
Neural Sequence Modeling

He He

September 20, 2023

1 / 55



Logistics

• HW1 due this Friday at 12pm.
• HW2 will be released this Friday.
• Textbook and readings
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Feature learning

Linear predictor with handcrafted features: h(x) = w · ϕ(x).

Can we learn features from data?

Example:
• Predict popularity of restaurants.
• Raw input: #dishes, price, wine option, zip code, #seats, size
• Decompose into subproblems:

h1([#dishes, price, wine option]) = food quality

h2([zip code]) = walkable

h3([#seats, size]) = nosie
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Predefined subproblems
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Learning intermediate features
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Neural networks

Key idea: automatically learn the intermediate features.

Feature engineering: Manually specify ϕ(x) based on domain knowledge and learn
the weights:

f (x) = wTϕ(x).

Feature learning: Automatically learn both the features (K hidden units) and the
weights:

h(x) = [h1(x), . . . , hK (x)] , f (x) = wTh(x)
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Activation function

• How should we parametrize hi ’s?

hi (x) = σ(vTi x). (1)

• σ is the activation function.
• What might be some activation functions we want to use?

• sign function? Non-differentiable.
• Differentiable approximations: sigmoid functions.

• E.g., logistic function, hyperbolic tangent function, ReLU

• Non-linearity
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Activation Functions
• The hyperbolic tangent is a common activation function:

σ(x) = tanh (x) .
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Activation Functions
• More recently, the rectified linear (ReLU) function has been very popular:

σ(x) = max(0, x).

• Much faster to calculate the function value and its derivatives.
• Work well empirically.

10 / 55



Multilayer perceptron / Feed-forward neural networks
• Wider: more hidden units.
• Deeper: more hidden layers.

x1

x2

...

xd−1

xd

score

Hidden
layers

Input
layer

Output
layer
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Multilayer Perceptron: Standard Recipe

• Each hidden layer takes the output o ∈ Rm of previous layer and produces

o(j) = h(j)(o(j−1)) = σ
(
W (j)o(j−1) + b(j)

)
, for j = 2, . . . , L

where W (j) ∈ Rm×m, b(j) ∈ Rm.

• The output layer is an affine mapping (no activation function):

a(o(L)) = W (L+1)o(L) + b(L+1),

where W (L+1) ∈ Rk×m and b(L+1) ∈ Rk .
• The full neural network function is given by the composition of layers:

f (x) =
(
a ◦ h(L) ◦ · · · ◦ h(1)

)
(x) (2)
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Computation graphs
(adpated from David Rosenberg’s slides)

Function as a node that takes in inputs and produces outputs.

• Typical computation graph: • Broken out into components:
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Compose multiple functions
(adpated from David Rosenberg’s slides)

Compose two functions g : Rp → Rn and f : Rn → Rm: c = f (g(a))

• Derivative: How does change in aj affect ci?

∂ci
∂aj

=
n∑

k=1

∂ci
∂bk

∂bk
∂aj

.

• Visualize the multivariable chain rule:
• Sum changes induced on all paths from aj to ci .
• Changes on one path is the product of changes across each node.
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Computation graph example
(adpated from David Rosenberg’s slides)

(What is this graph computing?)

∂ℓ

∂r
= 2r

∂ℓ

∂ŷ
=

∂ℓ

∂r

∂r

∂ŷ
= (2r) (−1) = −2r

∂ℓ

∂b
=

∂ℓ

∂ŷ

∂ŷ

∂b
= (−2r) (1) = −2r

∂ℓ

∂wj
=

∂ℓ

∂ŷ

∂ŷ

∂wj
= (−2r) xj = −2rxj

Computing the derivatives in certain order allows us to save compute!
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∂ŷ

∂b
= (−2r) (1) = −2r

∂ℓ

∂wj
=

∂ℓ

∂ŷ

∂ŷ

∂wj
= (−2r) xj = −2rxj

Computing the derivatives in certain order allows us to save compute!

15 / 55



Computation graph example
(adpated from David Rosenberg’s slides)

(What is this graph computing?)

