Neural Sequence Modeling

He He

NEW YORK UNIVERSITY

September 20, 2023

Logistics

- HW1 due this Friday at 12pm.
- HW2 will be released this Friday.
- Textbook and readings

Table of Contents

Neural network basics

Recurrent neural networks

Self-attention

Tranformer

Feature learning

Linear predictor with handcrafted features: $h(x)=w \cdot \phi(x)$.
Can we learn features from data?

Feature learning

Linear predictor with handcrafted features: $h(x)=w \cdot \phi(x)$.
Can we learn features from data?
Example:

- Predict popularity of restaurants.
- Raw input: \#dishes, price, wine option, zip code, \#seats, size
- Decompose into subproblems:
$h_{1}([$ \#dishes, price, wine option $])=$ food quality
$h_{2}([$ zip code $])=$ walkable
$h_{3}([\#$ seats, size $])=$ nosie

Predefined subproblems

Learning intermediate features

Input	Hidden	Output
layer	layer	layer

Neural networks

Key idea: automatically learn the intermediate features.
Feature engineering: Manually specify $\phi(x)$ based on domain knowledge and learn the weights:

$$
f(x)=w^{T} \phi(x)
$$

Feature learning: Automatically learn both the features (K hidden units) and the weights:

$$
h(x)=\left[h_{1}(x), \ldots, h_{K}(x)\right], \quad f(x)=w^{T} h(x)
$$

Activation function

- How should we parametrize h_{i} 's?

Activation function

- How should we parametrize h_{i} 's?

$$
\begin{equation*}
h_{i}(x)=\sigma\left(v_{i}^{\top} x\right) \tag{1}
\end{equation*}
$$

- σ is the activation function.

Activation function

- How should we parametrize h_{i} 's?

$$
\begin{equation*}
h_{i}(x)=\sigma\left(v_{i}^{\top} x\right) \tag{1}
\end{equation*}
$$

- σ is the activation function.
- What might be some activation functions we want to use?

Activation function

- How should we parametrize h_{i} 's?

$$
\begin{equation*}
h_{i}(x)=\sigma\left(v_{i}^{\top} x\right) \tag{1}
\end{equation*}
$$

- σ is the activation function.
- What might be some activation functions we want to use?
- sign function? Non-differentiable.

Activation function

- How should we parametrize h_{i} 's?

$$
\begin{equation*}
h_{i}(x)=\sigma\left(v_{i}^{\top} x\right) \tag{1}
\end{equation*}
$$

- σ is the activation function.
- What might be some activation functions we want to use?
- sign function? Non-differentiable.
- Differentiable approximations: sigmoid functions.
- E.g., logistic function, hyperbolic tangent function, ReLU

Activation function

- How should we parametrize h_{i} 's?

$$
\begin{equation*}
h_{i}(x)=\sigma\left(v_{i}^{\top} x\right) \tag{1}
\end{equation*}
$$

- σ is the activation function.
- What might be some activation functions we want to use?
- sign function? Non-differentiable.
- Differentiable approximations: sigmoid functions.
- E.g., logistic function, hyperbolic tangent function, ReLU
- Non-linearity

Activation Functions

- The hyperbolic tangent is a common activation function:

$$
\sigma(x)=\tanh (x)
$$

Activation Functions

- More recently, the rectified linear (ReLU) function has been very popular:

$$
\sigma(x)=\max (0, x)
$$

- Much faster to calculate the function value and its derivatives.
- Work well empirically.

Multilayer perceptron / Feed-forward neural networks

- Wider: more hidden units.
- Deeper: more hidden layers.

Multilayer Perceptron: Standard Recipe

- Each hidden layer takes the output $o \in \mathbb{R}^{m}$ of previous layer and produces

$$
o^{(j)}=h^{(j)}\left(o^{(j-1)}\right)=\sigma\left(W^{(j)} o^{(j-1)}+b^{(j)}\right), \text { for } j=2, \ldots, L
$$

where $W^{(j)} \in \mathbb{R}^{m \times m}, b^{(j)} \in \mathbb{R}^{m}$.

