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Logistics

• Please submit midterm course eval:
https://nyu.qualtrics.com/jfe/form/SV_6X7nHX4HenyFwN0

• HW3 will be out next Monday
• Project: start early! Proposal due in two weeks.
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Representation learning
What are good representations?

• Enable a notion of distance over text (word embeddings)
• Contains good features for downstream tasks

Examples: negative the food is good but doesn’t worth an hour wait

• Simple features (e.g. BoW) require complex models.
• Good features only need simple models (e.g. linear classifier) .

Figure: Sentiment neuron [Radford et al., 2017]
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Representation learning

What can we do with good representations:
• Learning with small data: fine-tuning learned representations
• Transfer learning: one model/representation for many tasks
• Metric learning: get a similarity metric for free

How to obtain such a representation:

• Training a neural network on any task gives us a representation good for that
task.

• But on which task can we learn good general representations?
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What can we learn from word guessing?

• The cats that are raised by my sister sleeping.

syntax

• Jane is happy that John invited friends to his birthday party. coreference

• is the capital of Tanzania. knowledge

• The boy is because he lost his keys. commonsense

• John took 100 bucks to Vegas. He won 50 and then lost 100. Now he only has
to go home. numerical reasoning

Word guessing entails many tasks related to language understanding!

But aren’t we already doing this in skip-gram / CBOW?
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Self-supervised learning

Key idea: predict parts of the input from the rest
• No supervision is needed—both input and output are from the raw data.
• Easy to scale—only need unlabeled data.
• Learned representation is general—useful for many tasks.

Approach:
• Pretrain: train a model using self-supervised learning objectives on large data.
• Finetune: update part or all of the parameters of the pretrained model (which

provides an initialization) on labeled data of a downstream task.
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A bit of history

• Pretrain an RNN model on unlabeled data and finetune on supervised tasks [Dai
et al., 2015] [ULMFiT; Howard et al., 2018]
• Promising results on a small scale

• ELMo: replace static word embedding by contextual word embeddings from
pretrained bi-LSTM [Peters et al., 2018]

• First impactful result in NLP

• Pretrain a Transformer model and finetune on supervised tasks

• GPT [Radford et al., 2018], BERT [Devlin et al., 2018]

• Scale the pretrained model to larger sizes

• GPT-2 (1.5B), T5 (11B), GPT-3 (175B), PaLM (540B)
• We will talk about 100B+ models in the third module

8 / 26
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Types of pretrained models

• Encoder models, e.g., BERT
• Encode text into vector representations that can be used for downstream

classification tasks

• Encoder-decoder models, e.g., T5

• Encode input text into vector representations and generate text
conditioned on the input

• Decoder models, e.g., GPT-2

• Read in text (prefix) and continue to generate text

Current pretrained models are all transformer based.
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Encoder models

An encoder takes a sequence of tokens and output their contextualized
representations:

h1, . . . , hn = Encoder(x1, . . . , xn)

We can then use h1, . . . , hn for other tasks.

How do we train an Encoder?
• Use any supervised task: y = f (h1, . . . , hn)

• Use self-supervised learning: predict a word from its context
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Masked language modeling

? language processing is ?

Learning objective (MLE):

max
∑

x∈D,i∼pmask

log p(xi | x−i ; θ)

• x : a sequence of tokens sampled from a corpus D
natural language processing is fun

• pmask: mask generator
Sample two positions uniformly at random, e.g., 1 and 5

• x−i : noisy version fo x where xi is corrupted
[MASK] language processing is [MASK]
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BERT: objective

• Masked language modeling:
• Randomly sample 15% tokens as prediction targets
• Replace the target tokens by [MASK] or a random token, or leave it

unchanged
cats are cute → cats [MASK]/is/are cute

• Later work has shown that just use [MASK] is sufficient

• Next sentence prediction: predict whether a pair of sentences are consecutive

max
∑

x∼D,xn∼pnext

log p(y | x , xn; θ)

• xn: either the sentence following x or a randomly sampled sentence
• y : binary label of whether xn follows x
• Later work has shown that this objective is not necessary
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BERT: architecture

• Tokenization: wordpiece (similar to byte pair encoding) (see details)

• [CLS]: first token of all sequences; used for next sentence prediction
• Distinguish two sentences in a pair: [SEP] and segment embedding
• Learned position embedding
• 12 (base; 110M params) or 24 (large; 340M params) layer Transformer

