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Logistics

® HW1 due this Friday at 12pm.
® HW?2 will be released this Friday.
® Textbook and readings
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Feature learning

Linear predictor with Sh(x)=w-

Can we |earn features from data?
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Feature learning

Linear predictor with Dh(x)=w-
Can we learn features from data?

Example:
® Predict popularity of restaurants.
® Raw input: #dishes, price, wine option, zip code, #seats, size
® Decompose into subproblems:
hy([#dishes, price, wine option]) = food quality

ha([zip code]) = walkable

hs([#seats, size]) = nosie
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Predefined subproblems

Input Intermediate Output
features features
#dishes —
price — \ !
> food quality
wine option — 2 —— Popularity
zip code — b .
/ noise
#seats —— /

size —
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Learning intermediate features

Input Hidden Output
layer layer layer

#dishes —

price — \ 1
wine option —— h ,
— Popularity
zip code — hs
#seats —

size —
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Neural networks

Key idea: automatically learn the intermediate features.

Feature engineering: Manually specify ¢(x) based on domain knowledge and learn
the weights:

f(x) = wT¢(x).

Feature learning: Automatically learn both the features (K hidden units) and the
weights:

h(x) = [ (X),..., hk(x)], f(x)=wTh(x)
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Activation function

® How should we parametrize h;'s?
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Activation function

® How should we parametrize h;'s?

hi(x) = o (v, x). (1)

1

® o is the activation function.
® What might be some activation functions we want to use?

® sign function? Non-differentiable.
® Differentiable approximations: sigmoid functions.

® E.g., logistic function, hyperbolic tangent function, ReLU
® Non-linearity
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Activation Functions

® The hyperbolic tangent is a common activation function:

Output

0.5-

0.0-

05-

o(x) = tanh (x).

Activation_Function
=== Tanh
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Activation Functions
® More recently, the rectified linear (ReLU) function has been very popular:
o(x) = max(0, x).
® Much faster to calculate the function value and its derivatives.

® Work well empirically.

1.00 -

0.50 -

Output o

o
N

10 -C 00 05
Input x
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Multilayer perceptron / Feed-forward neural networks
® Wider: more hidden units.
® Deeper: more hidden layers.

Input Hidden Output
layer layers layer
X1 ——
\
Xy —— \

P — — — Score

Xd—1 ——

X4 —
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Multilayer Perceptron: Standard Recipe

® Each hidden layer takes the output o € R™ of previous layer and produces
o) = W (U V) = & <W(j)o(j’1) + bU)) forj=2,....L

where WU) ¢ Rmxm pU) ¢ RM,
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Multilayer Perceptron: Standard Recipe

e Each hidden layer takes the output o € R of previous layer and produces
o) = (U ) = ¢ (WOl ) 1 b9)) , forj=2....L

where WU) ¢ Rm*m, pl) ¢ R™,
® The output layer is an affine mapping (no activation function):

a(o(D) = WL (L) 4 p(L+1).

where W(L+H1) ¢ Rkxm gnd p(L+1) ¢ Rk,
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Multilayer Perceptron: Standard Recipe

e Each hidden layer takes the output o € R of previous layer and produces
o) = (U ) = ¢ (WOl ) 1 b9)) , forj=2....L

where WU) ¢ Rm*m, pl) ¢ R™,
® The output layer is an affine mapping (no activation function):

a(o(D) = WL (L) 4 p(L+1).

where W(t+1) ¢ Rk*m and p(L+1) ¢ R,
® The full neural network function is given by the composition of layers:

f(X): (aoh(L)O---Oh(1)> (x) (2)
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Computation graphs

(adpated from David Rosenberg’s slides)

Function as a node that takes in inputs and produces outputs.

