining a ”trust region” within which we can provide guarantee of

policy improvement.

• Objective:

maxmize Es,a∼πθold

[
πθ(a | s)
πθold(a | s)

Âπθold (s, a)− βKL (πθold(· | s)∥πθ(· | s))
]

• Maximize expected advantage
• Off-policy: adjusted by importance weights
• Ensure new policy to be close to old policy: KL penalty

23 / 32

Trust-region methods

• Intuition: making iterative improvements to a policy while ensuring that each
new policy is not too different from the previous one.
• Maintaining a ”trust region” within which we can provide guarantee of

policy improvement.
• Objective:

maxmize Es,a∼πθold

[
πθ(a | s)
πθold(a | s)

Âπθold (s, a)− βKL (πθold(· | s)∥πθ(· | s))
]

• Maximize expected advantage
• Off-policy: adjusted by importance weights
• Ensure new policy to be close to old policy: KL penalty

23 / 32

Proximal Policy Optimization (PPO)

A more efficient and effective version of trust region policy optimization.

Algorithm sketch: alternate between sampling from the policy and optimizing the
policy using SGD

for iteration=1,2,... do
1. Sample trajectaries from πθold

2. Estimate advantage for each (s, a) from the trajectories
3. Optimize the objective for K epochs with mini-batches to get updated πθ

4. πθold ← πθ

24 / 32

RLHF: Putting everything together

• Start with a initial model

• How to ensure the initial model is reasonable?

• Collect human feedback on the model outputs and train a reward model

• Is the reward model robust?

• Optimize the reward using PPO

• Does the reward robustly represent what we want?

25 / 32

RLHF: Putting everything together

• Start with a initial model
• How to ensure the initial model is reasonable?

• Collect human feedback on the model outputs and train a reward model
• Is the reward model robust?

• Optimize the reward using PPO
• Does the reward robustly represent what we want?

25 / 32

Supervised finetuning

How to ensure the initial model is reasonable?

Supervised finetuning:

• Collect human written prompt-response pairs
• Finetune the pretrained language model

26 / 32

Robustness of the reward model
Problem:
• The reward model is trained on limited data
• It is “tested” on model generations during RL
• There might be a distribution shift

27 / 32

Robustness of the reward model
Problem: reward model is not accurate on OOD data

Solution:
1. Use larger models, e.g., intialize RM using the supervised model

Figure: [Gao et al. 2022]

28 / 32

https://arxiv.org/pdf/2210.10760.pdf

Robustness of the reward model

Problem: reward model is not accurate on OOD data

Solution:
1. Periodically update the RM

1.1 Train RM; train policy
1.2 Sample responses from the current policy (which shoudl contain bad

outputs with high rewards)
1.3 Collect human preference annotation
1.4 Mix new preference data with existing data
1.5 Go to step 1

28 / 32

Robustness of reward optimization
What happens when the reward improves but actual preference drops?

Goodhart’s law: When a measure becomes a target, it ceases to be a good measure.
29 / 32

Robustness of reward optimization
Solutions:

1. Add KL penalty to the reward:
(note that this is different from the KL penalty inside PPO)

J(θ) = Ex∼D
[
Ey∼πθ(·|x) [rϕ(x , y)]− βKL (πθ(· | x)∥π0(· | x))

]

= Ex∼D

[
Ey∼πθ(·|x) [rϕ(x , y)]− βEy∼πθ(·|x)

[
log

πθ(y | x)
π0(y | x)

]]
= Ex∼D,y∼πθ

[
rϕ(x , y)− β log

πθ(y | x)
π0(y | x)

]
= Ex∼D,y∼πθ

[Rϕ(x , y)]

Rewarding trajectories that have high probability under π0.
2. Early stop based on KL distance.

30 / 32

Robustness of reward optimization
Solutions:

1. Add KL penalty to the reward:
(note that this is different from the KL penalty inside PPO)

J(θ) = Ex∼D
[
Ey∼πθ(·|x) [rϕ(x , y)]− βKL (πθ(· | x)∥π0(· | x))

]
= Ex∼D

[
Ey∼πθ(·|x) [rϕ(x , y)]− βEy∼πθ(·|x)

[
log

πθ(y | x)
π0(y | x)

]]

= Ex∼D,y∼πθ

[
rϕ(x , y)− β log

πθ(y | x)
π0(y | x)

]
= Ex∼D,y∼πθ

[Rϕ(x , y)]

Rewarding trajectories that have high probability under π0.
2. Early stop based on KL distance.

