Pretraining and Finetuning

He He

October 11, 2023

Logistics

- Please submit midterm course eval: https://nyu.qualtrics.com/jfe/form/SV_6X7nHX4HenyFwN0
- HW3 will be out next Monday
- Project: start early! Proposal due in two weeks.

Table of Contents

Representation learning

What are good representations?

- Enable a notion of distance over text (word embeddings)
- Contains good features for downstream tasks

What are good representations?

- Enable a notion of distance over text (word embeddings)
- Contains good features for downstream tasks

Examples: negative the food is good but doesn't worth an hour wait

• Simple features (e.g. BoW) require complex models.

Figure: Sentiment neuron [Radford et al., 2017]

What can we do with good representations:

- Learning with small data: fine-tuning learned representations
- Transfer learning: one model/representation for many tasks
- Metric learning: get a similarity metric for free

What can we do with good representations:

- Learning with small data: fine-tuning learned representations
- Transfer learning: one model/representation for many tasks
- Metric learning: get a similarity metric for free

How to obtain such a representation:

- Training a neural network on any task gives us a representation good for *that task*.
- But on which task can we learn good general representations?

• The cats that are raised by my sister ______ sleeping.

• The cats that are raised by my sister ______ sleeping.

syntax

• Jane is happy that John invited ______ friends to his birthday party.

- The cats that are raised by my sister ______ sleeping. syntax
- Jane is happy that John invited ______ friends to his birthday party. coreference
- _____ is the capital of Tanzania.

- The cats that are raised by my sister ______ sleeping. syntax
- Jane is happy that John invited ______ friends to his birthday party. *coreference*
- _____ is the capital of Tanzania.

knowledge

• The boy is _____ because he lost his keys.

- The cats that are raised by my sister ______ sleeping. syntax
- Jane is happy that John invited ______ friends to his birthday party. *coreference*
- _____ is the capital of Tanzania. knowledge
- The boy is ______ because he lost his keys. commonsense
- John took 100 bucks to Vegas. He won 50 and then lost 100. Now he only has ______ to go home.

- The cats that are raised by my sister ______ sleeping. syntax
- Jane is happy that John invited ______ friends to his birthday party. *coreference*
- _____ is the capital of Tanzania. knowledge
- The boy is ______ because he lost his keys.

commonsense

• John took 100 bucks to Vegas. He won 50 and then lost 100. Now he only has ______ to go home. *numerical reasoning*

- The cats that are raised by my sister ______ sleeping. syntax
- Jane is happy that John invited ______ friends to his birthday party. *coreference*
- _____ is the capital of Tanzania. knowledge
- The boy is ______ because he lost his keys. commonsense
- John took 100 bucks to Vegas. He won 50 and then lost 100. Now he only has ______ to go home. numerical reasoning

Word guessing entails many tasks related to language understanding!

But aren't we already doing this in skip-gram / CBOW?

Self-supervised learning

Key idea: predict parts of the input from the rest

- No supervision is needed—both input and output are from the raw data.
- Easy to scale—only need unlabeled data.
- Learned representation is general—useful for many tasks.

Self-supervised learning

Key idea: predict parts of the input from the rest

- No supervision is needed—both input and output are from the raw data.
- Easy to scale—only need unlabeled data.
- Learned representation is general—useful for many tasks.

Approach:

- **Pretrain**: train a model using self-supervised learning objectives on large data.
- **Finetune**: update part or all of the parameters of the pretrained model (which provides an initialization) on labeled data of a downstream task.