Multilayer Perceptron: Standard Recipe

- Each hidden layer takes the output $o \in \mathbb{R}^{m}$ of previous layer and produces

$$
o^{(j)}=h^{(j)}\left(o^{(j-1)}\right)=\sigma\left(W^{(j)} o^{(j-1)}+b^{(j)}\right), \text { for } j=2, \ldots, L
$$

where $W^{(j)} \in \mathbb{R}^{m \times m}, b^{(j)} \in \mathbb{R}^{m}$.

- The output layer is an affine mapping (no activation function):

$$
a\left(o^{(L)}\right)=W^{(L+1)} o^{(L)}+b^{(L+1)}
$$

where $W^{(L+1)} \in \mathbb{R}^{k \times m}$ and $b^{(L+1)} \in \mathbb{R}^{k}$.

Multilayer Perceptron: Standard Recipe

- Each hidden layer takes the output $o \in \mathbb{R}^{m}$ of previous layer and produces

$$
o^{(j)}=h^{(j)}\left(o^{(j-1)}\right)=\sigma\left(W^{(j)} o^{(j-1)}+b^{(j)}\right), \text { for } j=2, \ldots, L
$$

where $W^{(j)} \in \mathbb{R}^{m \times m}, b^{(j)} \in \mathbb{R}^{m}$.

- The output layer is an affine mapping (no activation function):

$$
a\left(o^{(L)}\right)=W^{(L+1)} o^{(L)}+b^{(L+1)}
$$

where $W^{(L+1)} \in \mathbb{R}^{k \times m}$ and $b^{(L+1)} \in \mathbb{R}^{k}$.

- The full neural network function is given by the composition of layers:

$$
\begin{equation*}
f(x)=\left(a \circ h^{(L)} \circ \cdots \circ h^{(1)}\right)(x) \tag{2}
\end{equation*}
$$

Computation graphs

(adpated from David Rosenberg's slides)

Function as a node that takes in inputs and produces outputs.

- Typical computation graph:
- Broken out into components:

Compose multiple functions

(adpated from David Rosenberg's slides)

Compose two functions $g: \mathbb{R}^{p} \rightarrow \mathbb{R}^{n}$ and $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}: c=f(g(a))$

Compose multiple functions

(adpated from David Rosenberg's slides)
Compose two functions $g: \mathbb{R}^{p} \rightarrow \mathbb{R}^{n}$ and $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}: c=f(g(a))$

- Derivative: How does change in a_{j} affect c_{i} ?

Compose multiple functions

(adpated from David Rosenberg's slides)
Compose two functions $g: \mathbb{R}^{p} \rightarrow \mathbb{R}^{n}$ and $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}: c=f(g(a))$

- Derivative: How does change in a_{j} affect c_{i} ?

$$
\frac{\partial c_{i}}{\partial a_{j}}=\sum_{k=1}^{n} \frac{\partial c_{i}}{\partial b_{k}} \frac{\partial b_{k}}{\partial a_{j}}
$$

Compose multiple functions

(adpated from David Rosenberg's slides)
Compose two functions $g: \mathbb{R}^{p} \rightarrow \mathbb{R}^{n}$ and $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}: c=f(g(a))$

- Derivative: How does change in a_{j} affect c_{i} ?

$$
\frac{\partial c_{i}}{\partial a_{j}}=\sum_{k=1}^{n} \frac{\partial c_{i}}{\partial b_{k}} \frac{\partial b_{k}}{\partial a_{j}}
$$

- Visualize the multivariable chain rule:
- Sum changes induced on all paths from a_{j} to c_{i}.
- Changes on one path is the product of changes across each node.

Computation graph example

(adpated from David Rosenberg's slides)

(What is this graph computing?)

Computation graph example

(adpated from David Rosenberg's slides)

(What is this graph computing?)

$$
\begin{aligned}
\frac{\partial \ell}{\partial b} & =\frac{\partial \ell}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial b}=(-2 r)(1)=-2 r \\
\frac{\partial \ell}{\partial w_{j}} & =\frac{\partial \ell}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial w_{j}}=(-2 r) x_{j}=-2 r x_{j}
\end{aligned}
$$

Computation graph example

(adpated from David Rosenberg's slides)

(What is this graph computing?)

$$
\begin{aligned}
\frac{\partial \ell}{\partial b} & =\frac{\partial \ell}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial b}=(-2 r)(1)=-2 r \\
\frac{\partial \ell}{\partial w_{j}} & =\frac{\partial \ell}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial w_{j}}=(-2 r) x_{j}=-2 r x_{j}
\end{aligned}
$$

Computing the derivatives in certain order allows us to save compute!