∂ℓ

∂r
= 2r

∂ℓ

∂ŷ
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∂ŷ

∂b
= (−2r) (1) = −2r

∂ℓ

∂wj
=

∂ℓ

∂ŷ
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∂ŷ

∂wj
= (−2r) xj = −2rxj

Computing the derivatives in certain order allows us to save compute!

15 / 55



Backpropogation

Backpropogation = chain rule + dynamic programming on a computation graph

Forward pass

• Topological order: every node appears before its children
• For each node, compute the output given the input (from its parents).

. . . fi fj . . .

a b = fi (a) c = fj(b)
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Backpropogation

Backward pass

• Reverse topological order: every node appear after its children
• For each node, compute the partial derivative of its output w.r.t. its input,

multiplied by the partial derivative from its children (chain rule).

. . . fi fj . . .

a b = fi (a) c = fj(b)

gi = gj · ∂b
∂a = ∂J

∂a gj =
∂J
∂b
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Summary

Key idea in neural nets: feature/representation learning

Building blocks:
• Input layer: raw features (no learnable parameters)
• Hidden layer: perceptron + nonlinear activation function
• Output layer: linear (+ transformation, e.g. softmax)

Optimization:
• Optimize by SGD (implemented by back-propogation)
• Objective is non-convex, may not reach a global minimum
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Overview

Problem setup: given an input sequence, come up with a (neural network) model
that outputs a representation of the sequence for downstream tasks (e.g.,
classification)

Key challenge: how to model interaction among words?

Approach:
• Aggregation (pooling word embeddings)
• Recurrence
• Self-attention
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Feed-forward neural network for text classification

a

φone-hot(x)

W11x

good

φone-hot(x)

W12x

book

φone-hot(x)

W13x

[x1;x2;x3]

σ(W2x + b)

softmax(Wox + b)

input words

one-hot embedding

dense embedding

concatenation

“merge”

classification

Where is the interaction between words modeled?
How to adapt the network to handle sequences with arbitrary length?
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Recurrent neural networks
• Goal: compute representation of sequence x1:T of varying lengths
• Idea: combine new symbols with previous symbols recurrently

• Update the representation, i.e. hidden states ht , recurrently

ht = f (ht−1, xt)

• Output from previous time step is the input to the current time step
• Apply the same transformation f at each time step

Figure: 9.1 from d2l.ai

22 / 55
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Forward pass

Use ot ’s as features

h0 fstate

fembed

a

foutput

x1

h1

o1

fstate

fembed

good

foutput

x2

h2

o2

fstate

fembed

book

foutput

x3

h3

o3

. . .h1 h2 h3

A deep neural network with shared weights in each
layer

xt = fembed(st)

= Weϕone-hot(st)

ht = fstate(xt , ht−1)

= σ(Whhht−1 +Wihxt + bh)

ot = foutput(ht)

= Whoht + bo

Which computation can be
parallelized?
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Backward pass

Given the loss ℓt(ot , yt), compute the gradient with respect to Whh.

∂ℓt
∂Whh

=

∂ℓt
∂ot

∂ot
∂ht

∂ht
∂Whh

Computation graph of ht : ht = σ(Whhht−1 +Whixt + b)
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Backpropagation through time

Problem with standard backpropagation:
• Gradient involves repeated multiplication of Whh

• Gradient will vanish / explode (depending on the eigenvalues of Whh)

Quick fixes:
• Reduce the number of repeated multiplication: truncate after k steps (ht−k has

no influence on ht )
• Limit the norm of the gradient in each step: gradient clipping (can only mitigate

explosion)
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Long-short term memory (LSTM)

Vanilla RNN: always update the hidden state
• Cannot handle long range dependency due to gradient vanishing

LSTM: learn when to update the hidden state
• First successful solution to the gradient vanishing and explosion problem

Key idea is to use a gating mechanism: multiplicative weights that modulate
another variable

• How much should the new input affect the state?
• When to ignore new inputs?
• How much should the state affect the output?