® Typical computation graph:

a—(q)—t

4 R"

e Broken out into components:

a, b,
Q
¢ L,
a b
A "
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Compose multiple functions
(adpated from David Rosenberg’s slides)
Compose two functions g : R? — R"and f : R” — R™: ¢ = f(g(a))

b,
a, A <
C
OGSO
N C;..
a
P L
L L
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Compose two functions g : R? — R"and f : R” — R™: ¢ = f(g(a))

b,
a, A <
OEB O,
. c.
Qa
P L
[N . "
e beR <<k
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Compose multiple functions

(adpated from David Rosenberg’s slides)

Compose two functions g : R? — R"and f : R” — R™: ¢ = f(g(a))

b,
al A <
T X
' c.
Qa
P L —
[N . ..
e bek ek

® Derivative: How does change in a; affect ¢;?

dc; " dc; dby

6aj N kjlabk Oaj'

e \jsualize the multivariable chain rule:

® Sum changes induced on all paths from a; to c;.
® Changes on one path is the product of changes across each node.
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Computation graph example

(adpated from David Rosenberg’s slides)

W \ /Q
b —L)-4-¢-)
Y

(What is this graph computing?)
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Computation graph example

(adpated from David Rosenberg’s slides)

W R /Q
b —L)-4-¢-)
Y

(What is this graph computing?)

o
ob
ov

Iw;

ooy -
ot 0y

apow; (=2r) X = —2n
j
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Computation graph example

(adpated from David Rosenberg’s slides)

w R /Q
b )-8 -

A
14 0l Oy
e . 9 _ IO (any1) = —or
(What is this graph computing?) ob Jy ob
ov ol 9y
= L = (=2r)x = -2
dw, = oyow - 2N = 72

Computing the derivatives in certain order allows us to save compute!
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Computation graph example

(adpated from David Rosenberg’s slides)

w A /Q gﬂ = 2r
v r
N Al S O 0oy,
v oy — 0rdy B
o ) o = ia—y =(=2r)(1) = —2r
(What is this graph computing?) ob dy ob
ov ol oy
= L —(=2r)x = -2
w;,  opow (2% = 720

Computing the derivatives in certain order allows us to save compute!
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Backpropogation

Backpropogation = chain rule + dynamic programming on a computation graph

Forward pass

® Topological order: every node appears before its children
® For each node, compute the output given the input (from its parents).
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Backpropogation

Backward pass

® Reverse topological order: every node appear after its children

® For each node, compute the partial derivative of its output w.r.t. its input,
multiplied by the partial derivative from its children (chain rule).

. — .. 0b _ 0J . 9J
8 =& 92~ aa & = 3b
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Summary

Key idea in neural nets: feature/representation learning

Building blocks:
e |nput layer: raw features (no learnable parameters)
e Hidden layer: perceptron + nonlinear activation function
e Qutput layer: linear (+ transformation, e.g. softmax)

Optimization:
® Optimize by SGD (implemented by back-propogation)
® Objective is non-convex, may not reach a global minimum
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Overview

Problem setup: given an input sequence, come up with a (neural network) model
that outputs a representation of the sequence for downstream tasks (e.g.,
classification)
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Overview

Problem setup: given an input sequence, come up with a (neural network) model
that outputs a representation of the sequence for downstream tasks (e.g.,
classification)

Key challenge: how to model interaction among words?

Approach:
® Aggregation (pooling word embeddings)
® Recurrence
e Self-attention
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Feed-forward neural network for text classification

softmax(W,z + b) classification
“merge”
[z1; @9; 3] concatenation
(Wuz | (W] [ W) dense embedding
) ) —) one-hot embedding
[« ) [good] [ ook ) input words
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Feed-forward neural network for text classification

softmax(TV,z + b) classification
“merge”
[z1; @9; 3] concatenation
(Wuz | (W] [ W) dense embedding
[Yonet0t(@)]  [Ponenon(@)]  [Gonenan(®)) one-hot embedding
[« ) [good] [ ook ) input words

Where is the interaction between words modeled?
How to adapt the network to handle sequences with arbitrary length?
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Recurrent neural networks
® Goal: compute representation of sequence x;. of varying lengths
® Idea: combine new symbols with previous symbols recurrently
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Recurrent neural networks
® Goal: compute representation of sequence x;. of varying lengths

