Neural Sequence Modeling

He He
%’4 NEW YORK UNIVERSITY

September 20, 2023

1/55

Logistics

® HW1 due this Friday at 12pm.
® HW?2 will be released this Friday.
® Textbook and readings

2/55

Table of Contents

Neural network basics

3/55

Feature learning

Linear predictor with Sh(x)=w-

Can we |earn features from data?

4/55

Feature learning

Linear predictor with Dh(x)=w-
Can we learn features from data?

Example:
® Predict popularity of restaurants.
® Raw input: #dishes, price, wine option, zip code, #seats, size
® Decompose into subproblems:
hy([#dishes, price, wine option]) = food quality

ha([zip code]) = walkable

hs([#seats, size]) = nosie

4/55

Predefined subproblems

Input Intermediate Output
features features
#dishes —
price — \ !
> food quality
wine option — 2 —— Popularity
zip code — b .
/ noise
#seats —— /

size —

5/55

Learning intermediate features

Input Hidden Output
layer layer layer

#dishes —

price — \ 1
wine option —— h ,
— Popularity
zip code — hs
#seats —

size —

6/55

Neural networks

Key idea: automatically learn the intermediate features.

Feature engineering: Manually specify ¢(x) based on domain knowledge and learn
the weights:

f(x) = wT¢(x).

Feature learning: Automatically learn both the features (K hidden units) and the
weights:

h(x) = [(X),..., hk(x)], f(x)=wTh(x)

71755

Activation function

® How should we parametrize h;'s?

8/55

Activation function

® How should we parametrize h;'s?

hi(x) = o (v, x). (1)

1

® o is the activation function.

8/55

Activation function

® How should we parametrize h;'s?

hi(x) = o (v, x). (1)

1

® o is the activation function.
® What might be some activation functions we want to use?

8/55

Activation function

® How should we parametrize h;'s?

hi(x) = o (v, x). (1)

1

® o is the activation function.
® What might be some activation functions we want to use?
® sign function? Non-differentiable.

8/55

Activation function

® How should we parametrize h;'s?

hi(x) = o (v, x). (1)

1

® o is the activation function.
® What might be some activation functions we want to use?

® sign function? Non-differentiable.
® Differentiable approximations: sigmoid functions.

® E.g., logistic function, hyperbolic tangent function, ReLU

8/55

Activation function

® How should we parametrize h;'s?

hi(x) = o (v, x). (1)

1

® o is the activation function.
® What might be some activation functions we want to use?

® sign function? Non-differentiable.
® Differentiable approximations: sigmoid functions.

® E.g., logistic function, hyperbolic tangent function, ReLU
® Non-linearity

8/55

Activation Functions

® The hyperbolic tangent is a common activation function:

Output

0.5-

0.0-

05-

o(x) = tanh (x).

Activation_Function
=== Tanh

9/55

Activation Functions
® More recently, the rectified linear (ReLU) function has been very popular:
o(x) = max(0, x).
® Much faster to calculate the function value and its derivatives.

® Work well empirically.

1.00 -

0.50 -

Output o

o
N

10 -C 00 05
Input x
10/55

Multilayer perceptron / Feed-forward neural networks
® Wider: more hidden units.
® Deeper: more hidden layers.

Input Hidden Output
layer layers layer
X1 ——
\
Xy —— \

P — — — Score

Xd—1 ——

X4 —

11/55

Multilayer Perceptron: Standard Recipe

® Each hidden layer takes the output o € R™ of previous layer and produces
o) = W (U V) = & <W(j)o(j’1) + bU)) forj=2,....L

where WU) ¢ Rmxm pU) ¢ RM,

12/55

Multilayer Perceptron: Standard Recipe

e Each hidden layer takes the output o € R of previous layer and produces
o) = (U) = ¢ (WOl) 1 b9)) , forj=2....L

where WU) ¢ Rm*m, pl) ¢ R™,
® The output layer is an affine mapping (no activation function):

a(o(D) = WL (L) 4 p(L+1).

where W(L+H1) ¢ Rkxm gnd p(L+1) ¢ Rk,

12/55

Multilayer Perceptron: Standard Recipe

e Each hidden layer takes the output o € R of previous layer and produces
o) = (U) = ¢ (WOl) 1 b9)) , forj=2....L

where WU) ¢ Rm*m, pl) ¢ R™,
® The output layer is an affine mapping (no activation function):

a(o(D) = WL (L) 4 p(L+1).

where W(t+1) ¢ Rk*m and p(L+1) ¢ R,
® The full neural network function is given by the composition of layers:

f(X): (aoh(L)O---Oh(1)> (x) (2)

12/55

Computation graphs

(adpated from David Rosenberg’s slides)

Function as a node that takes in inputs and produces outputs.