26 / 55
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Long-short term memory (LSTM) parametrization

Figure: 10.1.2 from d2l.ai

Update with the new input xt (same as in vanilla RNN)

c̃t = tanh(Wxcxt +Whcht−1 + bc) new cell content

Should we update with the new input xt?

27 / 55
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Long-short term memory (LSTM) parametrization

Figure: 10.1.3 from d2l.ai

Choose between c̃t (update) and ct−1 (no update): (⊙: elementwise product)

memory cell ct = it ⊙ c̃t + ft ⊙ ct−1

• ft : proportion of the old state (preserve ↑ or erase ↓ the old memory)
• it : proportion of the new state (write ↑ or ignore ↓ the new input)
• What is ct if ft = 1 and it = 0?

28 / 55
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Long-short term memory (LSTM) parametrization

Input gate and forget gate depends on data:

it = sigmoid(Wxixt +Whiht−1 + bi ) ,

ft = sigmoid(Wxf xt +Whf ht−1 + bf ) .

Each coordinate is between 0 and 1.
29 / 55



Long-short term memory (LSTM) parametrization

Figure: 10.1.4 from d2l.ai

How much should the memory cell state influence the rest of the network:

ht = ot ⊙ ct

ot = sigmoid(Wxoxt +Whoht−1 + bo)

ct may accumulate information without impact the network if ot is close to 0
30 / 55
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How does LSTM solve gradient vanishing / explosion?

Intuition: gating allows the network to learn to control how much gradient should
vanish.

• Vanilla RNN: gradient depends on repeated multiplication of the same weight
matrix

• LSTM: gradient depends on repeated multiplication of some quantity that
depends on the data (values of input and forget gates)

• So the network can learn to reset or update the gradient depending on whether
there is long-range dependencies in the data.
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Improve the efficiency of RNN

Figure: 11.6.1 from d2l.ai

Recall that our goal is to come up with a good
respresentation of a sequence of words.

RNN:
• Past words influence the sentence

representation through recurrent update
• Sequential computation O(sequence length),

hard to scale

Can we handle dependency more efficiently?
• Direct interaction between any pair of words

in the sequence
• Parallelizable computation

33 / 55
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Model interaction between words

Time flies like an arrow: Which word(s) is most related to “time”?

A database approach:

query keys values
arrow time
flies flies
like like
an an

time time arrow

Output: arrow

Limitations:

• Relatedness should not be hard-coded
Keys for values should be learned

• A word is related to multiple words in a
sentence
Query should be matched to multiple keys
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Model interaction between words using a ”soft” database

Figure: 11.1.1 from d2l.ai

• Attention weights α(q, ki ): how likely is q matched to ki
• Attention pooling: combine vi ’s according to their “relatedness” to the query
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Model interaction between words using a ”soft” database

Figure: 11.3.1 from d2l.ai

• Model attention weights as a distribution: α = softmax(a(q, k1), . . . , a(q, km))

• Output a weighted combination of values: oi =
∑m

i=1 α(q, ki )vi
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Self-attention
Goal: an efficient model of the interaction among symbols in a sequence

Idea: model the interaction between each pair of words (in parallel)

• Input: map each symbol to a query, a key, and a value (embeddings)
• Attend: each word (as a query) interacts with all words (keys)
• Output: contextualized representation of each word (weighted sum of values)
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Attention scoring functions
Design the function that measures relatedness between queries and keys:
α = softmax(a(q, k))

Dot-product attention
a(q, k) = q · k

Scaled dot-product attention

a(q, k) = q · k/
√
d

•
√
d : dimension of the key vector

• Avoids large attention weights that push the softmax function into regions of
small gradients

MLP attention
a(q, k) = uT tanh(W [q; k])
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Multi-head attention: motivation

Time flies like an arrow

• Each word attends to all other words in the sentence
• Which words should “like” attend to?