® Idea: combine new symbols with previous symbols recurrently
® Update the representation, i.e. hidden states h;, recurrently

hy = f(ht—laxt)

® Qutput from previous time step is the input to the current time step
® Apply the same transformation f at each time step

Output Output 1 Output 2 Output ... Output T
s I I
/
[ Hidden Hidden | || Hidden | | Hidden
| layers layers 1 layers 2 layers T
\
Input Input 1 Input 2 Input ... Input 7

Figure: 9.1 from d2l.ai
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Forward pass

01 09 03
(foutput ) == (foutput )
hy ho hs

ho { state } a { tate } o { tate } i
it T 3

[ fembed ] [ fembed ] [ fembed ]

(o ] ((good ] ( book |

A deep neural network with shared weights in each
layer
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Forward pass

Xt = embed(st)

Gowe) (o) [Journ] = Wedonenot(st)
I ho hy
o (a2 e 2 e 2

[ fembed ] [ fembed ] [ fembed ]

(o) ((good | ( book |

A deep neural network with shared weights in each
layer
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Forward pass

01 09 03
(foutput ) == (foutput )
hy ho hs

ho { state } a { tate } o { tate } i
it T 3

[ fembed ] [ fembed ] [ femhed ]

(o) ((good | ( book |

A deep neural network with shared weights in each
layer

Xt = embed(st)

= e¢one—hot(5t)
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Forward pass

01 02 03
[ foutput ] [ foutput ] [ foutput ]
hy hs hs
:} / h h
h(] { fstate } 1 { fstate } 2 { fstate } 2
Xy ) T3

[ fembed ] [ fembed ] [ femhed ]

(o) ((good | ( book |

A deep neural network with shared weights in each
layer

Xt = embed(st)

= e¢one—hot(5t)

hy = fstate(Xta ht—l)
= 0(Whnhe—1 + Wipxt + bp)

O = foutput(ht)
= Whoht + bo
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Forward pass
Use o;'s as features

Xt = embed(st)

01 09 03
[ foutput ] [ foutput ] [ foutput ] - e¢0ne-h0t($t)
I ] ha . s ) hy = fotate(Xe, he—1)
] p
h(] { fstate } ! { fstate } 2 { fstate } 3 — O‘( Whhhtfl _|_ VVIhXt _|_ bh)
Xy ) T3
[ fembed ] [ fembed ] [ femhed ] Ot - fOUtpUt(ht)
= Whoht + bo

(o) ((good | ( book |

A deep neural network with shared weights in each
layer
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Forward pass
Use o;'s as features

Xt = embed(st)

Gom) (o) [Fo) = Weoneno(st)
I ha s he = fetate (X, he—1)
O e 2T = o(Winheoa 4 Wi+ by)

O = foutput(ht)

[ fembed ] [ fembed ] [ fembed ]
= Whoht + bo

L] Lgood ] [Lbook | 5= Which computation can be

parallelized?

A deep neural network with shared weights in each
layer
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Backward pass

Given the loss ¢¢(o¢, y+), compute the gradient with respect to Whj,.

ot
OWhp
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Backward pass

Given the loss ¢¢(o¢, y+), compute the gradient with respect to Whj,.

O _ 0L Do Oy
8Whh - 8ot 6ht 8Whh
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Backward pass

Given the loss ¢¢(o¢, y+), compute the gradient with respect to Whj,.

O _ 0L Do Oy
8Whh - 6ot 6ht 8Whh

Computation graph of h;: hy = o(Wpphi—1 + Whixe + b)
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Backpropagation through time

Problem with standard backpropagation:
® Gradient involves repeated multiplication of W,
® Gradient will vanish / explode (depending on the eigenvalues of W)

25/55



Backpropagation through time

Problem with standard backpropagation:
® Gradient involves repeated multiplication of W,
® Gradient will vanish / explode (depending on the eigenvalues of W)

Quick fixes:

® Reduce the number of repeated multiplication: truncate after k steps (h;—x has
no influence on h;)

® Limit the norm of the gradient in each step: gradient clipping (can only mitigate
explosion)
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Long-short term memory (LSTM)