Computation graph example

(adpated from David Rosenberg's slides)

(What is this graph computing?)

$$
\begin{aligned}
\frac{\partial \ell}{\partial r} & =2 r \\
\frac{\partial \ell}{\partial \hat{y}} & =\frac{\partial \ell}{\partial r} \frac{\partial r}{\partial \hat{y}}=(2 r)(-1)=-2 r \\
\frac{\partial \ell}{\partial b} & =\frac{\partial \ell}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial b}=(-2 r)(1)=-2 r \\
\frac{\partial \ell}{\partial w_{j}} & =\frac{\partial \ell}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial w_{j}}=(-2 r) x_{j}=-2 r x_{j}
\end{aligned}
$$

Computing the derivatives in certain order allows us to save compute!

Backpropogation

Backpropogation $=$ chain rule + dynamic programming on a computation graph
Forward pass

- Topological order: every node appears before its children
- For each node, compute the output given the input (from its parents).

Backpropogation

Backward pass

- Reverse topological order: every node appear after its children
- For each node, compute the partial derivative of its output w.r.t. its input, multiplied by the partial derivative from its children (chain rule).

Summary

Key idea in neural nets: feature/representation learning
Building blocks:

- Input layer: raw features (no learnable parameters)
- Hidden layer: perceptron + nonlinear activation function
- Output layer: linear (+ transformation, e.g. softmax)

Optimization:

- Optimize by SGD (implemented by back-propogation)
- Objective is non-convex, may not reach a global minimum

Table of Contents

Neural network basics

Recurrent neural networks

Self-attention

Tranformer

Overview

Problem setup: given an input sequence, come up with a (neural network) model that outputs a representation of the sequence for downstream tasks (e.g., classification)

Overview

Problem setup: given an input sequence, come up with a (neural network) model that outputs a representation of the sequence for downstream tasks (e.g., classification)

Key challenge: how to model interaction among words?

Overview

Problem setup: given an input sequence, come up with a (neural network) model that outputs a representation of the sequence for downstream tasks (e.g., classification)

Key challenge: how to model interaction among words?
Approach:

- Aggregation (pooling word embeddings)
- Recurrence
- Self-attention

Feed-forward neural network for text classification

Feed-forward neural network for text classification

Where is the interaction between words modeled?
How to adapt the network to handle sequences with arbitrary length?

Recurrent neural networks

- Goal: compute representation of sequence $x_{1: T}$ of varying lengths
- Idea: combine new symbols with previous symbols recurrently

Recurrent neural networks

- Goal: compute representation of sequence $x_{1: T}$ of varying lengths
- Idea: combine new symbols with previous symbols recurrently
- Update the representation, i.e. hidden states h_{t}, recurrently

$$
h_{t}=f\left(h_{t-1}, x_{t}\right)
$$

- Output from previous time step is the input to the current time step
- Apply the same transformation f at each time step

Figure: 9.1 from d2l.ai

Forward pass

A deep neural network with shared weights in each layer

Forward pass

$$
\begin{aligned}
x_{t} & =f_{\text {embed }}\left(s_{t}\right) \\
& =W_{e} \phi_{\text {one-hot }}\left(s_{t}\right)
\end{aligned}
$$

A deep neural network with shared weights in each layer

Forward pass

$$
\begin{aligned}
x_{t} & =f_{\text {embed }}\left(s_{t}\right) \\
& =W_{e} \phi_{\text {one-hot }}\left(s_{t}\right) \\
h_{t} & =f_{\text {state }}\left(x_{t}, h_{t-1}\right) \\
& =\sigma\left(W_{h h} h_{t-1}+W_{i h} x_{t}+b_{h}\right)
\end{aligned}
$$