® Typical computation graph:

a—(q)—t

4 R"

e Broken out into components:

a, b,
Q
¢ L,
a b
A "

13/55

Compose multiple functions
(adpated from David Rosenberg’s slides)
Compose two functions g : R? — R"and f : R” — R™: ¢ = f(g(a))

b,
a, A <
C
OGSO
N C;..
a
P L
L L

14/55

Compose multiple functions
(adpated from David Rosenberg’s slides)
Compose two functions g : R? — R"and f : R” — R™: ¢ = f(g(a))

b,
a, A <
OEB O,
. c.
Qa
P L
[N . "
e beR <<k

® Derivative: How does change in a; affect ¢;?

14/55

Compose multiple functions

(adpated from David Rosenberg’s slides)

Compose two functions g : R? — R"and f : R” — R™: ¢ = f(g(a))

b,
a, A <
OEB O,
' c.
Qa
P L —
[N . "
e bek ek

® Derivative: How does change in a; affect ¢;?

dc; " dc; dby

6aj N k:labk 8aj'

14/55

Compose multiple functions

(adpated from David Rosenberg’s slides)

Compose two functions g : R? — R"and f : R” — R™: ¢ = f(g(a))

b,
al A <
T X
' c.
Qa
P L —
[N . ..
e bek ek

® Derivative: How does change in a; affect ¢;?

dc; " dc; dby

6aj N kjlabk Oaj'

e \jsualize the multivariable chain rule:

® Sum changes induced on all paths from a; to c;.
® Changes on one path is the product of changes across each node.

14/55

Computation graph example

(adpated from David Rosenberg’s slides)

W \ /Q
b —L)-4-¢-)
Y

(What is this graph computing?)

15/55

Computation graph example

(adpated from David Rosenberg’s slides)

W R /Q
b —L)-4-¢-)
Y

(What is this graph computing?)

o
ob
ov

Iw;

ooy -
ot 0y

apow; (=2r) X = —2n
j

15/55

Computation graph example

(adpated from David Rosenberg’s slides)

w R /Q
b)-8 -

A
14 0l Oy
e . 9 _ IO (any1) = —or
(What is this graph computing?) ob Jy ob
ov ol 9y
= L = (=2r)x = -2
dw, = oyow - 2N = 72

Computing the derivatives in certain order allows us to save compute!

15/55

Computation graph example

(adpated from David Rosenberg’s slides)

w A /Q gﬂ = 2r
v r
N Al S O 0oy,
v oy — 0rdy B
o) o = ia—y =(=2r)(1) = —2r
(What is this graph computing?) ob dy ob
ov ol oy
= L —(=2r)x = -2
w;, opow (2% = 720

Computing the derivatives in certain order allows us to save compute!

15/55

Backpropogation

Backpropogation = chain rule + dynamic programming on a computation graph

Forward pass

® Topological order: every node appears before its children
® For each node, compute the output given the input (from its parents).

16/55

Backpropogation

Backward pass

® Reverse topological order: every node appear after its children

® For each node, compute the partial derivative of its output w.r.t. its input,
multiplied by the partial derivative from its children (chain rule).

. — .. 0b _ 0J . 9J
8 =& 92~ aa & = 3b

17/55

Summary

Key idea in neural nets: feature/representation learning

Building blocks:
e |nput layer: raw features (no learnable parameters)
e Hidden layer: perceptron + nonlinear activation function
e Qutput layer: linear (+ transformation, e.g. softmax)

Optimization:
® Optimize by SGD (implemented by back-propogation)
® Objective is non-convex, may not reach a global minimum

18/55

Table of Contents

Recurrent neural networks

19/55

Overview

Problem setup: given an input sequence, come up with a (neural network) model
that outputs a representation of the sequence for downstream tasks (e.g.,
classification)

20/55

Overview

Problem setup: given an input sequence, come up with a (neural network) model
that outputs a representation of the sequence for downstream tasks (e.g.,
classification)

Key challenge: how to model interaction among words?

20/55

Overview

Problem setup: given an input sequence, come up with a (neural network) model
that outputs a representation of the sequence for downstream tasks (e.g.,
classification)

Key challenge: how to model interaction among words?