Vanilla RNN: always update the hidden state
® Cannot handle long range dependency due to gradient vanishing

26/55



Long-short term memory (LSTM)

Vanilla RNN: always update the hidden state
® Cannot handle long range dependency due to gradient vanishing

LSTM: learn when to update the hidden state
® First successful solution to the gradient vanishing and explosion problem

26/55



Long-short term memory (LSTM)

Vanilla RNN: always update the hidden state
® Cannot handle long range dependency due to gradient vanishing

LSTM: learn when to update the hidden state
® First successful solution to the gradient vanishing and explosion problem

Key idea is to use a gating mechanism: multiplicative weights that modulate
another variable

® How much should the new input affect the state?
® When to ignore new inputs?
® How much should the state affect the output?
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Long-short term memory (LSTM) parametrization

s N
|

i

F: L Cr 0,

Lo] [o] [emn] [o]

Hidden state } j
Hlfl

_ lf J
Input X,

Figure: 10.1.2 from d2l.ai

Update with the new input x; (same as in vanilla RNN)

& = tanh(Wiext + Whche—1 + be) new cell content
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Long-short term memory (LSTM) parametrization

s N
|

i

F: L Cr 0,

Lo] [o] [emn] [o]

Hidden state } j
Hlfl

\_ lf J
Input X,

Figure: 10.1.2 from d2l.ai

Update with the new input x; (same as in vanilla RNN)

& = tanh(Wiext + Whche—1 + be) new cell content

Should we update with the new input x;?
27/55
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Long-short term memory (LSTM) parametrization

Memory cell
internal state
C

-1

Hidden state

H_,

Choose between ¢; (update) and ¢;—1 (no update): (®: elementwise product)

memory cell

® f,: proportion of the old state (preserve T or erase | the old memory)
® j;: proportion of the new state (write 1 or ignore | the new input)

(.6

Forget Input Input
gate gate node

Output
gate

r e e

c |tanh|

[

I
Input X,

Figure: 10.1.3 from d2l.ai

® Whatisc¢; ifff =1andi; =0?

G =l OC&G+fOc-1

28/55


https://d2l.ai/chapter_recurrent-modern/lstm.html

Long-short term memory (LSTM) parametrization

Memory cell ~ ~

internal state (@) () C
f
C., Y
Output
gate
Forget Input Input
gate gate node
Flallla cltanhl
Hidden state
H_
-1 \_ Ir )
Input X,

Input gate and forget gate depends on data:

iy = sigmoid( Wyix: + Whiht—1 + b;) ,
fr = sigmoid(W,sx: + Whehe—1 + br) .

Each coordinate is between 0 and 1.
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Long-short term memory (LSTM) parametrization

Memory cell
internal state 4 @ m \ (o}
Forget Input @ @
gate gate Inn;Jdu; Oguatf:t
Fl Il -~
Lo "[e] ¢ [emn] offe]
Hidden state
fol H’
- I( J
Input X,

Figure: 10.1.4 from d2l.ai

How much should the memory cell state influence the rest of the network:

ht = 0t © ¢t
o = sigmoid(Wioxt + Whohi—1 + bo)

¢ may accumulate information without impact the network if o; is close to 0
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How does LSTM solve gradient vanishing / explosion?

Intuition: gating allows the network to learn to control how much gradient should
vanish.

® Vanilla RNN: gradient depends on repeated multiplication of the same weight
matrix

® | STM: gradient depends on repeated multiplication of some quantity that
depends on the data (values of input and forget gates)

® So the network can learn to reset or update the gradient depending on whether
there is long-range dependencies in the data.
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Improve the efficiency of RNN

RNN

Recall that our goal is to come up with a good
respresentation of a sequence of words.

3

A RNN
@ @ @ ® Past words influence the sentence
representation through recurrent update
e Sequential computation O(sequence length),

Self-attention
hard to scale

Figure: 11.6.1 from d2l.ai
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Improve the efficiency of RNN

RNN

5660

Self-attention

Figure: 11.6.1 from d2l.ai

Recall that our goal is to come up with a good
respresentation of a sequence of words.
RNN:

® Past words influence the sentence
representation through recurrent update

e Sequential computation O(sequence length),
hard to scale

Can we handle dependency more ?