A deep neural network with shared weights in each layer

Forward pass

$$
\begin{aligned}
x_{t} & =f_{\text {embed }}\left(s_{t}\right) \\
& =W_{e} \phi_{\text {one-hot }}\left(s_{t}\right) \\
h_{t} & =f_{\text {state }}\left(x_{t}, h_{t-1}\right) \\
& =\sigma\left(W_{h h} h_{t-1}+W_{\text {ih }} x_{t}+b_{h}\right) \\
o_{t} & =f_{\text {output }}\left(h_{t}\right) \\
& =W_{h o} h_{t}+b_{o}
\end{aligned}
$$

A deep neural network with shared weights in each layer

Forward pass

Use o_{t} 's as features

$$
\begin{aligned}
x_{t} & =f_{\text {embed }}\left(s_{t}\right) \\
& =W_{e} \phi_{\text {one-hot }}\left(s_{t}\right) \\
h_{t} & =f_{\text {state }}\left(x_{t}, h_{t-1}\right) \\
& =\sigma\left(W_{h h} h_{t-1}+W_{\text {ih }} x_{t}+b_{h}\right) \\
o_{t} & =f_{\text {output }}\left(h_{t}\right) \\
& =W_{h o} h_{t}+b_{o}
\end{aligned}
$$

A deep neural network with shared weights in each layer

Forward pass

Use o_{t} 's as features

A deep neural network with shared weights in each layer

$$
\begin{aligned}
x_{t} & =f_{\text {embed }}\left(s_{t}\right) \\
& =W_{e} \phi_{\text {one-hot }}\left(s_{t}\right) \\
h_{t} & =f_{\text {state }}\left(x_{t}, h_{t-1}\right) \\
& =\sigma\left(W_{h h} h_{t-1}+W_{\text {ih }} x_{t}+b_{h}\right) \\
o_{t} & =f_{\text {output }}\left(h_{t}\right) \\
& =W_{h o} h_{t}+b_{o}
\end{aligned}
$$

Which computation can be parallelized?

Backward pass

Given the loss $\ell_{t}\left(o_{t}, y_{t}\right)$, compute the gradient with respect to $W_{h h}$.

$$
\frac{\partial \ell_{t}}{\partial W_{h h}}=
$$

Backward pass

Given the loss $\ell_{t}\left(o_{t}, y_{t}\right)$, compute the gradient with respect to $W_{h h}$.

$$
\frac{\partial \ell_{t}}{\partial W_{h h}}=\frac{\partial \ell_{t}}{\partial o_{t}} \frac{\partial o_{t}}{\partial h_{t}} \frac{\partial h_{t}}{\partial W_{h h}}
$$

Backward pass

Given the loss $\ell_{t}\left(o_{t}, y_{t}\right)$, compute the gradient with respect to $W_{h h}$.

$$
\frac{\partial \ell_{t}}{\partial W_{h h}}=\frac{\partial \ell_{t}}{\partial o_{t}} \frac{\partial o_{t}}{\partial h_{t}} \frac{\partial h_{t}}{\partial W_{h h}}
$$

Computation graph of $h_{t}: h_{t}=\sigma\left(W_{h h} h_{t-1}+W_{h i} x_{t}+b\right)$

Backpropagation through time

Problem with standard backpropagation:

- Gradient involves repeated multiplication of $W_{h h}$
- Gradient will vanish / explode (depending on the eigenvalues of $W_{h h}$)

Backpropagation through time

Problem with standard backpropagation:

- Gradient involves repeated multiplication of $W_{h h}$
- Gradient will vanish / explode (depending on the eigenvalues of $W_{h h}$)

Quick fixes:

- Reduce the number of repeated multiplication: truncate after k steps (h_{t-k} has no influence on h_{t})
- Limit the norm of the gradient in each step: gradient clipping (can only mitigate explosion)

Long-short term memory (LSTM)

Vanilla RNN: always update the hidden state

- Cannot handle long range dependency due to gradient vanishing

Long-short term memory (LSTM)

Vanilla RNN: always update the hidden state

- Cannot handle long range dependency due to gradient vanishing

LSTM: learn when to update the hidden state

- First successful solution to the gradient vanishing and explosion problem

Long-short term memory (LSTM)

Vanilla RNN: always update the hidden state

- Cannot handle long range dependency due to gradient vanishing

LSTM: learn when to update the hidden state

- First successful solution to the gradient vanishing and explosion problem

Key idea is to use a gating mechanism: multiplicative weights that modulate another variable

- How much should the new input affect the state?
- When to ignore new inputs?
- How much should the state affect the output?