Approach:
® Aggregation (pooling word embeddings)
® Recurrence
e Self-attention

20/55

Feed-forward neural network for text classification

softmax(W,z + b) classification
“merge”
[z1; @9; 3] concatenation
(Wuz | (W] [W) dense embedding
)) —) one-hot embedding
[«) [good] [ook) input words

21/55

Feed-forward neural network for text classification

softmax(TV,z + b) classification
“merge”
[z1; @9; 3] concatenation
(Wuz | (W] [W) dense embedding
[Yonet0t(@)] [Ponenon(@)] [Gonenan(®)) one-hot embedding
[«) [good] [ook) input words

Where is the interaction between words modeled?
How to adapt the network to handle sequences with arbitrary length?

21/55

Recurrent neural networks
® Goal: compute representation of sequence x;. of varying lengths
® Idea: combine new symbols with previous symbols recurrently

22/55

https://d2l.ai/chapter_recurrent-neural-networks

Recurrent neural networks
® Goal: compute representation of sequence x;. of varying lengths

® Idea: combine new symbols with previous symbols recurrently
® Update the representation, i.e. hidden states h;, recurrently

hy = f(ht—laxt)

® Qutput from previous time step is the input to the current time step
® Apply the same transformation f at each time step

Output Output 1 Output 2 Output ... Output T
s I I
/
[Hidden Hidden | || Hidden | | Hidden
| layers layers 1 layers 2 layers T
\
Input Input 1 Input 2 Input ... Input 7

Figure: 9.1 from d2l.ai

22/55

https://d2l.ai/chapter_recurrent-neural-networks

Forward pass

01 09 03
(foutput) == (foutput)
hy ho hs

ho { state } a { tate } o { tate } i
it T 3

[fembed] [fembed] [fembed]

(o] ((good] (book |

A deep neural network with shared weights in each
layer

23/55

Forward pass

Xt = embed(st)

Gowe) (o) [Journ] = Wedonenot(st)
I ho hy
o (a2 e 2 e 2

[fembed] [fembed] [fembed]

(o) ((good | (book |

A deep neural network with shared weights in each
layer

23/55

Forward pass

01 09 03
(foutput) == (foutput)
hy ho hs

ho { state } a { tate } o { tate } i
it T 3

[fembed] [fembed] [femhed]

(o) ((good | (book |

A deep neural network with shared weights in each
layer

Xt = embed(st)

= e¢one—hot(5t)

hy = fstate(Xta ht—l)
= 0(Whnhe—1 + Wipxt + bp)

23/55

Forward pass

01 02 03
[foutput] [foutput] [foutput]
hy hs hs
:} / h h
h(] { fstate } 1 { fstate } 2 { fstate } 2
Xy) T3

[fembed] [fembed] [femhed]

(o) ((good | (book |

A deep neural network with shared weights in each
layer

Xt = embed(st)

= e¢one—hot(5t)

hy = fstate(Xta ht—l)
= 0(Whnhe—1 + Wipxt + bp)

O = foutput(ht)
= Whoht + bo

23/55

Forward pass
Use o;'s as features

Xt = embed(st)

01 09 03
[foutput] [foutput] [foutput] - e¢0ne-h0t($t)
I] ha . s) hy = fotate(Xe, he—1)
] p
h(] { fstate } ! { fstate } 2 { fstate } 3 — O‘(Whhhtfl _|_ VVIhXt _|_ bh)
Xy) T3
[fembed] [fembed] [femhed] Ot - fOUtpUt(ht)
= Whoht + bo

(o) ((good | (book |

A deep neural network with shared weights in each
layer

23/55

Forward pass
Use o;'s as features

Xt = embed(st)

Gom) (o) [Fo) = Weoneno(st)
I ha s he = fetate (X, he—1)
O e 2T = o(Winheoa 4 Wi+ by)

O = foutput(ht)

[fembed] [fembed] [fembed]
= Whoht + bo

L] Lgood] [Lbook | 5= Which computation can be

parallelized?

A deep neural network with shared weights in each
layer

23/55

Backward pass

Given the loss ¢¢(o¢, y+), compute the gradient with respect to Whj,.

ot
OWhp

24/55

Backward pass

Given the loss ¢¢(o¢, y+), compute the gradient with respect to Whj,.

O _ 0L Do Oy
8Whh - 8ot 6ht 8Whh

24/55

Backward pass

Given the loss ¢¢(o¢, y+), compute the gradient with respect to Whj,.