- Pretrain an RNN model on unlabeled data and finetune on supervised tasks [Dai et al., 2015] [ULMFiT; Howard et al., 2018]
 - Promising results on a small scale

- Pretrain an RNN model on unlabeled data and finetune on supervised tasks [Dai et al., 2015] [ULMFiT; Howard et al., 2018]
 - Promising results on a small scale
- ELMo: replace static word embedding by contextual word embeddings from pretrained bi-LSTM [Peters et al., 2018]
 - First impactful result in NLP

- Pretrain an RNN model on unlabeled data and finetune on supervised tasks [Dai et al., 2015] [ULMFiT; Howard et al., 2018]
 - Promising results on a small scale
- ELMo: replace static word embedding by contextual word embeddings from pretrained bi-LSTM [Peters et al., 2018]
 - First impactful result in NLP
- Pretrain a Transformer model and finetune on supervised tasks
 - GPT [Radford et al., 2018], BERT [Devlin et al., 2018]

- Pretrain an RNN model on unlabeled data and finetune on supervised tasks [Dai et al., 2015] [ULMFiT; Howard et al., 2018]
 - Promising results on a small scale
- ELMo: replace static word embedding by contextual word embeddings from pretrained bi-LSTM [Peters et al., 2018]
 - First impactful result in NLP
- Pretrain a Transformer model and finetune on supervised tasks
 - GPT [Radford et al., 2018], BERT [Devlin et al., 2018]
- Scale the pretrained model to larger sizes
 - GPT-2 (1.5B), T5 (11B), GPT-3 (175B), PaLM (540B)
 - We will talk about 100B+ models in the third module

Types of pretrained models

- Encoder models, e.g., BERT
 - Encode text into vector representations that can be used for downstream classification tasks

Current pretrained models are all transformer based.

Types of pretrained models

- Encoder models, e.g., BERT
 - Encode text into vector representations that can be used for downstream classification tasks
- Encoder-decoder models, e.g., T5
 - Encode input text into vector representations and generate text conditioned on the input

Current pretrained models are all transformer based.

Types of pretrained models

- Encoder models, e.g., BERT
 - Encode text into vector representations that can be used for downstream classification tasks
- Encoder-decoder models, e.g., T5
 - Encode input text into vector representations and generate text conditioned on the input
- **Decoder models**, e.g., GPT-2
 - Read in text (prefix) and continue to generate text

Current pretrained models are all transformer based.

Encoder models

An encoder takes a sequence of tokens and output their *contextualized* representations:

$$h_1,\ldots,h_n = \operatorname{Encoder}(x_1,\ldots,x_n)$$

We can then use h_1, \ldots, h_n for other tasks.

Encoder models

An encoder takes a sequence of tokens and output their *contextualized* representations:

$$h_1,\ldots,h_n = \operatorname{Encoder}(x_1,\ldots,x_n)$$

We can then use h_1, \ldots, h_n for other tasks.

How do we train an Encoder?

- Use any supervised task: $y = f(h_1, \ldots, h_n)$
- Use self-supervised learning: predict a word from its context

Masked language modeling

? language processing is ?

Masked language modeling

? language processing is ?

Learning objective (MLE):

$$\max \sum_{x \in \mathcal{D}, i \sim p_{\mathsf{mask}}} \log p(x_i \mid x_{-i}; \theta)$$

- *x*: a sequence of tokens sampled from a corpus *D natural language processing is fun*
- *p*_{mask}: mask generator
 Sample two positions uniformly at random, e.g., 1 and 5
- x_{-i}: noisy version fo x where x_i is corrupted [MASK] language processing is [MASK]

BERT: objective

Masked language modeling:

- Randomly sample 15% tokens as prediction targets
- Replace the target tokens by [MASK] or a random token, or leave it unchanged

cats are cute \rightarrow cats [MASK]/is/are cute

• Later work has shown that just use [MASK] is sufficient

BERT: objective

Masked language modeling:

- Randomly sample 15% tokens as prediction targets
- Replace the target tokens by [MASK] or a random token, or leave it unchanged

cats are cute \rightarrow cats [MASK]/is/are cute

- Later work has shown that just use [MASK] is sufficient
- Next sentence prediction: predict whether a pair of sentences are consecutive

$$\max \sum_{x \sim \mathcal{D}, x_n \sim p_{\mathsf{next}}} \log p(y \mid x, x_n; \theta)$$