Long-short term memory (LSTM) parametrization

Figure: 10.1.2 from d2l.ai

Update with the new input x_{t} (same as in vanilla RNN)

$$
\tilde{c}_{t}=\tanh \left(W_{x c} x_{t}+W_{h c} h_{t-1}+b_{c}\right) \text { new cell content }
$$

Long-short term memory (LSTM) parametrization

Figure: 10.1.2 from d2l.ai

Update with the new input x_{t} (same as in vanilla RNN)

$$
\tilde{c}_{t}=\tanh \left(W_{x c} x_{t}+W_{h c} h_{t-1}+b_{c}\right) \text { new cell content }
$$

Should we update with the new input x_{t} ?

Long-short term memory (LSTM) parametrization

Figure: 10.1.3 from d2l.ai
Choose between \tilde{c}_{t} (update) and c_{t-1} (no update): (\odot : elementwise product)

$$
\text { memory cell } \quad c_{t}=i_{t} \odot \tilde{c}_{t}+f_{t} \odot c_{t-1}
$$

- f_{t} : proportion of the old state (preserve \uparrow or erase \downarrow the old memory)
- i_{t} : proportion of the new state (write \uparrow or ignore \downarrow the new input)
- What is c_{t} if $f_{t}=1$ and $i_{t}=0$?

Long-short term memory (LSTM) parametrization

Input gate and forget gate depends on data:

$$
\begin{aligned}
i_{t} & =\operatorname{sigmoid}\left(W_{x i} x_{t}+W_{h i} h_{t-1}+b_{i}\right) \\
f_{t} & =\operatorname{sigmoid}\left(W_{x f} x_{t}+W_{h f} h_{t-1}+b_{f}\right)
\end{aligned}
$$

Each coordinate is between 0 and 1 .

Long-short term memory (LSTM) parametrization

Figure: 10.1.4 from d2l.ai

How much should the memory cell state influence the rest of the network:

$$
\begin{aligned}
& h_{t}=o_{t} \odot c_{t} \\
& o_{t}=\operatorname{sigmoid}\left(W_{x o} x_{t}+W_{h o} h_{t-1}+b_{o}\right)
\end{aligned}
$$

c_{t} may accumulate information without impact the network if o_{t} is close to 0

How does LSTM solve gradient vanishing / explosion?

Intuition: gating allows the network to learn to control how much gradient should vanish.

- Vanilla RNN: gradient depends on repeated multiplication of the same weight matrix
- LSTM: gradient depends on repeated multiplication of some quantity that depends on the data (values of input and forget gates)
- So the network can learn to reset or update the gradient depending on whether there is long-range dependencies in the data.

Table of Contents

Neural network basics
Recurrent neural networks

Self-attention

Tranformer

Improve the efficiency of RNN

Recall that our goal is to come up with a good respresentation of a sequence of words.

RNN:

- Past words influence the sentence representation through recurrent update
- Sequential computation O (sequence length), hard to scale

Figure: 11.6.1 from d2l.ai

Improve the efficiency of RNN

Recall that our goal is to come up with a good respresentation of a sequence of words.

RNN:

- Past words influence the sentence representation through recurrent update
- Sequential computation O (sequence length), hard to scale

Can we handle dependency more efficiently?

- Direct interaction between any pair of words in the sequence
- Parallelizable computation

Model interaction between words

Time flies like an arrow: Which word(s) is most related to "time"?