O _ 0L Do Oy
8Whh - 6ot 6ht 8Whh

Computation graph of h;: hy = o(Wpphi—1 + Whixe + b)

24/55

Backpropagation through time

Problem with standard backpropagation:
® Gradient involves repeated multiplication of W,
® Gradient will vanish / explode (depending on the eigenvalues of W)

25/55

Backpropagation through time

Problem with standard backpropagation:
® Gradient involves repeated multiplication of W,
® Gradient will vanish / explode (depending on the eigenvalues of W)

Quick fixes:

® Reduce the number of repeated multiplication: truncate after k steps (h;—x has
no influence on h;)

® Limit the norm of the gradient in each step: gradient clipping (can only mitigate
explosion)

25/55

Long-short term memory (LSTM)

Vanilla RNN: always update the hidden state
® Cannot handle long range dependency due to gradient vanishing

26/55

Long-short term memory (LSTM)

Vanilla RNN: always update the hidden state
® Cannot handle long range dependency due to gradient vanishing

LSTM: learn when to update the hidden state
® First successful solution to the gradient vanishing and explosion problem

26/55

Long-short term memory (LSTM)

Vanilla RNN: always update the hidden state
® Cannot handle long range dependency due to gradient vanishing

LSTM: learn when to update the hidden state
® First successful solution to the gradient vanishing and explosion problem

Key idea is to use a gating mechanism: multiplicative weights that modulate
another variable

® How much should the new input affect the state?
® When to ignore new inputs?
® How much should the state affect the output?

26/55

Long-short term memory (LSTM) parametrization

s N
|

i

F: L Cr 0,

Lo] [o] [emn] [o]

Hidden state } j
Hlfl

_ lf J
Input X,

Figure: 10.1.2 from d2l.ai

Update with the new input x; (same as in vanilla RNN)

& = tanh(Wiext + Whche—1 + be) new cell content

27/55

https://d2l.ai/chapter_recurrent-modern/lstm.html

Long-short term memory (LSTM) parametrization

s N
|

i

F: L Cr 0,

Lo] [o] [emn] [o]

Hidden state } j
Hlfl

_ lf J
Input X,

Figure: 10.1.2 from d2l.ai

Update with the new input x; (same as in vanilla RNN)

& = tanh(Wiext + Whche—1 + be) new cell content

Should we update with the new input x;?
27/55

https://d2l.ai/chapter_recurrent-modern/lstm.html

Long-short term memory (LSTM) parametrization

Memory cell
internal state
C

-1

Hidden state

H_,

Choose between ¢; (update) and ¢;—1 (no update): (®: elementwise product)

memory cell

® f,: proportion of the old state (preserve T or erase | the old memory)
® j;: proportion of the new state (write 1 or ignore | the new input)

(.6

Forget Input Input
gate gate node

Output
gate

r e e

c |tanh|

[

I
Input X,

Figure: 10.1.3 from d2l.ai

® Whatisc¢; ifff =1andi; =0?

G =l OC&G+fOc-1

28/55

https://d2l.ai/chapter_recurrent-modern/lstm.html

Long-short term memory (LSTM) parametrization

Memory cell ~ ~

internal state (@) () C
f
C., Y
Output
gate
Forget Input Input
gate gate node
Flallla cltanhl
Hidden state
H_
-1 _ Ir)
Input X,

Input gate and forget gate depends on data:

iy = sigmoid(Wyix: + Whiht—1 + b;) ,
fr = sigmoid(W,sx: + Whehe—1 + br) .

Each coordinate is between 0 and 1.
29/55

Long-short term memory (LSTM) parametrization

Memory cell
internal state 4 @ m \ (o}
Forget Input @ @
gate gate Inn;Jdu; Oguatf:t
Fl Il -~
Lo "[e] ¢ [emn] offe]
Hidden state
fol H’
- I(J
Input X,

Figure: 10.1.4 from d2l.ai

How much should the memory cell state influence the rest of the network:

ht = 0t © ¢t
o = sigmoid(Wioxt + Whohi—1 + bo)

¢ may accumulate information without impact the network if o; is close to 0

30/55

https://d2l.ai/chapter_recurrent-modern/lstm.html

How does LSTM solve gradient vanishing / explosion?

Intuition: gating allows the network to learn to control how much gradient should
vanish.

® Vanilla RNN: gradient depends on repeated multiplication of the same weight
matrix

® | STM: gradient depends on repeated multiplication of some quantity that
depends on the data (values of input and forget gates)

® So the network can learn to reset or update the gradient depending on whether
there is long-range dependencies in the data.

31/55

Table of Contents

Self-attention

32/55

Improve the efficiency of RNN

RNN

Recall that our goal is to come up with a good
respresentation of a sequence of words.