13 / 26
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Finetuning BERT
Classification tasks: Add a linear layer (randomly initialized) on top of the [CLS]

embedding
p(y | x) = softmax(Wh[CLS])
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Finetuning BERT
Sequence labeling tasks: Add linear layers (randomly initialized) on top of every token

p(yi | x) = softmax(Whi )
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Finetuning BERT

• Finetune all parameters (both the newly added layer and the pretrained weights)
• Use a small learning rate (e.g., 1e-5)
• Train for a small number of epochs (e.g, 3 epochs)
• Led to SOTA results on many NLU tasks

•
How to generate text from BERT?

16 / 26



Encoder-decoder models
An encoder-decoder model encodes input text to a sequence of contextualized
representations, and decodes a sequence of tokens autoregressively.

h1, . . . , hn = Encoder(x1, . . . , xn)

s1, . . . , sm = Decoder(y0, . . . , ym−1, h1, . . . , hn)

p(yi | x , y<i ) = softmax(Wsi )

How do we train the encoder-decoder?

• Use any supervised task, e.g., machine translation
• Use self-supervised learning: predict text spans from their context

How to train an encoder-decoder model using the BERT objective?
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Masked language modeling using an encoder-decoder
Input: text with corrupted spans
Output: recovered spans

Compare with encoder-only models:
• Encoder: predict single tokens based on encoder representation
• Encoder-decoder: predict a sequence of tokens (flexibility in objective design)

18 / 26



T5: objective
• First train on unlabele data by masked language modeling

• Predict corrupted spans as a sequence
• Then continue training by supervised multitask learning

• Formulate tasks as text-to-text format using a prefix to denote the task
• Mixing examples from different datasets when constructing batches

• Jointly training with the two objectives works slightly worse
19 / 26



T5: finetune

• Formulate the task in text-to-text format
• Fine-tune all parameters (similar to BERT fine-tuning)
• Advantages over encoder models: unified modeling of many different tasks

including text generation

20 / 26



Decoder-only models
A decoder-only model predicts the next token given the prefix autoregressively.

s1, . . . , sm = Decoder(y0, . . . , ym−1, h1, . . . , hn)

p(yi | y<i ) = softmax(Wsi )

(A prefix of y can be the input.)

Decoder

START the brown fox jumped

the brown fox jumped END

(more on language models later) 21 / 26



Generative Pretraining (GPT)

• Model: 12 layer decoder-only transformer
• Objective: next word prediction

max
∑
y∈D

∑
i

log p(yi | y<i )

• Finetuning: auxiliary LM objective Ltask + λLLM (next word prediction on labeled
task data)
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Generative Pretraining (GPT): task-specific finetuning

• Single input: linear on top of extract
• Multiple input: process each input separately then aggregate
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Ablation studies of GPT

Architecture, pretraining, finetuning: which is critical?

• Auxiliary objective only helps on larger datasets (MNLI, QQP)
• Pretrained transformer > pretrained LSTM (single layer) > non-pretrained

transformer
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Compare with BERT

Medium-sized encoder models tend to work better than decoder-only models when
finetuned

25 / 26



Zero-shot behaviors

Key insight: if the model has learned to understand language through predicting
next words, it should be able to perform these tasks without finetuning

Heuristics for zero-shot prediction:
• Sentiment classification: [example] + very +

{positive, negative} prompting
• Linguistic acceptability: thresholding on log

probabilities
• Multiple choice: predicting the answer with

the highest log probabilities
Learning dynamics: zero-shot performance
increases during pretraining
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What are these models trained on?

Both quantity and quality are important

• Wikipedia: encyclopedia articles (clean, single domain)
• Toronto Books Corpus: e-books (diverse domain)
• WebText (40GB): content submitted to Reddit with a vote ≥ 3 (diverse, bias)
• CommonCrawl (20TB): scraped HTML with markers removed (diverse, large,

noisy, bias)
• A cleaned version: C4 (750GB)

Active research area: What data is good for pretraining?
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Summary

Lots of learning happens from just observing the world (data).

• Self-supervised learning: benefits from large data and compute
• Basic: predict parts from other parts based on the structure of data (works

beyond text)
• Advanced: design hard negatives to improve efficiency

• Finetuning: adapt pretrained models to downstream tasks on a small amount of
labeled data
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