Model interaction between words

Time flies like an arrow: Which word(s) is most related to "time"?
A database approach:

query	keys arrow	values
	flies	flies
	like	like
time	an	an
	time	arrow

Model interaction between words

Time flies like an arrow: Which word(s) is most related to "time"?
A database approach:

query keys values

arrow time
flies flies
like like
an an
time time arrow
Output: arrow

Model interaction between words

Time flies like an arrow: Which word(s) is most related to "time"?
A database approach:

| query | keys
 arrow | values | time |
| :--- | :--- | :--- | :--- |\quad - Relatedness should not be hard-coded

Output: arrow

Model interaction between words

Time flies like an arrow: Which word(s) is most related to "time"?
A database approach:

| query | keys
 arrow | values | time |
| :--- | :--- | :--- | :--- | | - Relatedness should not be hard-coded |
| :--- |
| flies | flies \quad Keys for values should be learned

Output: arrow

Model interaction between words

Time flies like an arrow: Which word(s) is most related to "time"?
A database approach:

query	keys arrow	values	timitations:
	flies	flies	- Relatedness should not be hard-coded
	like	like	Keys for values should be learned
an	an	- A word is related to multiple words in a	
time	time	arrow	sentence

Output: arrow

Model interaction between words

Time flies like an arrow: Which word(s) is most related to "time"?
A database approach:

| query | keys
 arrow | values | time |
| :--- | :--- | :--- | :--- |\quad| - Relatedness should not be hard-coded |
| :--- |

Output: arrow

Model interaction between words using a "soft" database

Figure: 11.1.1 from d2l.ai

- Attention weights $\alpha\left(q, k_{i}\right)$: how likely is q matched to k_{i}
- Attention pooling: combine v_{i} 's according to their "relatedness" to the query

Model interaction between words using a "soft" database

Figure: 11.3.1 from d2l.ai

- Model attention weights as a distribution: $\alpha=\operatorname{softmax}\left(a\left(q, k_{1}\right), \ldots, a\left(q, k_{m}\right)\right)$
- Output a weighted combination of values: $o_{i}=\sum_{i=1}^{m} \alpha\left(q, k_{i}\right) v_{i}$

Self-attention

Goal: an efficient model of the interaction among symbols in a sequence
Idea: model the interaction between each pair of words (in parallel)

Self-attention

Goal: an efficient model of the interaction among symbols in a sequence
Idea: model the interaction between each pair of words (in parallel)

The_	
animal_	The__
animal_	
didn__	

- Input: map each symbol to a query, a key, and a value (embeddings)

Self-attention

Goal: an efficient model of the interaction among symbols in a sequence
Idea: model the interaction between each pair of words (in parallel)

The_	
animal_	The__
animal_	
didn__	

- Input: map each symbol to a query, a key, and a value (embeddings)
- Attend: each word (as a query) interacts with all words (keys)

Self-attention

Goal: an efficient model of the interaction among symbols in a sequence
Idea: model the interaction between each pair of words (in parallel)

The_	
animal_	The__
animal_	
didn__	

- Input: map each symbol to a query, a key, and a value (embeddings)
- Attend: each word (as a query) interacts with all words (keys)
- Output: contextualized representation of each word (weighted sum of values)

Attention scoring functions

Design the function that measures relatedness between queries and keys: $\alpha=\operatorname{softmax}(a(q, k))$

Attention scoring functions

Design the function that measures relatedness between queries and keys: $\alpha=\operatorname{softmax}(a(q, k))$

Dot-product attention

$$
a(q, k)=q \cdot k
$$

Attention scoring functions

Design the function that measures relatedness between queries and keys: $\alpha=\operatorname{softmax}(a(q, k))$

Dot-product attention

$$
a(q, k)=q \cdot k
$$

Scaled dot-product attention

$$
a(q, k)=q \cdot k / \sqrt{d}
$$

- \sqrt{d} : dimension of the key vector
- Avoids large attention weights that push the softmax function into regions of small gradients

Attention scoring functions

Design the function that measures relatedness between queries and keys: $\alpha=\operatorname{softmax}(a(q, k))$

Dot-product attention

$$
a(q, k)=q \cdot k
$$

Scaled dot-product attention

$$
a(q, k)=q \cdot k / \sqrt{d}
$$

- \sqrt{d} : dimension of the key vector
- Avoids large attention weights that push the softmax function into regions of small gradients

MLP attention

$$
a(q, k)=u^{T} \tanh (W[q ; k])
$$

Multi-head attention: motivation

Time flies like an arrow

- Each word attends to all other words in the sentence
- Which words should "like" attend to?