3

A RNN
@ @ @ ® Past words influence the sentence
representation through recurrent update
e Sequential computation O(sequence length),

Self-attention
hard to scale

Figure: 11.6.1 from d2l.ai

33/55

https://d2l.ai/chapter_attention-mechanisms-and-transformers/self-attention-and-positional-encoding.html

Improve the efficiency of RNN

RNN

5660

Self-attention

Figure: 11.6.1 from d2l.ai

Recall that our goal is to come up with a good
respresentation of a sequence of words.
RNN:

® Past words influence the sentence
representation through recurrent update

e Sequential computation O(sequence length),
hard to scale

Can we handle dependency more ?

® Direct interaction between any pair of words
in the sequence

® Parallelizable computation

33/55

https://d2l.ai/chapter_attention-mechanisms-and-transformers/self-attention-and-positional-encoding.html

Model interaction between words

Time flies like an arrow: Which word(s) is most related to “time"?

34/55

Model interaction between words

Time flies like an arrow: Which word(s) is most related to “time"?

A database approach:

query keys values
arrow time

flies flies
like like
an an

time time arrow

34/55

Model interaction between words

Time flies like an arrow: Which word(s) is most related to “time"?

A database approach:

query keys values
arrow time

flies flies
like like
an an

time time arrow

Output: arrow

34/55

Model interaction between words

Time flies like an arrow: Which word(s) is most related to “time"?

A database approach:

Limitations:
query keys values

arrow time ® Relatedness should not be hard-coded

flies flies
like like
an an

time time arrow

Output: arrow

34/55

Model interaction between words

Time flies like an arrow: Which word(s) is most related to “time"?

A database approach:

Limitations:
query keys values

arrow time ® Relatedness should not be hard-coded

flies flies Keys for values should be learned
like like
an an

time time arrow

Output: arrow

34/55

Model interaction between words

Time flies like an arrow: Which word(s) is most related to “time"?

A database approach:
Limitations:

query keys values
® Relatedness should not be hard-coded

arrow time

flies flies Keys for values should be learned
like like e Aword is related to multiple words in a
an an sentence

time time arrow

Output: arrow

34/55

Model interaction between words

Time flies like an arrow: Which word(s) is most related to “time"?

A database approach:

Limitations:
query keys values

arrow time ® Relatedness should not be hard-coded

flies flies Keys for values should be learned
like like e Aword is related to multiple words in a
an an sentence

time time arrow Query should be matched to multiple keys

Output: arrow

34/55

Model interaction between words using a “soft” database

Attention
Keys weights Values Output

(g k)Y

alg, k) |

s

k)

Attention
Query Pooling

Figure: 11.1.1 from d2l.ai

e Attention weights a(q, k;): how likely is g matched to k;
e Attention pooling: combine v;'s according to their “relatedness” to the query

35/55

https://d2l.ai/chapter_attention-mechanisms-and-transformers/queries-keys-values.html

Model interaction between words using a “soft” database

(+)__,
Attention I:l Sy

weights

Attention
scoring
function

]

O~ {7
O [0, —0= |3

o [[+ O |] vewes
-0 ——

Figure: 11.3.1 from d2l.ai

® Model attention weights as a distribution: o = softmax(a(q, k1), ..., a(q, km))
* Output a weighted combination of values: o; = Y a(q, ki)vi

36/55

https://d2l.ai/chapter_attention-mechanisms-and-transformers/attention-scoring-functions.html

Self-attention
Goal: an efficient model of the interaction among symbols in a sequence

Idea: model the interaction between each pair of words (in parallel)

37/55

Self-attention

Goal: an efficient model of the interaction among symbols in a sequence

Idea: model the interaction between each pair of words (in parallel)

The_

animal_

Outputs | l I | I | didn_
f f t C

| Self-attention | e

street_

=t o > o) [o) because_

g >3 g a v g 3 X g v:as,

W;

Inputs | t-1 | | t | | t+1 | =

The_
animal_
didn_

cross_
the_
street_
because_

was_
too_
tire

® [nput: map each symbol to a query, a key, and a value (embeddings)

37/55

Self-attention

Goal: an efficient model of the interaction among symbols in a sequence

Idea: model the interaction between each pair of words (in parallel)

Outputs | l I | I |
t t t

| Self-attention |

> [> (] ()

5l 3 2| g| 5 5| 5| 3 2

sU= 8 s 8 sl2 =

Inputs | t-1 | t | | t+1 |

The_
animal_
didn_

t

cross_
the_
street_
because_
it_

was_
too_

tire

d_

The_
animal_
didn_

cross_
the_
street_
because_

was_
too_
tire

® [nput: map each symbol to a query, a key, and a value (embeddings)
e Attend: each word (as a query) interacts with all words (keys)

37/55

Self-attention

Goal: an efficient model of the interaction among symbols in a sequence

Idea: model the interaction between each pair of words (in parallel)