30 / 32

Robustness of reward optimization
Solutions:

1. Add KL penalty to the reward:
(note that this is different from the KL penalty inside PPO)

J(θ) = Ex∼D
[
Ey∼πθ(·|x) [rϕ(x , y)]− βKL (πθ(· | x)∥π0(· | x))

]
= Ex∼D

[
Ey∼πθ(·|x) [rϕ(x , y)]− βEy∼πθ(·|x)

[
log

πθ(y | x)
π0(y | x)

]]
= Ex∼D,y∼πθ

[
rϕ(x , y)− β log

πθ(y | x)
π0(y | x)

]

= Ex∼D,y∼πθ
[Rϕ(x , y)]

Rewarding trajectories that have high probability under π0.
2. Early stop based on KL distance.

30 / 32

Robustness of reward optimization
Solutions:

1. Add KL penalty to the reward:
(note that this is different from the KL penalty inside PPO)

J(θ) = Ex∼D
[
Ey∼πθ(·|x) [rϕ(x , y)]− βKL (πθ(· | x)∥π0(· | x))

]
= Ex∼D

[
Ey∼πθ(·|x) [rϕ(x , y)]− βEy∼πθ(·|x)

[
log

πθ(y | x)
π0(y | x)

]]
= Ex∼D,y∼πθ

[
rϕ(x , y)− β log

πθ(y | x)
π0(y | x)

]
= Ex∼D,y∼πθ

[Rϕ(x , y)]

Rewarding trajectories that have high probability under π0.
2. Early stop based on KL distance.

30 / 32

Robustness of reward optimization
Solutions:

1. Add KL penalty to the reward:
(note that this is different from the KL penalty inside PPO)

J(θ) = Ex∼D
[
Ey∼πθ(·|x) [rϕ(x , y)]− βKL (πθ(· | x)∥π0(· | x))

]
= Ex∼D

[
Ey∼πθ(·|x) [rϕ(x , y)]− βEy∼πθ(·|x)

[
log

πθ(y | x)
π0(y | x)

]]
= Ex∼D,y∼πθ

[
rϕ(x , y)− β log

πθ(y | x)
π0(y | x)

]
= Ex∼D,y∼πθ

[Rϕ(x , y)]

Rewarding trajectories that have high probability under π0.

2. Early stop based on KL distance.

30 / 32

Robustness of reward optimization
Solutions:

1. Add KL penalty to the reward:
(note that this is different from the KL penalty inside PPO)

J(θ) = Ex∼D
[
Ey∼πθ(·|x) [rϕ(x , y)]− βKL (πθ(· | x)∥π0(· | x))

]
= Ex∼D

[
Ey∼πθ(·|x) [rϕ(x , y)]− βEy∼πθ(·|x)

[
log

πθ(y | x)
π0(y | x)

]]
= Ex∼D,y∼πθ

[
rϕ(x , y)− β log

πθ(y | x)
π0(y | x)

]
= Ex∼D,y∼πθ

[Rϕ(x , y)]

Rewarding trajectories that have high probability under π0.
2. Early stop based on KL distance.

30 / 32

RLHF: Putting everything together

• Start with a pretrained language model

• SFT model: Finetune it on supervised data

• Collect human feedback on prompts and model outputs and train a reward
model

• RL model: Optimize the reward on a set of prompts using PPO while monitoring
KL distance between the RL model and the SFT model

31 / 32

Alternatives to RLHF

RLHF is a complicated process. What are simpler alternatives / baselines?

• SFT. Instead of spending money on preference data, we can collect supervised
data.

• Best-of-n. Use the reward model to rerank outputs.

• Expert iteration. Get best-of-n outputs, do SFT on it, and repeat.

• Other simpler RL algorithms.

32 / 32

Alternatives to RLHF

RLHF is a complicated process. What are simpler alternatives / baselines?

• SFT. Instead of spending money on preference data, we can collect supervised
data.

• Best-of-n. Use the reward model to rerank outputs.

• Expert iteration. Get best-of-n outputs, do SFT on it, and repeat.

• Other simpler RL algorithms.

32 / 32

Comparison of different approaches
[Dubois et al. 2023]

PPO is much better than SFT using roughly the same amount of data.

33 / 32

https://arxiv.org/pdf/2305.14387.pdf

Comparison of different approaches
[Dubois et al. 2023]

Best-of-n has competitive performance. (What’s a disadvantage of this method?)

33 / 32

https://arxiv.org/pdf/2305.14387.pdf

Comparison of different approaches
[Dubois et al. 2023]

SFT performance saturate quickly with additional data.

33 / 32

https://arxiv.org/pdf/2305.14387.pdf

Summary

• RL had limited improvement over supervised learning in NLG on small models.

• Scaling helps boost performance of RL: large base model + large reward model

• Key challenge:
• Reward hacking / over-optimization
• Unreliable human annotation

34 / 32

	RL for text generation
	RL for aligning LMs
	Collect human feedback
	Train reward model
	Train policy with PPO