® Direct interaction between any pair of words
in the sequence

® Parallelizable computation
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Model interaction between words

Time flies like an arrow: Which word(s) is most related to “time"?
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Model interaction between words
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A database approach:
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query keys values
® Relatedness should not be hard-coded

arrow time
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Model interaction between words

Time flies like an arrow: Which word(s) is most related to “time"?

A database approach:

Limitations:
query keys values

arrow time ® Relatedness should not be hard-coded

flies flies Keys for values should be learned
like  like e Aword is related to multiple words in a
an an sentence

time time  arrow Query should be matched to multiple keys

Output: arrow

34/55



Model interaction between words using a “soft” database

Attention
Keys weights Values Output

(g k)Y

alg, k) |

s

k)

Attention
Query Pooling

Figure: 11.1.1 from d2l.ai

e Attention weights a(q, k;): how likely is g matched to k;
e Attention pooling: combine v;'s according to their “relatedness” to the query
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Model interaction between words using a “soft” database

( + )__,
Attention I:l Sy

weights

Attention
scoring
function

]

O~ {7
O [0, —0= |3

o [ [+ O | ] vewes
-0 ——

Figure: 11.3.1 from d2l.ai

® Model attention weights as a distribution: o = softmax(a(q, k1), ..., a(q, km))
* Output a weighted combination of values: o; = Y a(q, ki)vi
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Self-attention
Goal: an efficient model of the interaction among symbols in a sequence

Idea: model the interaction between each pair of words (in parallel)
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Self-attention

Goal: an efficient model of the interaction among symbols in a sequence

Idea: model the interaction between each pair of words (in parallel)

The_

animal_

Outputs | l I | I | didn_
f f t C

| Self-attention | e

street_

=t o > o) [o) because_

g >3 g a v g 3 X g v:as,

W;

Inputs | t-1 | | t | | t+1 | =

The_
animal_
didn_

cross_
the_
street_
because_

was_
too_
tire

® [nput: map each symbol to a query, a key, and a value (embeddings)
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Self-attention

Goal: an efficient model of the interaction among symbols in a sequence

Idea: model the interaction between each pair of words (in parallel)

Outputs | l I | I |
t t t

| Self-attention |

> [ > (] ()

5l 3 2| g| 5 5| 5| 3 2

sU= 8 s 8 sl2 =

Inputs | t-1 | t | | t+1 |

The_
animal_
didn_

t

cross_
the_
street_
because_
it_

was_
too_

tire

d_

The_
animal_
didn_

cross_
the_
street_
because_

was_
too_
tire

® [nput: map each symbol to a query, a key, and a value (embeddings)
e Attend: each word (as a query) interacts with all words (keys)
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Self-attention

Goal: an efficient model of the interaction among symbols in a sequence

Idea: model the interaction between each pair of words (in parallel)

Outputs | l I | I
1 4 t
| Self-attention
> [ > [ [
5l 3 2| g| 5 5| 5| 3 2
slLx| 8 3lx § 3l= =2
Inputs | t-1 | | t | | t+1 |

eeeeeee

® [nput: map each symbol to a query, a key, and a value (embeddings)
e Attend: each word (as a query) interacts with all words (keys)
e Qutput: contextualized representation of each word (weighted sum of values)
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Attention scoring functions
Design the function that measures relatedness between queries and keys:
a = softmax(a(q, k))
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Attention scoring functions
Design the function that measures relatedness between queries and keys:
a = softmax(a(q, k))

Dot-product attention

Scaled dot-product attention

a(q, k) = q- k/Vd
¢ /d: dimension of the key vector

® Avoids large attention weights that push the softmax function into regions of
small gradients
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Attention scoring functions
Design the function that measures relatedness between queries and keys:
a = softmax(a(q, k))

Dot-product attention

Scaled dot-product attention

a(q, k) = q- k/Vd
¢ /d: dimension of the key vector

® Avoids large attention weights that push the softmax function into regions of
small gradients

MLP attention
a(q, k) = u tanh(W(g; k])

38/55



Multi-head attention: motivation

Time flies like an arrow

e Each word attends to all other words in the sentence
e Which words should “like” attend to?
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Multi-head attention: motivation

Time flies like an arrow

e Each word attends to all other words in the sentence
e Which words should “like” attend to?