Outputs | l I | I
1 4 t
| Self-attention
> [> [[
5l 3 2| g| 5 5| 5| 3 2
slLx| 8 3lx § 3l= =2
Inputs | t-1 | | t | | t+1 |

eeeeeee

® [nput: map each symbol to a query, a key, and a value (embeddings)
e Attend: each word (as a query) interacts with all words (keys)
e Qutput: contextualized representation of each word (weighted sum of values)

37/55

Attention scoring functions
Design the function that measures relatedness between queries and keys:
a = softmax(a(q, k))

38/55

Attention scoring functions
Design the function that measures relatedness between queries and keys:
a = softmax(a(q, k))

Dot-product attention

38/55

Attention scoring functions
Design the function that measures relatedness between queries and keys:
a = softmax(a(q, k))

Dot-product attention

Scaled dot-product attention

a(q, k) = q- k/Vd
¢ /d: dimension of the key vector

® Avoids large attention weights that push the softmax function into regions of
small gradients

38/55

Attention scoring functions
Design the function that measures relatedness between queries and keys:
a = softmax(a(q, k))

Dot-product attention

Scaled dot-product attention

a(q, k) = q- k/Vd
¢ /d: dimension of the key vector

® Avoids large attention weights that push the softmax function into regions of
small gradients

MLP attention
a(q, k) = u tanh(W(g; k])

38/55

Multi-head attention: motivation

Time flies like an arrow

e Each word attends to all other words in the sentence
e Which words should “like” attend to?

39/55

Multi-head attention: motivation

Time flies like an arrow

e Each word attends to all other words in the sentence
e Which words should “like” attend to?

" ou

® Syntax: “flies”, “arrow” (a preposition)

"ou

® Semantics: “time”, “arrow” (a metaphor)

39/55

Multi-head attention: motivation

Time flies like an arrow

Each word attends to all other words in the sentence
Which words should “like” attend to?

® Syntax: “flies”, “arrow” (a preposition)

® Semantics: “time”, “arrow” (a metaphor)

We want to represent different roles of a word in the sentence: need more than
a single embedding

Instantiation: multiple self-attention modules

39/55

Multi-head attention

Sy

Attention Attention

[Fc || Fc || Fc | [Fc || Fc || Fc |

Queries Keys Values

® Multiple attention modules: same architecture, different parameters

40/55

Multi-head attention

Sy

Attention Attention

[Fc || Fc || Fc | [Fc || Fc || Fc |

Queries Keys Values

® Multiple attention modules: same architecture, different parameters
® A head: one set of attention outputs

40/55

Multi-head attention

Sy

Attention | Attention

t

[Fc || Fc || Fc | [Fc || Fc || Fc |

J

Queries Keys Values

Multiple attention modules: same architecture, different parameters

A head: one set of attention outputs
Concatenate all heads (increased output dimension)
Linear projection to produce the final output

40/55

Matrix representation:

Input

Embedding

Queries

Keys

Values

input mapping

Thinking

x: [

o+ [EEE

v

Machines
x. [
U we
[WK
v2[L0 wv

Figure: From The lllustrated Transformer

41/55

https://jalammar.github.io/illustrated-transformer

Matrix representation: attention weights

Scaled dot product attention

R - ||| - BB

Q KT
X WK K \"
HH= - - B softmax(1 - @)HEH
X wv Vv VE;;
B - - HH - HH

Figure: From The lllustrated Transformer

42/55

https://jalammar.github.io/illustrated-transformer

Multi-head attention

1) This is our 2) We embed 3) Split into 8 heads. 4) Calculate attention 5) Concatenate the resulting ~ matrices,
input sentence* each word* We multiply X or using the resulting then multiply with weight matrix W° to
R with weight matrices Q/K/V matrices produce the output of the layer
W@
X WK
Thinking 0 v Z
Machines Wo 0
W,
*In all encoders other than #0, WK Q 7
we don't need embedding. wqV 1 |
We start directly with the output Vi
of the encoder right below this one
R b s “ue
HHH i
WK Q
Wy { . Z7
- -

Figure: From The lllustrated Transformer

43/55

https://jalammar.github.io/illustrated-transformer

Summary so far

® Sequence modeling

® |nput: a sequence of words
® Qutput: a sequence of contextualized embeddings for each word
® Models interaction among words

44/55

Summary so far

® Sequence modeling
® |nput: a sequence of words
® Qutput: a sequence of contextualized embeddings for each word
® Models interaction among words
e Building blocks
® Feed-forward / fully-connected neural network
® Recurrent neural network
® Self-attention

44/55

Summary so far

® Sequence modeling
® |nput: a sequence of words
® Qutput: a sequence of contextualized embeddings for each word
® Models interaction among words
e Building blocks
® Feed-forward / fully-connected neural network
® Recurrent neural network
® Self-attention

“* Which of these can handle sequences of arbitrary length?