• Syntax: “flies”, “arrow” (a preposition)
• Semantics: “time”, “arrow” (a metaphor)

• We want to represent different roles of a word in the sentence: need more than
a single embedding

• Instantiation: multiple self-attention modules
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Multi-head attention

• Multiple attention modules: same architecture, different parameters

• A head: one set of attention outputs
• Concatenate all heads (increased output dimension)
• Linear projection to produce the final output
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Matrix representation: input mapping

Figure: From The Illustrated Transformer
41 / 55
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Matrix representation: attention weights

Scaled dot product attention

Figure: From The Illustrated Transformer
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Multi-head attention

Figure: From The Illustrated Transformer
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Summary so far

• Sequence modeling
• Input: a sequence of words
• Output: a sequence of contextualized embeddings for each word
• Models interaction among words

• Building blocks
• Feed-forward / fully-connected neural network
• Recurrent neural network
• Self-attention

Which of these can handle sequences of arbitrary length?
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Overview

• Use self-attention as the core building block
• Vastly increased scalability (model and data size) compared to recurrence-based

models
• Initially designed for machine translation (next week)

• Attention is all you need. Vaswani et al., 2017.
• The backbone of today’s large-scale models
• Extended to non-sequential data (e.g., images and molecules)
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Transformer block

Figure: From The Illustrated
Transformer

• Multi-head self-attention

• Capture dependence among input
symbols

• Positional encoding

• Capture the order of symbols

• Residual connection and layer normalization

• More efficient and better optimization

47 / 55
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Position embedding
Motivation: model word order in the input sequence
Solution: add a position embedding to each word

Position embedding:
• Encode absolute and relative positions of a word
• Same dimension as word embeddings
• Learned or deterministic

48 / 55



Sinusoidal position embedding
Intuition: continuous approximation of binary encoding of positions (integers)

Figure: From Amirhossein Kazemnejad’s Blog

ω2i = ω2i+1 = 1/10000
2i
d
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Learned position embeddings

Sinusoidal position embedding:
• Not learnable
• Can extrapolate to longer sequences but doesn’t work well

Learned absolute position embeddings (most common now):
• Consider each position as a word. Map positions to dense vectors:
Wd×nϕone-hot(pos)

• Column i of W is the embedding of position i

• Need to fix maximum position/length beforehand
• Cannot extrapolate to longer sequences
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Residual connection

Motivation:
• Gradient explosion/vanishing is not RNN-specific!
• It happens to all very deep networks (which are hard to optimize).

• In principle, a deep network can always represent a shallow network (by setting
higher layers to identity functions), thus it should be at least as good as the
shallow network.

• How can we make it easier to recover the shallow solution?

51 / 55



Residual connection

Motivation:
• Gradient explosion/vanishing is not RNN-specific!
• It happens to all very deep networks (which are hard to optimize).
• In principle, a deep network can always represent a shallow network (by setting

higher layers to identity functions), thus it should be at least as good as the
shallow network.

• How can we make it easier to recover the shallow solution?

51 / 55



Residual connection
Solution: Deep Residual Learning for Image Recognition [He et al., 2015]

Learn the residual layer: g(x) = f (x)− x

If the shallow network is better, set g(x) = 0 (easier to learn).
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Layer normalization
Layer Normalization [Ba et al., 2016]

• Normalize (zero mean, unit variance) across features
• Let x = (x1, . . . , xd) be the input vector (e.g., word embedding, previous layer

output)
LayerNorm(x) =

x − µ̂

σ̂
,

where µ̂ =
1

d

d∑
i=1

xi , σ̂2 =
1

d

d∑
i=1

(xi − µ̂)2

• A deterministic transformation of the
input

• Independent of train/inference and
batch size
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Residual connection and layer normalization in Transformer

• Add (residual connection) & Normalize (layer normalization) after each layer
• Position-wise feed-forward networks: same mapping for all positions
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Summary

• We have seen two families of models for sequences modeling: RNNs and
Transformers

• Both take a sequence of (discrete) symbols as input and output a sequence of
embeddings

• They are often called encoders and are used to represent text
• Transformers are dominating today because of its scalability
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