" ou

® Syntax: “flies”, “arrow” (a preposition)

"ou

® Semantics: “time”, “arrow” (a metaphor)
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Multi-head attention: motivation

Time flies like an arrow

Each word attends to all other words in the sentence
Which words should “like” attend to?

® Syntax: “flies”, “arrow” (a preposition)

® Semantics: “time”, “arrow” (a metaphor)

We want to represent different roles of a word in the sentence: need more than
a single embedding

Instantiation: multiple self-attention modules
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Multi-head attention

Sy

Attention Attention

[ Fc || Fc || Fc | [ Fc || Fc || Fc |

Queries Keys  Values

® Multiple attention modules: same architecture, different parameters
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Multi-head attention

Sy

Attention | Attention

t

[ Fc || Fc || Fc | [ Fc || Fc || Fc |

J

Queries Keys  Values

Multiple attention modules: same architecture, different parameters

A head: one set of attention outputs
Concatenate all heads (increased output dimension)
Linear projection to produce the final output
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Matrix representation:

Input

Embedding

Queries

Keys

Values

input mapping

Thinking

x: [

o+ [EEE

v

Machines
x. [
U we
[ WK
v2[L0 wv

Figure: From The lllustrated Transformer
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Matrix representation: attention weights

Scaled dot product attention

R - ||| - BB

Q KT
X WK K \"
HH= - - B softmax( 1 - @ )HEH
X wv Vv VE;;
B - - HH - HH

Figure: From The lllustrated Transformer
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Multi-head attention

1) This is our 2) We embed 3) Split into 8 heads. 4) Calculate attention  5) Concatenate the resulting ~ matrices,
input sentence* each word* We multiply X or using the resulting then multiply with weight matrix W° to
R with weight matrices  Q/K/V matrices produce the output of the layer
W@
X WK
Thinking 0 v Z
Machines Wo 0
W,
*In all encoders other than #0, WK Q 7
we don't need embedding. wqV 1 |
We start directly with the output Vi
of the encoder right below this one
R b s “ue
HHH i
WK Q
Wy { . Z7
- -

Figure: From The lllustrated Transformer
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Summary so far

® Sequence modeling

® |nput: a sequence of words
® Qutput: a sequence of contextualized embeddings for each word
® Models interaction among words
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Summary so far

® Sequence modeling
® |nput: a sequence of words
® Qutput: a sequence of contextualized embeddings for each word
® Models interaction among words
e Building blocks
® Feed-forward / fully-connected neural network
® Recurrent neural network
® Self-attention

“* Which of these can handle sequences of arbitrary length?
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Overview

Use self-attention as the core building block

Vastly increased scalability (model and data size) compared to recurrence-based
models

Initially designed for machine translation (next week)
® Attention is all you need. Vaswani et al., 2017.

The backbone of today's large-scale models

Extended to non-sequential data (e.g., images and molecules)
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Transformer block
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Figure: From The Illustrated
Transformer
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Transformer block

4 4
(’( Add & Normalize )x
:
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: ( Feed Forward ) ( Feed Forward )
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Figure: From The Illustrated
Transformer

e Multi-head self-attention

® Capture dependence among input
symbols
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Transformer block
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(’( Add & Normalize )
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Figure: From The Illustrated
Transformer

e Multi-head self-attention

® Capture dependence among input
symbols

® Positional encoding
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Transformer block
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Transformer block
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Transformer block
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Position embedding

Motivation: model word order in the input sequence

Solution: add a position embedding to each word

Embedding size

Input sequence matrix i
(X)

Sequence length

Postional encoding matrix

(P)