44/55

Table of Contents

Tranformer

45/55

Overview

Use self-attention as the core building block

Vastly increased scalability (model and data size) compared to recurrence-based
models

Initially designed for machine translation (next week)
® Attention is all you need. Vaswani et al., 2017.

The backbone of today's large-scale models

Extended to non-sequential data (e.g., images and molecules)

46/55

Transformer block

4 4
(’(Add & Normalize) \
(Feed Forward) (Feed Forward)
......... [S _ ,
21— “iiln ® Multi-head self-attention
4 __Add & Normalize 4
X
E :0[LayerNorm(BEBH + Bﬂa)]
3l 4 4
' C Self-Attention D)
s N R,
POSITIONAL
ENCODING éa éb
x1 [x- [N
Thinking Machines

Figure: From The Illustrated
Transformer

47755

https://jalammar.github.io/illustrated-transformer
https://jalammar.github.io/illustrated-transformer

Transformer block

4 4
(’(Add & Normalize)x
:
4
: (Feed Forward) (Feed Forward)
4 _Add & Normalize 4
X
| ,» LayerNorm +
Sloo{ covertor FEER « B
gl: ry ry
off -mfm D
' C Self-Attention
H Y 2
= = . ot)
POSITIONAL <> <>
ENCODING () o
x1 [x- [N
Thinking Machines

Figure: From The Illustrated
Transformer

e Multi-head self-attention

® Capture dependence among input
symbols

471755

https://jalammar.github.io/illustrated-transformer
https://jalammar.github.io/illustrated-transformer

Transformer block

~N

J

4 4
(’(Add & Normalize)
:
: (Feed Fomard) (Feed Forward)
4 Add & Normalize 4
X
| ,» LayerNorm +
ol overorn()« EEEED
gl: ry ry
L. . i
H (Self-Attention)
H Y 2
POSITIONAL <> <>
ENCODING (3) o

x1 [x- [N
Thinking Machines

Figure: From The Illustrated
Transformer

e Multi-head self-attention

® Capture dependence among input
symbols

® Positional encoding

471755

https://jalammar.github.io/illustrated-transformer
https://jalammar.github.io/illustrated-transformer

Transformer block

f’(Add & Normalize)\
(Feed FonNard) (Feed Forward)
......... L))
eV 12? ® Multi-head self-attention
® Capture dependence among input
* 0[LayerNorm(BHEE‘ BEE) j p p g p
& . . symbols
o
z s i e Positional encoding
(Self-Attention)
' [}
T) Capture the order of symbols
"same@ é;
1 [N x2 [
Thinking Machines

Figure: From The Illustrated
Transformer

471755

https://jalammar.github.io/illustrated-transformer
https://jalammar.github.io/illustrated-transformer

Transformer block

4 4
,(Add & Normalize)\
(Feed Fanard) (Feed Forward)
......... 7 S . .
- T ® Multi-head self-attention

® Capture dependence among input

: symbols
8 4 .
Z s - * Positional encoding
(Self-Attention)
[]
% x e B) Capture the order of symbols
"?ﬁ?&%mé é§ e Residual connection and layer normalization
x1 [N x- [N
Thinking Machines

Figure: From The Illustrated
Transformer

471755

https://jalammar.github.io/illustrated-transformer
https://jalammar.github.io/illustrated-transformer

Transformer block

C(Add & Normalize)\
(Feed Fanard) (Feed FonNard)
......... L))
e Z»? ® Multi-head self-attention
® Capture dependence among input
|, LayerNorm(BEE + EEBE) p p g p
£l < . symbols
o
Z s - * Positional encoding
(Self-Attention)
[]
G e i x wim) Capture the order of symbols
P?ﬁ?&%?;é@ é§ e Residual connection and layer normalization
“‘Tmh. : S ® More efficient and better optimization
inking Machines

Figure: From The Illustrated
Transformer

47755

https://jalammar.github.io/illustrated-transformer
https://jalammar.github.io/illustrated-transformer

Position embedding

Motivation: model word order in the input sequence

Solution: add a position embedding to each word

Embedding size

Input sequence matrix i
(X)

Sequence length

Postional encoding matrix

(P)

Position embedding:

® Encode absolute and relative positions of a word

® Same dimension as word embeddings
® |earned or deterministic

48/55

Sinusoidal position embedding

Intuition: continuous approximation of binary encoding of positions (integers)