- x_n : either the sentence following x or a randomly sampled sentence
- *y*: binary label of whether x_n follows *x*
- Later work has shown that this objective is not necessary

Input	[CLS] my dog is Cute [SEP] he likes play ##ing [SEP]
Token Embeddings	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
Segment Embeddings	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Position Embeddings	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

• Tokenization: wordpiece (similar to byte pair encoding) (see details)

- Tokenization: wordpiece (similar to byte pair encoding) (see details)
- [CLS]: first token of all sequences; used for next sentence prediction

- Tokenization: wordpiece (similar to byte pair encoding) (see details)
- [CLS]: first token of all sequences; used for next sentence prediction
- Distinguish two sentences in a pair: [SEP] and segment embedding

- Tokenization: wordpiece (similar to byte pair encoding) (see details)
- [CLS]: first token of all sequences; used for next sentence prediction
- Distinguish two sentences in a pair: [SEP] and segment embedding
- Learned position embedding

- Tokenization: wordpiece (similar to byte pair encoding) (see details)
- [CLS]: first token of all sequences; used for next sentence prediction
- Distinguish two sentences in a pair: [SEP] and segment embedding
- Learned position embedding
- 12 (base; 110M params) or 24 (large; 340M params) layer Transformer

Finetuning BERT

Classification tasks: Add a linear layer (randomly initialized) on top of the [CLS] embedding

 $p(y \mid x) = \operatorname{softmax}(Wh_{[CLS]})$

SST-2, CoLA

(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG

Finetuning BERT

Sequence labeling tasks: Add linear layers (randomly initialized) on top of every token

$$p(y_i \mid x) = \operatorname{softmax}(Wh_i)$$

(c) Question Answering Tasks: SQuAD v1.1 (d) Single Sentence Tagging Tasks: CoNLL-2003 NER

Finetuning BERT

- Finetune all parameters (both the newly added layer and the pretrained weights)
- Use a small learning rate (e.g., 1e-5)
- Train for a small number of epochs (e.g, 3 epochs)
- Led to SOTA results on many NLU tasks

How to generate text from BERT?

Encoder-decoder models

An encoder-decoder model encodes input text to a sequence of contextualized representations, and decodes a sequence of tokens autoregressively.

$$\begin{split} h_1, \dots, h_n &= \operatorname{Encoder}(x_1, \dots, x_n) \\ s_1, \dots, s_m &= \operatorname{Decoder}(y_0, \dots, y_{m-1}, h_1, \dots, h_n) \\ p(y_i \mid x, y_{\leq i}) &= \operatorname{softmax}(Ws_i) \end{split}$$

Encoder-decoder models

An encoder-decoder model encodes input text to a sequence of contextualized representations, and decodes a sequence of tokens autoregressively.

$$\begin{split} h_1, \dots, h_n &= \operatorname{Encoder}(x_1, \dots, x_n) \\ s_1, \dots, s_m &= \operatorname{Decoder}(y_0, \dots, y_{m-1}, h_1, \dots, h_n) \\ p(y_i \mid x, y_{< i}) &= \operatorname{softmax}(Ws_i) \end{split}$$

How do we train the encoder-decoder?

- Use any supervised task, e.g., machine translation
- Use self-supervised learning: predict text spans from their context

How to train an encoder-decoder model using the BERT objective?