Multi-head attention: motivation

Time flies like an arrow

- Each word attends to all other words in the sentence
- Which words should "like" attend to?
- Syntax: "flies", "arrow" (a preposition)
- Semantics: "time", "arrow" (a metaphor)

Multi-head attention: motivation

Time flies like an arrow

- Each word attends to all other words in the sentence
- Which words should "like" attend to?
- Syntax: "flies", "arrow" (a preposition)
- Semantics: "time", "arrow" (a metaphor)
- We want to represent different roles of a word in the sentence: need more than a single embedding
- Instantiation: multiple self-attention modules

Multi-head attention

- Multiple attention modules: same architecture, different parameters

Multi-head attention

- Multiple attention modules: same architecture, different parameters
- A head: one set of attention outputs

Multi-head attention

- Multiple attention modules: same architecture, different parameters
- A head: one set of attention outputs
- Concatenate all heads (increased output dimension)
- Linear projection to produce the final output

Matrix representation: input mapping

Input
Embedding

Queries $\quad \mathrm{q}_{1} \square \square \square \quad \mathrm{q}_{2} \square \square \square$

Keys

Values
Thinking

Wv

Figure: From The Illustrated Transformer

Matrix representation: attention weights

Scaled dot product attention

Multi-head attention

\author{

1) This is our
 2) We embed
 input sentence* each word*
}
2) Split into 8 heads. We multiply X or
R with weight matrices
3) Calculate attention using the resulting Q/K/V matrices
4) Concatenate the resulting Z matrices, then multiply with weight matrix W° to produce the output of the layer

Thinking Machines

* In all encoders other than \#0, we don't need embedding. We start directly with the output of the encoder right below this one

W_{1} Q

\ldots

Z

Figure: From The Illustrated Transformer

Summary so far

- Sequence modeling
- Input: a sequence of words
- Output: a sequence of contextualized embeddings for each word
- Models interaction among words

Summary so far

- Sequence modeling
- Input: a sequence of words
- Output: a sequence of contextualized embeddings for each word
- Models interaction among words
- Building blocks
- Feed-forward / fully-connected neural network
- Recurrent neural network
- Self-attention

Summary so far

- Sequence modeling
- Input: a sequence of words
- Output: a sequence of contextualized embeddings for each word
- Models interaction among words
- Building blocks
- Feed-forward / fully-connected neural network
- Recurrent neural network
- Self-attention
.0. Which of these can handle sequences of arbitrary length?

Table of Contents

Neural network basics
Recurrent neural networks
\section*{Self-attention}

Tranformer

Overview

- Use self-attention as the core building block
- Vastly increased scalability (model and data size) compared to recurrence-based models
- Initially designed for machine translation (next week)
- Attention is all you need. Vaswani et al., 2017.
- The backbone of today's large-scale models
- Extended to non-sequential data (e.g., images and molecules)

Transformer block

- Multi-head self-attention

Figure: From The Illustrated
Transformer

Transformer block

- Multi-head self-attention
- Capture dependence among input symbols

Transformer block

- Multi-head self-attention
- Capture dependence among input symbols
- Positional encoding

Figure: From The Illustrated
Transformer

Transformer block

- Multi-head self-attention
- Capture dependence among input symbols
- Positional encoding
- Capture the order of symbols

Figure: From The Illustrated
Transformer

Transformer block

- Multi-head self-attention
- Capture dependence among input symbols
- Positional encoding
- Capture the order of symbols
- Residual connection and layer normalization

Figure: From The Illustrated
Transformer

Transformer block

- Multi-head self-attention
- Capture dependence among input symbols
- Positional encoding
- Capture the order of symbols
- Residual connection and layer normalization
- More efficient and better optimization

Figure: From The Illustrated

Transformer

Position embedding

Motivation: model word order in the input sequence Solution: add a position embedding to each word

Position embedding:

- Encode absolute and relative positions of a word
- Same dimension as word embeddings
- Learned or deterministic