Position embedding:

® Encode absolute and relative positions of a word

® Same dimension as word embeddings
® |earned or deterministic
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Sinusoidal position embedding

Intuition: continuous approximation of binary encoding of positions (integers)

0: 00O
1: 001
2: 010
3: 011
4: 100
5: 101
6: 110
7: 111
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Sinusoidal position embedding

Intuition: continuous approximation of binary encoding of positions (integers)

P R, R, PR, OOOO
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P O R, OFPr ORr O

N O Ot W= O

100
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Sinusoidal position embedding

Intuition: continuous approximation of binary encoding of positions (integers)

N O Ot W= O

P R, R, PR, OOOO
= =, OOk, EK» OO
P O R, OFPr ORr O

20

Figure: From Amirhossein Kazemnejad's Blog

2i
Woj = W2j4+1 = 1/100007

100

[ sin(ws.t)

cos(w. t)

sin(ws. t)
cos(ws. t)

sin(wg/a- t)

| cos(wgya-t)

Jdx1
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Learned position embeddings

Sinusoidal position embedding:
® Not learnable
e (Can extrapolate to longer sequences but doesn’t work well
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Learned position embeddings

Sinusoidal position embedding:
® Not learnable
e (Can extrapolate to longer sequences but doesn’t work well

Learned absolute position embeddings (most common now):

® Consider each position as a word. Map positions to dense vectors:

den¢one-hot(p05)
e Column i of W is the embedding of position i

e Need to fix maximum position/length beforehand
e Cannot extrapolate to longer sequences
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Residual connection

Motivation:
® Gradient explosion/vanishing is not RNN-specific!
® |t happens to all very deep networks (which are hard to optimize).
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Residual connection

Motivation:
® Gradient explosion/vanishing is not RNN-specific!
® |t happens to all very deep networks (which are hard to optimize).

® |n principle, a deep network can always represent a shallow network (by setting
higher layers to identity functions), thus it should be at least as good as the
shallow network.

® How can we make it easier to recover the shallow solution?
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Residual connection
Solution: Deep Residual Learning for Image Recognition [He et al., 2015]

Activation function Actlvatlon function

fx) =g(x) +x

8 (X)

Weight layer

Activation function
Weight layer

Learn the residual layer: g(x) = f(x) — x

If the shallow network is better, set g(x) = 0 (easier to learn).
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Layer normalization
Layer Normalization [Ba et al., 2016]
e Normalize (zero mean, unit variance) across features
® letx =(xi,...,xq) be the input vector (e.g., word embedding, previous layer
output) )

AN Y

LayerNorm(x) = x

d

d
.1 R 1 A
where i = 5 E xj, 62= 5 E (xi — p)?
i=1 i=1
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Layer normalization
Layer Normalization [Ba et al., 2016]
e Normalize (zero mean, unit variance) across features

® letx =(xi,...,xq) be the input vector (e.g., word embedding, previous layer
output) X — 10
LayerNorm(x) = — M,
1< 1<
0 — 52 = )2
where i = EIZ;X,, 6° = d;(x, i)

Layer Normalization Batch/Power Normalization

e A deterministic transformation of the
input

Sentence Length
Sentence Length

¢ |Independent of train/inference and
batch size
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Residual connection and layer normalization in Transformer

ENCODER #1

® Add (residual connection) & Normalize (layer normalization) after each layer
® Position-wise feed-forward networks: same mapping for all positions

4 4

(’( Add & Normalize
v

é ( Feed Forward ) ( Feed Forward )
\ 4

......... A
z: 2
4 Add & No li A
,»H LayerNorm( BEEE‘ + BEEH)
B R
( Self-Attention
LY Y
NSl ... % AEEE
POSITIONAL <> <>
ENCODING () P
x+ [N pARE |

Thinking Machines
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Summary

We have seen two families of models for sequences modeling: RNNs and
Transformers

Both take a sequence of (discrete) symbols as input and output a sequence of
embeddings

They are often called encoders and are used to represent text
® Transformers are dominating today because of its scalability
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