0: 00O
1: 001
2: 010
3: 011
4: 100
5: 101
6: 110
7: 111

49/55

https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

Sinusoidal position embedding

Intuition: continuous approximation of binary encoding of positions (integers)

P R, R, PR, OOOO

= =, OOk, EK» OO
P O R, OFPr ORr O

N O Ot W= O

100

49/55

https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

Sinusoidal position embedding

Intuition: continuous approximation of binary encoding of positions (integers)

N O Ot W= O

P R, R, PR, OOOO
= =, OOk, EK» OO
P O R, OFPr ORr O

20

Figure: From Amirhossein Kazemnejad's Blog

2i
Woj = W2j4+1 = 1/100007

100

[sin(ws.t)

cos(w. t)

sin(ws. t)
cos(ws. t)

sin(wg/a- t)

| cos(wgya-t)

Jdx1

49/55

https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

Learned position embeddings

Sinusoidal position embedding:
® Not learnable
e (Can extrapolate to longer sequences but doesn’t work well

50/55

Learned position embeddings

Sinusoidal position embedding:
® Not learnable
e (Can extrapolate to longer sequences but doesn’t work well

Learned absolute position embeddings (most common now):

® Consider each position as a word. Map positions to dense vectors:
den¢one-hot(p05)
e Column i of W is the embedding of position i

50/55

Learned position embeddings

Sinusoidal position embedding:
® Not learnable
e (Can extrapolate to longer sequences but doesn’t work well

Learned absolute position embeddings (most common now):

® Consider each position as a word. Map positions to dense vectors:

den¢one-hot(p05)
e Column i of W is the embedding of position i

e Need to fix maximum position/length beforehand
e Cannot extrapolate to longer sequences

50/55

Residual connection

Motivation:
® Gradient explosion/vanishing is not RNN-specific!
® |t happens to all very deep networks (which are hard to optimize).

51/55

Residual connection

Motivation:
® Gradient explosion/vanishing is not RNN-specific!
® |t happens to all very deep networks (which are hard to optimize).

® |n principle, a deep network can always represent a shallow network (by setting
higher layers to identity functions), thus it should be at least as good as the
shallow network.

® How can we make it easier to recover the shallow solution?

51/55

Residual connection
Solution: Deep Residual Learning for Image Recognition [He et al., 2015]

Activation function Actlvatlon function

fx) =g(x) +x

8 (X)

Weight layer

Activation function
Weight layer

Learn the residual layer: g(x) = f(x) — x

If the shallow network is better, set g(x) = 0 (easier to learn).
52/55

https://arxiv.org/pdf/1512.03385.pdf

Layer normalization
Layer Normalization [Ba et al., 2016]
e Normalize (zero mean, unit variance) across features
® letx =(xi,...,xq) be the input vector (e.g., word embedding, previous layer
output))

AN Y

LayerNorm(x) = x

d

d
.1 R 1 A
where i = 5 E xj, 62= 5 E (xi — p)?
i=1 i=1

53/55

https://arxiv.org/pdf/1607.06450.pdf

Layer normalization
Layer Normalization [Ba et al., 2016]
e Normalize (zero mean, unit variance) across features

® letx =(xi,...,xq) be the input vector (e.g., word embedding, previous layer
output) X — 10
LayerNorm(x) = — M,
1< 1<
0 — 52 =)2
where i = EIZ;X,, 6° = d;(x, i)

Layer Normalization Batch/Power Normalization

e A deterministic transformation of the
input

Sentence Length
Sentence Length

¢ |Independent of train/inference and
batch size

53/55

https://arxiv.org/pdf/1607.06450.pdf

Residual connection and layer normalization in Transformer

ENCODER #1

® Add (residual connection) & Normalize (layer normalization) after each layer
® Position-wise feed-forward networks: same mapping for all positions

4 4

(’(Add & Normalize
v

é (Feed Forward) (Feed Forward)
\ 4

......... A
z: 2
4 Add & No li A
,»H LayerNorm(BEEE‘ + BEEH)
B R
(Self-Attention
LY Y
NSl ... % AEEE
POSITIONAL <> <>
ENCODING () P
x+ [N pARE |

Thinking Machines

54/55

Summary

We have seen two families of models for sequences modeling: RNNs and
Transformers

Both take a sequence of (discrete) symbols as input and output a sequence of
embeddings

They are often called encoders and are used to represent text
® Transformers are dominating today because of its scalability

55/55

	Neural network basics
	Recurrent neural networks
	Self-attention
	Tranformer