Sinusoidal position embedding

Intuition: continuous approximation of binary encoding of positions (integers)

$0:$	0	0	0	0
$1:$	0	0	0	1
$2:$	0	0	1	0
$3:$	0	0	1	1
$4:$	0	1	0	0
$5:$	0	1	0	1
$6:$	0	1	1	0
$7:$	0	1	1	1

Sinusoidal position embedding

Intuition: continuous approximation of binary encoding of positions (integers)

Sinusoidal position embedding

Intuition: continuous approximation of binary encoding of positions (integers)

Figure: From Amirhossein Kazemnejad's Blog

$$
\omega_{2 i}=\omega_{2 i+1}=1 / 100000^{\frac{2 i}{d}}
$$

Learned position embeddings

Sinusoidal position embedding:

- Not learnable
- Can extrapolate to longer sequences but doesn't work well

Learned position embeddings

Sinusoidal position embedding:

- Not learnable
- Can extrapolate to longer sequences but doesn't work well

Learned absolute position embeddings (most common now):

- Consider each position as a word. Map positions to dense vectors: $W_{d \times n} \phi_{\text {one-hot }}$ (pos)
- Column i of W is the embedding of position i

Learned position embeddings

Sinusoidal position embedding:

- Not learnable
- Can extrapolate to longer sequences but doesn't work well

Learned absolute position embeddings (most common now):

- Consider each position as a word. Map positions to dense vectors: $W_{d \times n} \phi_{\text {one-hot }}$ (pos)
- Column i of W is the embedding of position i
- Need to fix maximum position/length beforehand
- Cannot extrapolate to longer sequences

Residual connection

Motivation:

- Gradient explosion/vanishing is not RNN-specific!
- It happens to all very deep networks (which are hard to optimize).

Residual connection

Motivation:

- Gradient explosion/vanishing is not RNN-specific!
- It happens to all very deep networks (which are hard to optimize).
- In principle, a deep network can always represent a shallow network (by setting higher layers to identity functions), thus it should be at least as good as the shallow network.
- How can we make it easier to recover the shallow solution?

Residual connection

Solution: Deep Residual Learning for Image Recognition [He et al., 2015]

Learn the residual layer: $g(x)=f(x)-x$
If the shallow network is better, set $g(x)=0$ (easier to learn).

Layer normalization

Layer Normalization [Ba et al., 2016]

- Normalize (zero mean, unit variance) across features
- Let $x=\left(x_{1}, \ldots, x_{d}\right)$ be the input vector (e.g., word embedding, previous layer output)

$$
\operatorname{LayerNorm}(x)=\frac{x-\hat{\mu}}{\hat{\sigma}}
$$

$$
\text { where } \hat{\mu}=\frac{1}{d} \sum_{i=1}^{d} x_{i}, \quad \hat{\sigma}^{2}=\frac{1}{d} \sum_{i=1}^{d}\left(x_{i}-\hat{\mu}\right)^{2}
$$

Layer normalization

Layer Normalization [Ba et al., 2016]

- Normalize (zero mean, unit variance) across features
- Let $x=\left(x_{1}, \ldots, x_{d}\right)$ be the input vector (e.g., word embedding, previous layer output)

$$
\operatorname{LayerNorm}(x)=\frac{x-\hat{\mu}}{\hat{\sigma}}
$$

$$
\text { where } \hat{\mu}=\frac{1}{d} \sum_{i=1}^{d} x_{i}, \quad \hat{\sigma}^{2}=\frac{1}{d} \sum_{i=1}^{d}\left(x_{i}-\hat{\mu}\right)^{2}
$$

Layer Normalization

Batch/Power Normalization

- A deterministic transformation of the input
- Independent of train/inference and batch size

Residual connection and layer normalization in Transformer

- Add (residual connection) \& Normalize (layer normalization) after each layer
- Position-wise feed-forward networks: same mapping for all positions

Summary

- We have seen two families of models for sequences modeling: RNNs and Transformers
- Both take a sequence of (discrete) symbols as input and output a sequence of embeddings
- They are often called encoders and are used to represent text
- Transformers are dominating today because of its scalability