Masked language modeling using an encoder-decoder

Input: text with corrupted spans **Output**: recovered spans

Compare with encoder-only models:

- Encoder: predict single tokens based on encoder representation
- Encoder-decoder: predict a sequence of tokens (flexibility in objective design)

T5: objective

- First train on unlabele data by masked language modeling
 - Predict corrupted spans as a sequence
- Then continue training by supervised multitask learning
 - Formulate tasks as text-to-text format using a prefix to denote the task
 - Mixing examples from different datasets when constructing batches

Jointly training with the two objectives works slightly worse

T5: finetune

- Formulate the task in text-to-text format
- Fine-tune all parameters (similar to BERT fine-tuning)
- Advantages over encoder models: unified modeling of many different tasks including text generation

Decoder-only models

A decoder-only model predicts the next token given the prefix autoregressively.

$$s_1, \ldots, s_m = \text{Decoder}(y_0, \ldots, y_{m-1}, h_1, \ldots, h_n)$$

$$p(y_i \mid y_{< i}) = \text{softmax}(Ws_i)$$

(A prefix of *y* can be the input.)

(more on language models later)

Generative Pretraining (GPT)

- Model: 12 layer decoder-only transformer
- Objective: next word prediction

$$\max \sum_{y \in \mathcal{D}} \sum_{i} \log p(y_i \mid y_{< i})$$

• **Finetuning**: auxiliary LM objective $L_{task} + \lambda L_{LM}$ (next word prediction on labeled task data)

Generative Pretraining (GPT): task-specific finetuning

- Single input: linear on top of extract
- Multiple input: process each input separately then aggregate

Ablation studies of GPT

Architecture, pretraining, finetuning: which is critical?

Method	Avg. Score	CoLA (mc)	SST2 (acc)	MRPC (F1)	STSB (pc)	QQP (F1)	MNLI (acc)	QNLI (acc)	RTE (acc)
Transformer w/ aux LM (full)	74.7	45.4	91.3	82.3	82.0	70.3	81.8	88.1	56.0
Transformer w/o pre-training Transformer w/o aux LM LSTM w/ aux LM	59.9 75.0 69.1	18.9 47.9 30.3	84.0 92.0 90.5	79.4 84.9 83.2	30.9 83.2 71.8	65.5 69.8 68.1	75.7 81.1 73.7	71.2 86.9 81.1	53.8 54.4 54.6

- Auxiliary objective only helps on larger datasets (MNLI, QQP)
- Pretrained transformer > pretrained LSTM (single layer) > non-pretrained transformer

Compare with BERT

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERTBASE	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
BERTLARGE	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

Table 1: GLUE Test results, scored by the evaluation server (https://gluebenchmark.com/leaderboard). The number below each task denotes the number of training examples. The "Average" column is slightly different than the official GLUE score, since we exclude the problematic WNLI set.⁸ BERT and OpenAI GPT are single-model, single task. F1 scores are reported for QQP and MRPC, Spearman correlations are reported for STS-B, and accuracy scores are reported for the other tasks. We exclude entries that use BERT as one of their components.

Medium-sized encoder models tend to work better than decoder-only models when finetuned

Zero-shot behaviors

Key insight: if the model has learned to understand language through predicting next words, it should be able to perform these tasks *without finetuning*

Zero-shot behaviors

Key insight: if the model has learned to understand language through predicting next words, it should be able to perform these tasks *without finetuning*

Heuristics for zero-shot prediction:

- Sentiment classification: [example] + very + {positive, negative} prompting
- Linguistic acceptability: thresholding on log probabilities
- Multiple choice: predicting the answer with the highest log probabilities

Learning dynamics: zero-shot performance increases during pretraining

What are these models trained on?

Both quantity and quality are important

- Wikipedia: encyclopedia articles (clean, single domain)
- Toronto Books Corpus: e-books (diverse domain)
- WebText (40GB): content submitted to Reddit with a vote \geq 3 (diverse, bias)
- CommonCrawl (20TB): scraped HTML with markers removed (diverse, large, noisy, bias)
 - A cleaned version: C4 (750GB)

Active research area: What data is good for pretraining?

Summary

Lots of learning happens from just observing the world (data).

- Self-supervised learning: benefits from large data and compute
 - Basic: predict parts from other parts based on the structure of data (works beyond text)
 - Advanced: design hard negatives to improve efficiency
- Finetuning: adapt pretrained models to downstream tasks on a small amount of labeled data